The present disclosure generally relates to the wireless transmission of electrical energy and data. More specifically, this application relates to various embodiments which enable the transmission of wireless electrical energy by near-field magnetic coupling.
Near field magnetic coupling (NFMC) is a commonly employed technique to wirelessly transfer electrical energy. The electrical energy may be used to directly power a device, charge a battery or both.
In NFMC an oscillating magnetic field generated by a transmitting antenna passes through a receiving antenna that is spaced from the transmitting antenna, thereby creating an alternating electrical current that is received by the receiving antenna.
However, the oscillating magnetic field radiates in multiple directions from the transmitting antenna. Thus, transmission of electrical energy between opposed transmitting and receiving antennas may be inefficient as some of the transmitted magnetic fields may radiate in a direction away from the receiving antenna.
In contrast to the prior art, the subject technology provides a wireless electrical power transmitting and receiving antenna and system thereof that increases transmission of electrical energy therebetween, particularly in the presence of a metallic environment. Furthermore, in contrast to the prior art, the wireless electrical power transmitting system enables multiple electronic devices to be electrically charged or powered by positioning one or more devices in non-limiting orientations with respect to the transmitting antenna. Therefore, multiple devices may be electrically charged or powered simultaneously, regardless of their physical orientation with the transmitting antenna.
The present disclosure relates to the transfer of wireless electrical energy and/or data between a transmitting antenna and a receiving antenna. In one or more embodiments, at least one of a transmitting antenna and a receiving antenna comprising an inductor coil having a figure eight configuration is disclosed. In one or more embodiments, a “figure eight” coil confirmation comprises at least one filar, forming the coil, crosses over itself thereby forming a “figure-eight” coil configuration. Such an inductor coil configuration improves the efficiency of wireless electrical energy transmission by focusing the radiating magnetic field in a uniform direction, towards the receiving antenna. In one or more embodiments the figure eight coil configuration minimizes coupling of magnetic fields with the surrounding environment thereby improving the magnitude and efficiency of wireless electrical energy transmission.
In one or more embodiments, a wireless electrical power system comprising at least one transmitting and receiving antenna is disclosed. In one or more embodiments the at least one transmitting and receiving antenna of the electrical system comprises at least one inductor coil with a figure eight configuration. In one or more embodiments, at least one of the transmitting and receiving antennas of the wireless electrical power system may be configured within an electronic device. Such electronic devices may include, but are not limited to, consumer electronics, medical devices, and devices used in industrial and military applications.
In one or more embodiments at least one of the wireless electrical power transmitting and receiving antennas is configured with one or more magnetic field shielding embodiments that increase the quantity of the magnetic field within a given volume of space, i.e., density of the magnetic field that emanates from the antenna. In one or more embodiments the wireless electrical power transmitting antenna is configured with one or more magnetic field shielding embodiments that control the direction in which the magnetic field emanates from the antenna. Furthermore, the transmitting and/or the receiving antenna is configured with one or more embodiments that increase the efficiency, reduces form factor and minimizes cost in which electrical energy and/or data is wirelessly transmitted. As a result, the subject technology provides a wireless electrical energy transmission transmitting and/or receiving antenna and system thereof that enables increased efficiency of wireless electrical energy transmission.
In the following description, numerous specific details are set forth by way of examples in order to provide a thorough understanding of the relevant teachings. However, it should be apparent to those skilled in the art that the present teachings may be practiced without such details. In other instances, well known methods, procedures, components, and/or circuitry have been described at a relatively high-level, without detail, in order to avoid unnecessarily obscuring aspects of the present teachings.
The various embodiments illustrated in the present disclosure provide for the wireless transfer of electrical energy and/or data. More specifically, the various embodiments of the present disclosure provide for the wireless transmission of electrical energy and/or data via near field magnetic coupling between a transmitting antenna and a receiving antenna.
Now turning to the figures,
As will be discussed in more detail, when configured within a transmitting antenna 22 (
As illustrated in
In one or more embodiments, the inductor coil 12 comprising the figure eight construction may have an overlap area 36. As defined herein the overlap area 36 is the area encompassed by the first filar portion 28 and the second filar portion 30 (shown in
In contrast to the figure eight coil configuration of the present application,
In contrast to the inductor coil 38 illustrated in
In one or more embodiments, magnetic fields 24 emanating from the inductor coil 12 of the subject technology having a figure eight configuration exhibit the pattern shown in
In one or more embodiments, the figure eight coil configuration of the present application creates an additional current carrying path at the crossover intersection 20 that bisects the electrical current flowing through either of the first or second filar portions 28, 30. As a result, there are three electrical currents at the crossover intersection 20 instead of two electrical currents if not constructed with the figure eight configuration. In one or more embodiments, the filar 14 comprising the figure eight configuration crosses the intersection 20 twice in the same direction as compared to the electrical current flowing within the inductor coil 12 at the respective first and second inductor coil ends 16, 18 which flows in the same direction with respect to each other. Therefore, the electrical current at the crossover intersection has a magnitude that is twice as great as the electrical current at the respective first and second inductor coil ends 16, 18. In one or more embodiments, the electrical current having a greater magnitude flowing through the crossover intersection 20 of the figure eight configuration thus forces the magnetic fields 24 to form opposing loop formations that are offset from the center of the crossover intersection 20. These opposing magnetic field loop formations that are offset from the center of the crossover intersection 20 thus creates a compact emanating magnetic field 24 that inhibits the magnetic field 24 from emanating in a spurious direction such as following a curved path around the edge 40 of the transmitting antenna 22. Furthermore, interference of the emanating magnetic field 24 with a metallic object or objects (not shown) that may be positioned adjacent to the transmitting antenna 22 is thus minimized or eliminated. As a result, coupling and efficiency between transmitting and receiving antennas 22, 26 is increased. Furthermore, efficiency of wireless electrical energy transfer is increased.
