This application claims the priority of European patent application, Serial No. 17 185 444.1, filed Aug. 9, 2017, pursuant to 35 U.S.C. 119(1)-(d), the content of which is incorporated herein by reference in its entirety as if fully set forth herein.
The invention relates to an inductor and an inductor arrangement comprising such an inductor.
Achieving electromagnetic compatibility is a challenging task, since switching frequencies and transition times in switched-mode power supplies (SMPS) are increasing. Due to switching actions in switched-mode power supplies electric and magnetic fields are generated by inductors. To prevent excessive radiation of these fields, inductors are generally shielded.
U.S. Pat. No. 6,262,870 B1 discloses a switched power supply with a switching element that is connected to a switching transformer. The switching transformer comprises an annular ring which surrounds the transformer and is formed with an electrically conductive material. The annular ring suppresses or eliminates electrostatic interference caused by the structure and operation of the transformer.
It is an object of the present invention to provide an inductor that enables in an easy and flexible manner the attenuation of electric and magnetic fields. Preferably, it is an object of the present invention to provide an inductor that efficiently reduces the near field radiation and has a high shielding effectiveness.
This object is achieved by an inductor comprising
in which the at least one shielding coil extends through an excitation coil interior of the excitation coil,
and in which the excitation coil axis and the respective shielding coil axis (11; 11, 14) define an angle δ, wherein applies: 60°≤δ≤120°, preferably 75°≤δ≤105°, and preferably 85°≤δ≤95°.
The electric and magnetic radiation of the excitation coil can be reduced in an easy and flexible manner by arranging the at least one shielding coil such that the angle δ between the excitation coil axis and the respective shielding coil axis is in the range of 60°≤δ≤120°, preferably 75°≤δ≤105°, and preferably 85°≤δ≤95°. Preferably, the angle δ is 90°. The excitation coil axis is a longitudinal axis of the excitation coil, whereas the shielding coil axis is a longitudinal axis of the associated shielding coil. The excitation coil produces a magnetic field (H-field) which produces according to the Maxwell-Faraday equation an electric field (E-field) in perpendicular direction of the magnetic field and vice versa. Due to the angle δ the at least one shielding coil efficiently suppresses the radiation of E-field and in consequence also the radiation of H-field. The inventive inductor has a high shielding effectiveness and enables the reduction of near field radiation. The shielding effectiveness can be adapted in an easy and flexible manner to a desired frequency by the number of shielding coils and/or the number of shielding coil layers and/or the diameter of the shielding coil wire. Preferably, the inductor has exactly one shielding coil. Due to the reduced component level radiation the inventive inductor is advantageously applicable in automotive applications.
Depending on a first pitch angle φE of excitation coil windings of the excitation coil and a respective second pitch angle φS of the at least one shielding coil, the excitation coil windings and the respective shielding coil windings define an angle α, wherein applies: 30°≤α≤150°, preferably 45°≤α≤135°, and preferably 60°≤α≤120°. Preferably, the angle α is 90°.
The inductor enables in an easy and flexible manner the attenuation of electric and magnetic fields. By surrounding the excitation coil the at least one shielding coil effectively shields electric and magnetic fields in many different directions. At least one shielding coil winding surrounds all excitation coil windings. The at least one shielding coil defines a respective shielding coil interior. The shielding coil interior is limited by the shielding coil windings. The excitation coil is arranged at least partially in the shielding coil interior such that the shielding coil windings run around the excitation coil. The excitation coil defines an excitation coil interior. The excitation coil windings limit the excitation coil interior. By extending through the excitation coil interior the at least one shielding coil surrounds the excitation coil and effectively shields electric and magnetic fields. The shielding coil windings surround the excitation coil and thereby extend through the excitation coil interior.
An inductor, in which the angle δ is defined in a projection plane, which preferably runs in parallel to the excitation coil axis, enables in an easy and flexible manner the attenuation of electric and magnetic fields. The angle δ ensures an exact positioning of the at least one shielding coil in relation to the excitation coil. Preferably, the angle a is also defined in the projection plane.
An inductor, in which the excitation coil is a solenoid and the excitation coil axis is a straight line, enables in an easy manner the attenuation of electric and magnetic fields. Since the excitation coil axis is a straight line the at least one shielding coil can easily be positioned such that the respective shielding coil axis encloses the angle δ with the excitation coil axis.
An inductor, in which the respective shielding coil axis is a curved line and surrounds the excitation coil axis at least partially, enables in an easy and flexible manner the attenuation of electric and magnetic fields. Since the at least one shielding coil is designed such that the respective shielding coil axis is a curved line that surrounds the excitation coil axis at least partially, the electric and magnetic field radiation of the excitation coil can be shielded in many different directions. Therefore, the shielding effectiveness is high.