In one or more embodiments, the first and second inductor loops 32, 34 may be electrically connected in series, parallel, or a combination thereof. In general, connecting the inductor loops in electrical series increases inductance and series resistance. Connecting the inductor loops electrically in parallel generally decreases series resistance and inductance. In addition, in one or more embodiments, the first and second inductor coil loops 32, 34 may be positioned in opposition to each other. In one or more embodiments, the first and second inductor coil loops 32, 34 may be positioned diametrically opposed from each other. In one or more embodiments, a crossover angle θ is created between the first and second filar portions 28, 30. As defined herein, the crossover angle θ is the angle that extends between the first or second filar portion 28, 30 that extends over the other of the first or second filar portion 28, 30 at the crossover intersection 20. In one or more embodiments, the crossover angle θ may be about 90°. In one or more embodiments, the crossover angle θ may be greater than 0° and less than 90°. In one or more embodiments, the crossover angle θ may be greater than 90° and less than 180°.
In this application, the subject technology concepts particularly pertain to NFMC. NFMC enables the transfer of electrical energy and/or data wirelessly through magnetic induction between a transmitting antenna 22 and a corresponding receiving antenna 26 (
As defined herein a “shielding material” is a material that captures a magnetic field. Examples of shielding material include, but are not limited to ferrite materials such as zinc comprising ferrite materials such as manganese-zinc, nickel-zinc, copper-zinc, magnesium-zinc, and combinations thereof. A shielding material thus may be used to direct a magnetic field to or away from an object, such as a parasitic metal, depending on the position of the shielding material within or nearby an electrical circuit. Furthermore, a shielding material can be used to modify the shape and directionality of a magnetic field. As defined herein a parasitic material, such as a parasitic metal, is a material that induces eddy current losses in the inductor antenna. This is typically characterized by a decrease in inductance and an increase in resistance of the antenna, i.e., a decrease in the quality factor. An “antenna” is defined herein as a structure that wirelessly receives or transmits electrical energy or data. An antenna comprises a resonator that may comprise an inductor coil or a structure of alternating electrical conductors and electrical insulators. Inductor coils are preferably composed of an electrically conductive material such as a wire, which may include, but is not limited to, a conductive trace, a filar, a filament, a wire, or combinations thereof.
It is noted that throughout this specification the terms, “wire”, “trace”, “filament” and “filar” may be used interchangeably to describe a conductor. As defined herein, the word “wire” is a length of electrically conductive material that may either be of a two-dimensional conductive line or track that may extend along a surface or alternatively, a wire may be of a three-dimensional conductive line or track that is contactable to a surface. A wire may comprise a trace, a filar, a filament or combinations thereof. These elements may be a single element or a multitude of elements such as a multifilar element or a multifilament element. Further, the multitude of wires, traces, filars, and filaments may be woven, twisted or coiled together such as in a cable form. The wire as defined herein may comprise a bare metallic surface or alternatively, may comprise a layer of electrically insulating material, such as a dielectric material that contacts and surrounds the metallic surface of the wire. The wire (conductor) and dielectric (insulator) may be repeated to form a multilayer assembly. A multilayer assembly may use strategically located vias as a means of connecting layers and/or as a means of creating a number of coil turns in order to form customized multilayer multiturn assemblies. A “trace” is an electrically conductive line or track that may extend along a surface of a substrate. The trace may be of a two-dimensional line that may extend along a surface or alternatively, the trace may be of a three-dimensional conductive line that is contactable to a surface. A “filar” is an electrically conductive line or track that extends along a surface of a substrate. A filar may be of a two-dimensional line that may extend along a surface or alternatively, the filar may be a three-dimensional conductive line that is contactable to a surface. A “filament” is an electrically conductive thread or threadlike structure that is contactable to a surface. “Operating frequency” is defined as the frequency at which the receiving and transmitting antennas operate. “Self-resonating frequency” is the frequency at which the resonator of the transmitting or receiving antenna resonates.
In one or more embodiments, the inductor coils 12 of either the transmitting antenna 22 or the receiving antenna 26 are strategically positioned to facilitate reception and/or transmission of wirelessly transferred electrical power or data through near field magnetic induction. Antenna operating frequencies may comprise all operating frequency ranges, examples of which may include, but are not limited to, about 100 kHz to about 200 kHz (Qi interface standard), 100 kHz to about 350 kHz (PMA interface standard), 6.78 MHz (Rezence interface standard), or alternatively at an operating frequency of a proprietary operating mode. In addition, the transmitting antenna 22 and/or the receiving antenna 26 of the present disclosure may be designed to transmit or receive, respectively, over a wide range of operating frequencies on the order of about 1 kHz to about 1 GHz or greater, in addition to the Qi and Rezence interfaces standards. In addition, the transmitting antenna 22 and the receiving antenna 26 of the present disclosure may be configured to transmit and/or receive electrical power having a magnitude that ranges from about 100 mW to about 100 W. In one or more embodiments the inductor coil 12 of the transmitting antenna 22 is configured to resonate at a transmitting antenna resonant frequency or within a transmitting antenna resonant frequency band. In one or more embodiments the transmitting antenna resonant frequency is at least 1 kHz. In one or more embodiments the transmitting antenna resonant frequency band extends from about 1 kHz to about 100 MHz. In one or more embodiments the inductor coil 12 of the receiving antenna 26 is configured to resonate at a receiving antenna resonant frequency or within a receiving antenna resonant frequency band. In one or more embodiments the receiving antenna resonant frequency is at least 1 kHz. In one or more embodiments the receiving antenna resonant frequency band extends from about 1 kHz to about 100 MHz.
In one or more embodiments, magnetic fields 24 typically combine according to the following mathematical relationship: I(R1)+cos ϕX I(R2) where ϕ is the angle between the electrical current directions R1 and R2 within each of the two inductor coil loops 32, 34. As illustrated in
In one or more embodiments, various materials may be incorporated within the structure of the inductor coils 12, 50, 58, 62 of the present application to shield the inductor coils from magnetic fields and/or electromagnetic interference and, thus, further enhance the electrical performance of the respective transmitting or receiving antenna 22, 26.
In one or more embodiments, at least one magnetic field shielding material 66, such as a ferrite material, may be positioned about the inductor coil 12 or antenna 22, 26 structure to either block or absorb magnetic fields 24 that may create undesirable proximity effects and that result in increased electrical impedance within the transmitting or receiving antenna 22, 26 and decrease coupling between the transmitting and receiving antennas 22, 26. These proximity effects generally increase electrical impedance within the antenna 22, 26 which results in a degradation of the quality factor. In addition, the magnetic field shielding material 66 may be positioned about the antenna structure to increase inductance and/or act as a heat sink within the antenna structure to minimize over heating of the antenna. Furthermore, such materials 66 may be utilized to modify the magnetic field profile of the antenna 22, 26. Modification of the magnetic field(s) 24 exhibited by the antenna 22, 26 of the present disclosure may be desirable in applications such as wireless charging. For example, the profile and strength of the magnetic field exhibited by the antenna 22, 26 may be modified to facilitate and/or improve the efficiency of wireless power transfer between the antenna and an electric device 68 (
The embodiments shown in
In one or more embodiments, various electrical performance parameters of the wireless electrical energy transmitting and receiving antennas 22, 26 of the present application were measured. One electrical parameter is quality factor (Q) defined below.
The quality factor of a coil defined as:
Where:
Another performance parameter is resistance of receiving antenna efficiency (RCE) which is coil to coil efficiency. RCE is defined as:
Where:
Another performance parameter is mutual induction (M). “M” is the mutual inductance between two opposing inductor coils of a transmitting and receiving antenna, respectively. Mutual induction (M) is defined as:
Where:
Mutual inductance can be calculated by the following relationship:
M=k*√{square root over (LTX*LRX)}
Where:
Figure of Merit (FOM) can be calculated by the following relationship:
Where:
Coil to Coil Efficiency (C2C) can be calculated by the following relationship:
Where:
Table I shown below, delineates the inductance (L), electrical resistance (R), and quality factor (Q) of both the transmitting and receiving antennas 22, 26 that comprised an inductor coil configured without the figure eight configuration.
As detailed in the test performance results shown in Table I, inclusion of the magnetic field shielding material 66 increased the inductance of both the transmitting and receiving antennas 22, 26. In addition, inclusion of the magnetic field shielding material 66 increased the quality factor of the receiving antenna 26.
Table II shown below delineates the inductance (L), electrical resistance (R), and quality factor (Q) of both the transmitting and receiving antennas 22, 26 that comprised an inductor coil 12 having the figure eight configuration.
As detailed in the test performance results shown in Table II, inclusion of the magnetic field shielding material 66 increased the inductance of both the transmitting and receiving antennas 22, 26. In addition, inclusion of the magnetic field shielding material 66 increased the quality factor of the transmitting and receiving antennas 22, 26.
In one or more embodiments a capacitor such as a surface mount capacitor may be electrically connected to the inductor coil 12. In one or more embodiments, a capacitor can be electrically connected to the inductor coil 12 of the transmitting antenna 22 and/or the receiving antenna 26 to adjust the inductance of the inductor coil 12. The capacitor may comprise a parallel plate capacitor 102 and/or an interdigitated capacitor 104. In one or more embodiments, the capacitor, such as a parallel plate capacitor 102 or an interdigitated capacitor 104 may be fabricated on or incorporated within a substrate that supports the inductor coil 12. For example, a parallel plate capacitor 102 or an interdigitated capacitor 104 may be fabricated on or within a printed circuit board (PCB) or flexible circuit board (FCB) to impart a desired capacitance to the transmitting or receiving antenna 22, 26.
In one or more embodiments, the parallel plate capacitor 102, as shown in
Non-limiting examples of an interdigitated capacitor 104 are shown in
In one or more embodiments, the inter-digitated capacitor 104 can be integrated within a substrate 120 such as a PCB. In one or more embodiments, the inductor coil 12 may be positioned on the surface of the interdigitated capacitor 104. Alternatively, the inductor coil 12 may be positioned surrounding the interdigitated capacitor 104. In one or more embodiments, the interdigitated capacitor 104 may be positioned within an opening or cavity (not shown) within a substrate 72 supporting the inductor coil 12. In one or more embodiments, the interdigitated capacitor 104 provides a cost-effective means to add capacitance to the inductor coil 12. In addition, the interdigitated capacitor 104 is mechanically durable and may be used to connect a tuned inductor coil 12 directly to a circuit board. In one or more embodiments, interdigitated capacitors 104 can also be useful in applications where relatively thin form factors are preferred. For example, an interdigitated capacitor 104 may be used to tune the inductor coil 12 in lieu of a surface mount capacitor because of the mechanical robustness, relatively thin design, and reduced cost of the interdigitated capacitor 104.
In one or more embodiments, the width of the air gap 122 that extends between sidewalls 126 of adjacently positioned filars 14 is minimized. In one or more embodiments, decreasing the width of the air gap 122 may increase the amount of electrically conductive material that comprises the filar 14 within a defined area. Thus, the amount of electrical current and magnitude of electrical power able to be carried by the inductor coil 12 within a specific area is increased. For example, decreasing the air gap 122 between adjacent filars 14 would enable an increased number of coil turns within a specified area. In one or more embodiments, the width of the air gap 122 may range from about 10 μm to about 50 μm. In one or more embodiments, the width of the air gap 122 may range from about 15 μm to about 40 μm.
In one or more embodiments, the thickness 128 of the filar that extends from the surface 70 of the substrate 72 is maximized. In one or more embodiments, increasing the thickness 128 of the filar 14 increases the amount of electrically conductive material that comprises the filar within a defined area. Thus, the amount of electrical current and magnitude of electrical power able to be carried by the inductor coil 12 is increased within a specific area. In one or more embodiments, the thickness 128 of the filar 14 may vary or be constant along the inductor coil 12. In one or more embodiments, the thickness 128 of the filar 14 may range from about 12 μm to about 150 μm. In one or more embodiments, the width 124 of the filar 14 may vary or be constant along the inductor coil 12. In one or more embodiments, the width 124 of the filar 14 may range from about 10 μm to about 100,000 μm.
In one or more embodiments, the ratio of the width of the air gap 122 to the filar thickness 128 is minimized. In one or more embodiments, the ratio of the width of the air gap 122 to the filar thickness may range from about 0.10 to about 0.50. In one or more embodiments, the ratio of the width of the air gap to the filar thickness may range from about 0.30 to about 0.40.
In one or more embodiments, the sidewall 126 of the filar 14 is oriented about perpendicular to the surface 70 of the substrate 72. In one or more embodiments, the sidewall 126 of the filar 14 may be oriented at a sidewall angle τ with respect to the surface 70 of the substrate 72. As defined herein, the sidewall angle τ is the angle between the exterior surface of the filar sidewall 126 and the surface 70 of the substrate 72 on which the filar 14 is supported. In one or more embodiments, the sidewall angle τ may range from about 75° to about 90°.