An inductor, in which the at least one shielding coil is a toroid and the respective shielding coil axis is a circular arc, efficiently reduces the radiation of electric and magnetic fields. Since the at least one shielding coil is a toroid the excitation coil is surrounded by the at least one shielding coil and electric and magnetic fields are shielded in many different directions. Therefore, the shielding effectiveness is high.
An inductor, in which the at least one shielding coil has shielding coil windings which have an oval shape, enables in an easy and flexible manner the attenuation of electric and magnetic fields. Due to the oval shape the shielding coil windings surround the excitation coil in an easy and flexible manner and the at least one shielding coil can be adapted to an axial length of the excitation coil. The shielding coil windings define the oval shape in a view along the respective shielding coil axis. Therefore, the at least one shielding coil efficiently reduces the radiation of electric and magnetic fields.
An inductor, in which a core is arranged in an excitation coil interior of the excitation coil and the at least one shielding coil extends between the core and the excitation coil, ensures a high shielding effectiveness. The at least one shielding coil extends between the core and the excitation coil such that the shielding coil windings surround the excitation coil and extend partially in the excitation coil interior. Despite of the core the at least one shielding coil enables the attenuation of electric and magnetic fields.
An inductor, in which the excitation coil and the respective shielding coil are fixed relative to each other by an insulating material, preferably by a resin, enables in an easy and flexible manner the attenuation of electric and magnetic fields. Due to the insulating material the excitation coil and the at least one shielding coil are fixed relative to each other with the desired angle δ. Preferably, the insulating material is a resin.
An inductor, in which the at least one shielding coil forms at least one shielding coil layer, wherein for a number N of the at least one shielding coil layer applies: 1≤N≤8, preferably 2≤N≤4, ensures in an easy and flexible manner the attenuation of electric and magnetic fields. The shielding effectiveness increases with the number N of shielding coil layers. Furthermore, the number N of shielding coil layers can be adapted to a desired range of frequency. Preferably, the at least one shielding coil has a shielding coil wire with a diameter d, wherein applies: 0.01 mm≤d≤3.2 mm, preferably 0.04 mm≤d≤1.0 mm, preferably 0.06 mm≤d≤0.6 mm, preferably 0.09 mm≤d≤0.2 mm.
In a first embodiment the inductor has exactly one shielding coil that comprises at least one shielding coil layer. In a second embodiment the inductor has at least two shielding coils, wherein each shielding coil has at least one shielding coil layer. The at least two shielding coils have an equal number or a different number of shielding coil layers. Preferably, each shielding coil has exactly one shielding coil layer such that the number of shielding coils is equal to the number N of shielding coil layers.
An inductor, in which the excitation coil and the at least one shielding coil are encased by a metal enclosure, efficiently reduces the radiation of electric and magnetic fields. The metal enclosure improves the shielding effectiveness since electric and magnetic fields, preferably electric and magnetic fields caused by the at least one shielding coil, are effectively reduced.
Furthermore, it is an object of the invention to provide an inductor arrangement that enables in an easy and flexible manner the attenuation of electric and magnetic fields of an inductor.
This object is achieved by an inductor arrangement comprising
An inductor arrangement, in which the at least one pin is connected via a capacitor to the reference node, ensures the attenuation of electric and magnetic fields. By the capacitor the shielding effectiveness can be adapted to a desired range of frequency. For example, the first pin of the shielding coil is connected via a first capacitor to the reference node, whereas a second pin of the shielding coil is connected via a second capacitor to the reference node. By the capacitors the shielding effectiveness can be adapted to a desired frequency band.
Further features, advantages and details of the invention will be apparent from the following description of several embodiments which refer to the accompanying drawings.
The inductor 2 comprises an excitation coil 4, a shielding coil 5, a magnetic core 6 and a metal enclosure 7. The metal enclosure 7 is shown in
The excitation coil 4 has several excitation coil windings E1 to En which limit an excitation coil interior 8 and define an longitudinal excitation coil axis 9. N is the number of excitation coil windings. The excitation coil 4 is a solenoid. The associated excitation coil axis 9 is arranged concentrically in the excitation coil interior 8 and has the shape of a straight line. The excitation coil 4 has a first pin pE and a second pin pE′.