Table III above illustrates how the electrical performance of inductance, equivalent series resistance (ESR), and quality factor (Q) change using an air gap of different widths. As shown in Table III above, computer simulations of three different antenna coil configurations were modeled having two different air gap widths. Antenna coil configuration 1 comprised an inductor coil 12 of a rectangular configuration having a length and width of 40 mm and 12 turns. Antenna coil configuration 2 comprised an inductor coil 12 of a circular configuration having an outer diameter of 17 mm. Configuration 2 further comprised two coils, a first coil having 12 turns supported on a top surface of a substrate comprising an electrically insulative material and a second coil comprising 12 turns supported on an opposed bottom surface of the substrate. Antenna coil configuration 3 comprised an inductor coil of a circular configuration having an outer diameter of 17 mm. Configuration 3 further comprised two coils, a first coil having 14 turns supported on a top surface of a substrate comprised of an electrically insulative material and a second coil comprising 14 turns sported on an opposed bottom surface of the substrate. Each of the three antenna coil configurations was modeled having two different air gap widths. Antenna coil configurations 1-3 of Parameter 1 were modeled comprising an air gap width of 0.020 μm whereas antenna coil configurations 1-3 of Parameter 2 were modeled having an air gap width of 0.160 μm. The antenna coil configurations of each parameter comprised the same number of turns but different air gap widths 0.20 μm (Parameter 1) and 0.160 μm (Parameter 2) between adjacent filars 14. As detailed in Table III above, reducing the width of the air gap 122 increased inductance, quality factor, and reduced equivalent series resistance.
In one or more embodiments the inductor coil 12 and antenna 22, 26 concepts of the present application, may be used to form a multi-antenna array 140 as illustrated in
In one or more embodiments, the multi-antenna array 140 of the present application may comprise a multitude of transmitting and/or receiving inductor coils 98, 100 that are positioned embedded within a platform 142 (
In one or more embodiments, the multi-antenna arrays 140 illustrated in either or both
In one or more embodiments, the multi-antenna array 140 of the present application may be configured in a wireless electrical energy transmitting cradle 152 shown in
In one or more embodiments, as illustrated in
As illustrated in
In one or more embodiments as illustrated in
In one or more embodiments either or both the transmitting inductor coil 98 and the receiving inductor coil 100 of the present application may be fabricated using a laser (not shown). In one or more embodiments, the laser may be used to cut the electrically conductive material, thereby forming the filar or wire 14 of the respective inductor coil 12 and further join components together. In one or more embodiments, the laser may be used to cut the electrically conductive material of the coil filar 14 to exacting tolerances. In one or more embodiments, the laser may also be used to join components of the inductor coil and/or antenna 12, 22, 26.
It will be appreciated that any of the embodiments described herein can be used with multilayer, multilayer multiturn, multimode and similarly configured structures. The following U.S. Patent Nos. and U.S. Patent Application Ser. Nos. are additionally incorporated herein fully by reference: 8,567,048; 8,860,545; 9,306,358; 9,439,287; 9,444,213; and Ser. No. 15/240,637.
Thus, it is contemplated that the embodiments of inductor coils and antennas that enable wireless electrical energy transfer embodiments of the present disclosure may be configured having a variety of configurations. Furthermore, such configurations of the variety of inductor coils and antennas allow for significantly improved wireless transmission of electrical energy and/or data. It is further contemplated that the various magnetic shielding materials 66 can be strategically positioned adjacent to the transmitting or receiving antennas 22, 26 to enhance quality factor and mutual inductance between adjacently positioned transmitting and receiving antennas 22, 26. It is appreciated that various modifications to the subject technology concepts described herein may be apparent to those of ordinary skill in the art without departing from the spirit and scope of the present disclosure as defined by the appended claims.
As used herein, the phrase “at least one of” preceding a series of items, with the term “and” or “or” to separate any of the items, modifies the list as a whole, rather than each member of the list (i.e., each item). The phrase “at least one of” does not require selection of at least one of each item listed; rather, the phrase allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items. By way of example, the phrases “at least one of A, B, and C” or “at least one of A, B, or C” each refer to only A, only B, or only C; any combination of A, B, and C; and/or at least one of each of A, B, and C.
The predicate words “configured to”, “operable to”, and “programmed to” do not imply any particular tangible or intangible modification of a subject, but, rather, are intended to be used interchangeably. In one or more embodiments, a processor configured to monitor and control an operation or a component may also mean the processor being programmed to monitor and control the operation or the processor being operable to monitor and control the operation. Likewise, a processor configured to execute code can be construed as a processor programmed to execute code or operable to execute code.
A phrase such as “an aspect” does not imply that such aspect is essential to the subject technology or that such aspect applies to all configurations of the subject technology. A disclosure relating to an aspect may apply to all configurations, or one or more configurations. An aspect may provide one or more examples of the disclosure. A phrase such as an “aspect” may refer to one or more aspects and vice versa. A phrase such as an “embodiment” does not imply that such embodiment is essential to the subject technology or that such embodiment applies to all configurations of the subject technology. A disclosure relating to an embodiment may apply to all embodiments, or one or more embodiments. An embodiment may provide one or more examples of the disclosure. A phrase such an “embodiment” may refer to one or more embodiments and vice versa. A phrase such as a “configuration” does not imply that such configuration is essential to the subject technology or that such configuration applies to all configurations of the subject technology. A disclosure relating to a configuration may apply to all configurations, or one or more configurations. A configuration may provide one or more examples of the disclosure. A phrase such as a “configuration” may refer to one or more configurations and vice versa.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” or as an “example” is not necessarily to be construed as preferred or advantageous over other embodiments. Furthermore, to the extent that the term “include,” “have,” or the like is used in the description or the claims, such term is intended to be inclusive in a manner similar to the term “comprise” as “comprise” is interpreted when employed as a transitional word in a claim. Furthermore, to the extent that the term “include,” “have,” or the like is used in the description or the claims, such term is intended to be inclusive in a manner similar to the term “comprise” as “comprise” is interpreted when employed as a transitional word in a claim.
All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”
Reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” Unless specifically stated otherwise, the term “some” refers to one or more. Pronouns in the masculine (e.g., his) include the feminine and neuter gender (e.g., her and its) and vice versa. Headings and subheadings, if any, are used for convenience only and do not limit the subject disclosure.
While this specification contains many specifics, these should not be construed as limitations on the scope of what may be claimed, but rather as descriptions of particular implementations of the subject matter. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub combination or variation of a sub combination.
This application is a continuation of, and claims priority to, U.S. Non-Provisional application Ser. No. 17/699,597, filed Mar. 21, 2022, and entitled “INDUCTOR COIL STRUCTURES TO INFLUENCE WIRELESS TRANSMISSION PERFORMANCE,”, which in turn claims priority to U.S. Non-Provisional application Ser. No. 15/989,793, filed May 25, 2018, and entitled “INDUCTOR COIL STRUCTURES TO INFLUENCE WIRELESS TRANSMISSION PERFORMANCE,” which in turn claims priority to U.S. Provisional Application No. 62/511,688, filed on May 26, 2017, and entitled “MAGNETICALLY COUPLED SYSTEM,” each of which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2797393 | Clogston | Jun 1957 | A |
2911605 | Wales, Jr. et al. | Nov 1959 | A |
3484731 | Rich et al. | Dec 1969 | A |
4251808 | Lichtblau | Feb 1981 | A |
4260990 | Lichtblau | Apr 1981 | A |
4328531 | Nagashima et al. | May 1982 | A |
4494100 | Stengel et al. | Jan 1985 | A |
4959631 | Hasegawa et al. | Sep 1990 | A |
4996165 | Chang et al. | Feb 1991 | A |
5137478 | Graf et al. | Aug 1992 | A |
5237165 | Tingley, III | Aug 1993 | A |
5604352 | Schuetz | Feb 1997 | A |
5713939 | Nedungadi et al. | Feb 1998 | A |
5748464 | Schuetz | May 1998 | A |
5767808 | Robbins et al. | Jun 1998 | A |
5767813 | Verma et al. | Jun 1998 | A |
5777538 | Schuetz | Jul 1998 | A |
5801611 | Van Loenen et al. | Sep 1998 | A |
5808587 | Shima | Sep 1998 | A |
5838154 | Morikawa et al. | Nov 1998 | A |
5883392 | Schuetz | Mar 1999 | A |
5892489 | Kanba et al. | Apr 1999 | A |
5980773 | Takeda | Nov 1999 | A |
6005193 | Markel | Dec 1999 | A |
6021337 | Remillard et al. | Feb 2000 | A |
6028568 | Asakura et al. | Feb 2000 | A |
6107972 | Seward et al. | Aug 2000 | A |
6148221 | Ishikawa et al. | Nov 2000 | A |
6163307 | Kim et al. | Dec 2000 | A |
6271803 | Watanabe et al. | Aug 2001 | B1 |
6324430 | Zarinetchi et al. | Nov 2001 | B1 |
6324431 | Zarinetchi et al. | Nov 2001 | B1 |
6503831 | Speakman | Jan 2003 | B2 |
6556101 | Tada et al. | Apr 2003 | B1 |
6583769 | Shiroki et al. | Jun 2003 | B2 |
6664863 | Okamoto et al. | Dec 2003 | B1 |
6809688 | Yamada | Oct 2004 | B2 |
6897830 | Bae et al. | May 2005 | B2 |
6924230 | Sun et al. | Aug 2005 | B2 |
7046113 | Okamoto et al. | May 2006 | B1 |
7205655 | Sippola | Apr 2007 | B2 |
7355558 | Lee | Apr 2008 | B2 |
7563352 | Hubel | Jul 2009 | B2 |
7579835 | Schnell et al. | Aug 2009 | B2 |
7579836 | Schnell et al. | Aug 2009 | B2 |
7713762 | Lee et al. | May 2010 | B2 |
7786836 | Gabara | Aug 2010 | B2 |
7952365 | Narita et al. | May 2011 | B2 |
7962186 | Cui et al. | Jun 2011 | B2 |
8056819 | Rowell et al. | Nov 2011 | B2 |
8299877 | Hong et al. | Oct 2012 | B2 |
8436780 | Schantz et al. | May 2013 | B2 |
8567048 | Singh et al. | Oct 2013 | B2 |
8610530 | Singh et al. | Dec 2013 | B2 |
8653927 | Singh et al. | Feb 2014 | B2 |
8680960 | Singh et al. | Mar 2014 | B2 |
8692641 | Singh et al. | Apr 2014 | B2 |
8692642 | Singh et al. | Apr 2014 | B2 |
8698590 | Singh et al. | Apr 2014 | B2 |
8698591 | Singh et al. | Apr 2014 | B2 |
8707546 | Singh et al. | Apr 2014 | B2 |
8710948 | Singh et al. | Apr 2014 | B2 |
8774712 | Sato et al. | Jul 2014 | B2 |
8803649 | Singh et al. | Aug 2014 | B2 |
8823481 | Singh et al. | Sep 2014 | B2 |
8823482 | Singh et al. | Sep 2014 | B2 |
8855786 | Derbas et al. | Oct 2014 | B2 |
8860545 | Singh et al. | Oct 2014 | B2 |
8898885 | Singh et al. | Dec 2014 | B2 |
9178369 | Partovi | Nov 2015 | B2 |
9208942 | Singh et al. | Dec 2015 | B2 |
9559526 | Von Novak, III et al. | Jan 2017 | B2 |
9912173 | Tseng | Mar 2018 | B2 |
10868444 | Peralta et al. | Dec 2020 | B2 |