The shielding coil 5 has several shielding coil windings S 1 to Sm which limit a shielding coil interior 10 and define a curved longitudinal shielding coil axis 11. M is the number of shielding coil windings. The shielding coil 5 is a toroid and the shielding coil axis 11 has the shape of a circular arc. The shielding coil 5 surrounds the excitation coil 4 such that the excitation coil 4 is arranged in the shielding coil interior 10. Hence, the shielding coil axis 11 which is a curved line in the shape of a circular arc concentrically surrounds the excitation coil axis 9. Since the shielding coil 5 surrounds the excitation coil 4 the shielding coil windings S1 to Sm extend through the excitation coil interior 8 and have an oval shape. The oval shape depends on an axial length of the excitation coil 4 and the number n of excitation coil windings E1 to En. The shielding coil windings S1 to Sm extend through the excitation coil interior 8 and are arranged in a radial direction between the magnetic core 6 and the excitation coil 4.
The excitation coil 4 and the shielding coil 5 define in a projection plane P an angle δ, wherein applies: 60°≤δ≤120°, preferably 75°≤δ<105°, and preferably 85°≤δ≤95°. The projection plane P runs in parallel to the excitation coil axis 9. For example, the angle δ=90°. The angle δ describes a rotation or a rotational displacement between the excitation coil axis 9 and the shielding coil axis 11.
The excitation coil 4 has in relation to a plane which runs perpendicular to the excitation coil axis 9 a pitch angle φE, whereas the shielding coil 5 has in relation to a plane which runs perpendicular to the shielding coil axis 11 a pitch angle φs. Depending on the pitch angles φE and φs the excitation coil windings E1 to En and the shielding coil windings S1 to Sm define an angle α, wherein applies: 30°≤α≤150°, preferably 45°≤α≤135°, and preferably 60°≤α≤120°.
The shielding coil 5 has a first pin p1 and a second pin p1′. The first pin p1 is connected to the reference node R, whereas the second pin p1′ is not connected at all.
The excitation coil 4, the shielding coil 5, the magnetic core 6 and the metal enclosure 7 are fixed relative to each other by an insulating material 15. The insulating material 15 is shown in
The shielding coil 5 forms exactly one shielding coil layer L1. Therefore, for a number N of shielding coil layers applies: N=1. The shielding coil 5 has a shielding coil wire with a diameter d, wherein applies: 0.01 mm≤d≤3.2 mm, preferably 0.05 mm≤d≤1.0 mm, preferably 0.06 mm≤d≤0.6 mm, preferably 0.09 mm≤d≤0.2 mm
The excitation coil axis 9 and the first shielding coil axis 11 define the angle δ, whereas the excitation coil axis 9 and the second shielding coil axis 14 define a corresponding angle δ′. For the angle δ′ applies as well: 60°≤δ≤′120°, preferably 75°≤δ′≤105°, and preferably 85°≤δ′≤95°. Preferably, δ=δ′ applies. The second shielding coil 12 has a second pitch angle φs′. The excitation coil windings E1 to En and the second shielding coil windings S1′ to Sk′ define an angle α′ which depends on the pitch angles φE and φs′. For the angle α′ applies: 30°≤α′≤150°, preferably 45°≤α′≤135°, and preferably 60°≤α′≤120°.
The shielding coils 5, 12 form a number N=2 of shielding coil layers L1 to LN. The first pin p1 of the first shielding coil 5 and a first pin p2 of the second shielding coil 12 are connected to the reference node R. The second pin p1′ of the first shielding coil 5 and a second pin p2′ of the second shielding coil 12 are not connected. Further details concerning the design and functioning of the inductor arrangement 1 can be found in the descriptions of the proceedings embodiments.
The features of the inductor arrangements 1 and the associated inductors 2 can be combined with one another as desired to achieve the desired attenuation of electric and magnetic fields at a desired frequency and the desired shielding effectiveness.
Number | Date | Country | Kind |
---|---|---|---|
17185444 | Aug 2017 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
2553324 | Lord | May 1951 | A |
4808929 | Oldigs | Feb 1989 | A |
5166655 | Rogers | Nov 1992 | A |
6175295 | Honma | Jan 2001 | B1 |
6262870 | Yumoto | Jul 2001 | B1 |
6311389 | Uosaki | Nov 2001 | B1 |
20100127815 | Damnjanovic | May 2010 | A1 |
20100295640 | Tamura | Nov 2010 | A1 |
20160189856 | Sarder | Jun 2016 | A1 |
20180252551 | Xie et al. | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
230 974 | Feb 1944 | CH |
230974 | Feb 1944 | CH |
2329089 | Jul 1999 | CN |
104266665 | Jan 2015 | CN |
2 998 971 | Mar 2016 | EP |
2998971 | Mar 2016 | EP |
2434488 | Jul 2007 | GB |
101629890 | Jun 2016 | KR |
425582 | Mar 2001 | TW |
2011122929 | Oct 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20190051448 A1 | Feb 2019 | US |