10892646 | Peralta et al. | Jan 2021 | B2 |
20020020554 | Sakamoto et al. | Feb 2002 | A1 |
20020053992 | Kawakami et al. | May 2002 | A1 |
20020071003 | Kimura | Jun 2002 | A1 |
20020075191 | Yokoshima et al. | Jun 2002 | A1 |
20020101383 | Junod | Aug 2002 | A1 |
20020105080 | Speakman | Aug 2002 | A1 |
20030006069 | Takebe et al. | Jan 2003 | A1 |
20030058180 | Forster et al. | Mar 2003 | A1 |
20030119677 | Qiyan et al. | Jun 2003 | A1 |
20040000974 | Odenaal et al. | Jan 2004 | A1 |
20040085247 | Mickle et al. | May 2004 | A1 |
20040108311 | De Rooij et al. | Jun 2004 | A1 |
20040118920 | He | Jun 2004 | A1 |
20040140528 | Kim et al. | Jul 2004 | A1 |
20040159460 | Passiopoulos et al. | Aug 2004 | A1 |
20040189528 | Killen et al. | Sep 2004 | A1 |
20040217488 | Luechinger | Nov 2004 | A1 |
20040227608 | Nakatani et al. | Nov 2004 | A1 |
20050121229 | Takai et al. | Jun 2005 | A1 |
20050174628 | Kelly et al. | Aug 2005 | A1 |
20050195060 | Chiang et al. | Sep 2005 | A1 |
20060022772 | Kanno et al. | Feb 2006 | A1 |
20060040628 | Porret et al. | Feb 2006 | A1 |
20060097833 | Lotfi et al. | May 2006 | A1 |
20060192645 | Lee et al. | Aug 2006 | A1 |
20060284718 | Baumgartner et al. | Dec 2006 | A1 |
20070018767 | Gabara | Jan 2007 | A1 |
20070020969 | Yungers | Jan 2007 | A1 |
20070023424 | Weber | Feb 2007 | A1 |
20070045773 | Mi et al. | Mar 2007 | A1 |
20070046544 | Murofushi et al. | Mar 2007 | A1 |
20070095913 | Takahashi et al. | May 2007 | A1 |
20070120629 | Schnell et al. | May 2007 | A1 |
20070126543 | Yeh et al. | Jun 2007 | A1 |
20070179570 | De Taboada et al. | Aug 2007 | A1 |
20070182367 | Partovi | Aug 2007 | A1 |
20070247268 | Oya et al. | Oct 2007 | A1 |
20070267718 | Lee | Nov 2007 | A1 |
20070279287 | Castaneda et al. | Dec 2007 | A1 |
20080039332 | Bernstein et al. | Feb 2008 | A1 |
20080055178 | Kim et al. | Mar 2008 | A1 |
20080062066 | Arai | Mar 2008 | A1 |
20080067874 | Tseng | Mar 2008 | A1 |
20080150693 | You et al. | Jun 2008 | A1 |
20080164840 | Kato et al. | Jul 2008 | A1 |
20080164844 | Kato et al. | Jul 2008 | A1 |
20080164960 | Schnell et al. | Jul 2008 | A1 |
20080211320 | Cook et al. | Sep 2008 | A1 |
20080277386 | Haimer | Nov 2008 | A1 |
20080283277 | Muramatsu et al. | Nov 2008 | A1 |
20080303735 | Fujimoto et al. | Dec 2008 | A1 |
20090015266 | Narita et al. | Jan 2009 | A1 |
20090079628 | Rofougaran | Mar 2009 | A1 |
20090085706 | Baarman et al. | Apr 2009 | A1 |
20090096413 | Partovi et al. | Apr 2009 | A1 |
20090108974 | Raggam et al. | Apr 2009 | A1 |
20090134875 | Tomiha et al. | May 2009 | A1 |
20090140691 | Jung | Jun 2009 | A1 |
20090152542 | Lee et al. | Jun 2009 | A1 |
20090230777 | Baarman et al. | Sep 2009 | A1 |
20090243397 | Cook et al. | Oct 2009 | A1 |
20090261778 | Kook | Oct 2009 | A1 |
20090261936 | Widjaja et al. | Oct 2009 | A1 |
20100033290 | Liu et al. | Feb 2010 | A1 |
20100072588 | Yang | Mar 2010 | A1 |
20100123582 | Smith et al. | May 2010 | A1 |
20100123584 | Lionetti et al. | May 2010 | A1 |
20100127660 | Cook et al. | May 2010 | A1 |
20100141042 | Kesler et al. | Jun 2010 | A1 |
20100164296 | Kurs et al. | Jul 2010 | A1 |
20100219694 | Kurs et al. | Sep 2010 | A1 |
20100225270 | Jacobs et al. | Sep 2010 | A1 |
20100259217 | Baarman et al. | Oct 2010 | A1 |
20100289599 | Knecht et al. | Nov 2010 | A1 |
20100289709 | Guan | Nov 2010 | A1 |
20100295652 | Mori | Nov 2010 | A1 |
20100295701 | Denis et al. | Nov 2010 | A1 |
20110018360 | Baarman et al. | Jan 2011 | A1 |
20110024510 | Kato et al. | Feb 2011 | A1 |
20110084656 | Gao | Apr 2011 | A1 |
20110101788 | Sun et al. | May 2011 | A1 |
20110137379 | Wosmek et al. | Jun 2011 | A1 |
20110241437 | Kanno | Oct 2011 | A1 |
20110248891 | Han et al. | Oct 2011 | A1 |
20110279198 | Haner | Nov 2011 | A1 |
20120044034 | Nazarian et al. | Feb 2012 | A1 |
20120062345 | Kurs et al. | Mar 2012 | A1 |
20120095531 | Derbas et al. | Apr 2012 | A1 |
20120098486 | Jung | Apr 2012 | A1 |
20120169434 | Masuda et al. | Jul 2012 | A1 |
20120217819 | Yamakawa et al. | Aug 2012 | A1 |
20120235500 | Ganem et al. | Sep 2012 | A1 |
20120235634 | Hall et al. | Sep 2012 | A1 |
20120235636 | Partovi | Sep 2012 | A1 |
20120242284 | Wheatley, III et al. | Sep 2012 | A1 |
20120249396 | Parsche | Oct 2012 | A1 |
20120274148 | Sung et al. | Nov 2012 | A1 |
20120280765 | Kurs et al. | Nov 2012 | A1 |
20120306262 | Taguchi | Dec 2012 | A1 |
20120326931 | Murayama et al. | Dec 2012 | A1 |
20130038281 | Sakakibara et al. | Feb 2013 | A1 |
20130067737 | Singh et al. | Mar 2013 | A1 |
20130067738 | Singh et al. | Mar 2013 | A1 |
20130068499 | Singh et al. | Mar 2013 | A1 |
20130068507 | Singh et al. | Mar 2013 | A1 |
20130069748 | Singh et al. | Mar 2013 | A1 |
20130069749 | Singh et al. | Mar 2013 | A1 |
20130069750 | Singh et al. | Mar 2013 | A1 |
20130069843 | Singh et al. | Mar 2013 | A1 |
20130076154 | Baarman et al. | Mar 2013 | A1 |
20130127411 | Ichikawa et al. | May 2013 | A1 |
20130146671 | Grieshofer et al. | Jun 2013 | A1 |
20130199027 | Singh et al. | Aug 2013 | A1 |
20130199028 | Singh et al. | Aug 2013 | A1 |
20130200070 | Singh et al. | Aug 2013 | A1 |
20130200722 | Singh et al. | Aug 2013 | A1 |
20130200968 | Singh et al. | Aug 2013 | A1 |
20130200969 | Singh et al. | Aug 2013 | A1 |
20130200976 | Singh et al. | Aug 2013 | A1 |
20130201589 | Singh et al. | Aug 2013 | A1 |
20130205582 | Singh et al. | Aug 2013 | A1 |
20130207744 | Singh et al. | Aug 2013 | A1 |
20130208389 | Singh et al. | Aug 2013 | A1 |
20130208390 | Singh et al. | Aug 2013 | A1 |
20130234899 | Pope et al. | Sep 2013 | A1 |
20130241302 | Miyamoto et al. | Sep 2013 | A1 |
20130257362 | Lim et al. | Oct 2013 | A1 |
20130257367 | Someya | Oct 2013 | A1 |
20130300207 | Wang | Nov 2013 | A1 |
20130307347 | Davila et al. | Nov 2013 | A1 |
20140008974 | Miyamoto | Jan 2014 | A1 |
20140028111 | Hansen et al. | Jan 2014 | A1 |
20140035383 | Riehl | Feb 2014 | A1 |
20140035793 | Kato | Feb 2014 | A1 |
20140041218 | Signh et al. | Feb 2014 | A1 |
20140047713 | Singh et al. | Feb 2014 | A1 |
20140070764 | Keeling | Mar 2014 | A1 |
20140077919 | Godoy et al. | Mar 2014 | A1 |
20140084946 | Clark et al. | Mar 2014 | A1 |
20140091640 | Scholz et al. | Apr 2014 | A1 |
20140091756 | Ofstein et al. | Apr 2014 | A1 |
20140168019 | Hirobe et al. | Jun 2014 | A1 |
20140183966 | Suzuki et al. | Jul 2014 | A1 |
20140183971 | Endo et al. | Jul 2014 | A1 |
20140197694 | Asanuma et al. | Jul 2014 | A1 |
20140197832 | Driesel et al. | Jul 2014 | A1 |
20140231518 | Yosui | Aug 2014 | A1 |
20140266019 | Pigott | Sep 2014 | A1 |
20140327394 | Asselin et al. | Nov 2014 | A1 |
20140361628 | Huang et al. | Dec 2014 | A1 |
20150054455 | Kim et al. | Feb 2015 | A1 |
20150091502 | Mukherjee et al. | Apr 2015 | A1 |
20150115727 | Carobolante et al. | Apr 2015 | A1 |
20150116090 | Proehl | Apr 2015 | A1 |
20150136858 | Finn et al. | May 2015 | A1 |
20150137746 | Lee et al. | May 2015 | A1 |
20150140807 | Mohammed et al. | May 2015 | A1 |
20150145634 | Kurz et al. | May 2015 | A1 |
20150145635 | Kurz et al. | May 2015 | A1 |
20150170824 | Tesson | Jun 2015 | A1 |
20150170830 | Miyamoto | Jun 2015 | A1 |
20150180440 | Ishizuka | Jun 2015 | A1 |
20150201385 | Mercer et al. | Jul 2015 | A1 |
20150207541 | Kuroda | Jul 2015 | A1 |
20150224323 | Chen et al. | Aug 2015 | A1 |
20150236545 | Hyun et al. | Aug 2015 | A1 |
20150280322 | Saito et al. | Oct 2015 | A1 |
20150290373 | Rudser et al. | Oct 2015 | A1 |
20150290379 | Rudser et al. | Oct 2015 | A1 |
20150302971 | Wagman et al. | Oct 2015 | A1 |
20150303706 | Bronson et al. | Oct 2015 | A1 |
20150303708 | Efe et al. | Oct 2015 | A1 |
20150318710 | Lee et al. | Nov 2015 | A1 |
20150357827 | Muratov et al. | Dec 2015 | A1 |
20150364929 | Davis | Dec 2015 | A1 |
20150379838 | Xie et al. | Dec 2015 | A1 |
20160006845 | McKittrick | Jan 2016 | A1 |
20160012967 | Kurs et al. | Jan 2016 | A1 |
20160029266 | Choi-Grogan et al. | Jan 2016 | A1 |
20160056664 | Partovi | Feb 2016 | A1 |
20160087477 | Jeong et al. | Mar 2016 | A1 |
20160118711 | Finn et al. | Apr 2016 | A1 |
20160126002 | Chien et al. | May 2016 | A1 |
20160149416 | Ha et al. | May 2016 | A1 |
20160156103 | Bae et al. | Jun 2016 | A1 |
20160156215 | Bae et al. | Jun 2016 | A1 |
20160211702 | Muratov et al. | Jul 2016 | A1 |
20160224975 | Na et al. | Aug 2016 | A1 |
20160226292 | Yoon | Aug 2016 | A1 |
20160292669 | Tunnell et al. | Oct 2016 | A1 |
20160322852 | Yeh et al. | Nov 2016 | A1 |
20160372960 | Ritter et al. | Dec 2016 | A1 |
20170104358 | Song et al. | Apr 2017 | A1 |
20170117085 | Mao et al. | Apr 2017 | A1 |
20170126544 | Vigneras et al. | May 2017 | A1 |
20170207535 | Tsukuda et al. | Jul 2017 | A1 |
20170264343 | Mao et al. | Sep 2017 | A1 |
20170331173 | Ju et al. | Nov 2017 | A1 |
20180019624 | Chen | Jan 2018 | A1 |
20180072166 | Percebon et al. | Mar 2018 | A1 |
20180131239 | Stephenson et al. | May 2018 | A1 |
20180159368 | Arnold et al. | Jun 2018 | A1 |
20180167107 | Peralta et al. | Jun 2018 | A1 |
20180167108 | Peralta et al. | Jun 2018 | A1 |
20180167109 | Peralta et al. | Jun 2018 | A1 |
20180168057 | Peralta et al. | Jun 2018 | A1 |
20180198322 | Mercier et al. | Jul 2018 | A1 |
20180212649 | Tenno | Jul 2018 | A1 |
20180219425 | Choi et al. | Aug 2018 | A1 |
20180233273 | Park et al. | Aug 2018 | A1 |
20180262050 | Yankowitz | Sep 2018 | A1 |
20180269714 | Samuelsson et al. | Sep 2018 | A1 |
20180287435 | Wilson et al. | Oct 2018 | A1 |
20180342348 | Esguerra | Nov 2018 | A1 |
20190075657 | Esposito | Mar 2019 | A1 |
20200411990 | Nakamura et al. | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
2650300 | Oct 2004 | CN |
103944196 | Jul 2014 | CN |
104037493 | Sep 2014 | CN |
104037494 | Sep 2014 | CN |
0310396 | Apr 1989 | EP |
1609503 | Dec 2005 | EP |
2031729 | Mar 2009 | EP |
2775565 | Sep 2014 | EP |
2528739 | Feb 2016 | GB |
H01310518 | Dec 1989 | JP |
H0583249 | Apr 1993 | JP |
H0993005 | Apr 1997 | JP |
H10255629 | Sep 1998 | JP |
2001344574 | Dec 2001 | JP |
2007042569 | Feb 2007 | JP |
2008160781 | Jul 2008 | JP |
2008205215 | Sep 2008 | JP |
2008294285 | Dec 2008 | JP |
2008307114 | Dec 2008 | JP |
2012147408 | Aug 2012 | JP |
2013093429 | May 2013 | JP |
2014175864 | Sep 2014 | JP |
2014175865 | Sep 2014 | JP |
20100092741 | Aug 2010 | KR |
20130015618 | Feb 2013 | KR |
20140111554 | Sep 2014 | KR |
20140111794 | Sep 2014 | KR |
20140135357 | Nov 2014 | KR |
101559939 | Oct 2015 | KR |
20160144650 | Dec 2016 | KR |
20190092159 | Aug 2019 | KR |
201436494 | Sep 2014 | TW |
201436495 | Sep 2014 | TW |
2008050917 | May 2008 | WO |
2010104569 | Sep 2010 | WO |
2012076998 | Jun 2012 | WO |
WO-2013122565 | Aug 2013 | WO |
2015137431 | Sep 2015 | WO |
Entry |
---|
IPR2019-00858—Samsung Electronics Co., Ltd. v. NuCurrent, Inc., Ex. 1001, U.S. Pat. No. 8,680,960 to Singh et al., Mar. 22, 2019, 50 pages. |
IPR2019-00859—Samsung Electronics Co., Ltd. v. NuCurrent, Inc., Petition for Inter Partes Review of U.S. Pat. No. 9,300,046, Mar. 22, 2019, 87 pages. |
IPR2019-00859—Samsung Electronics Co., Ltd. vs. NuCurrent, Inc., Ex. 1017—U.S. Pat. No. 5,812,344 to Balakrishnan, Mar. 22, 2019, 12 pages. |
IPR2019-00859—Samsung Electronics Co., Ltd. vs. NuCurrent, Inc., Ex. 1025—U.S. Pat. No. 20070126544A1 to Wotherspoon, Mar. 22, 2019, 6 pages. |
IPR2019-00860—Ex. 1022 U.S. Pat. No. 9,912,173 to Tseng, Mar. 6, 2018, 31 pages. |
IPR2019-00860—Ex. 1023 U.S. Pat. No. 7,248,138 to Chiang, Jul. 24, 2007, 18 pages. |
IPR2019-00860—Ex. 1024 U.S. Pat. No. 5,084,958 to Yerman et al., Feb. 4, 1992, 20 pages. |
IPR2019-00860—Ex. 1028—U.S. Pat. No. 9,820,374 to Bois et al., Nov. 14, 2017, 9 pages. |
IPR2019-00860—Ex. 1029 U.S. Pat. No. 7,601,919 to Phan et al., Oct. 13, 2009, 14 pages. |
IPR2019-00860—Ex. 1030 U.S. Pat. No. 5,108,825 to Wojnarowski et al., Apr. 28, 1992, 10 pages. |
IPR2019-00860—Ex. 1034—U.S. Pat. No. 6,608,363 to Fazelpour, Aug. 19, 2003, 8 pages. |
IPR2019-00860—Samsung Electronics Co., Ltd. v. NuCurrent, Inc., Petition for Inter Partes Review of U.S. Pat. No. 8,680,960, Mar. 22, 2019, 86 pages. |
IPR2019-00861—Samsung Electronics Co., Ltd. v. NuCurrent, Inc., Petition for Inter Partes Review of U.S. Pat. No. 9,300,046, Mar. 22, 2019, 89 pages. |
IPR2019-00862—Samsung Electronics Co., Ltd. v. NuCurrent, Inc., Petition for Inter Partes Review of U.S. Pat. No. 8,710,948, Mar. 22, 2019, 88 pages. |
IPR2019-0863, Samsung Electronics Co., Ltd. v. NuCurrent, Inc., Petition for Inter Partes Review of U.S. Pat. No. 8,698,591, Mar. 22, 2019, 89 pages. |
Lee, Y., “Antenna Circuit Design for RFID Applications”, 2003 Microchip Technology, AN710, 50 pages. |
Muratov, V., “Multi-Mode Wireless Power Systems can be a bridge to the Promised Land of Universal Contactless charging”, Mediatek, Inc., Nov. 20, 2014, 15 pages. |
Narayanan, R., “Wireless Power Charging Coil Changing Considerations”, Wurth Elektronik, Feb. 23, 2015, 9 pages. |
Notification of Decision of Rejection dated May 14, 2019 for KR 10-2013-0026135, 8 pages. |
Notification of Decision of Rejection dated May 14, 2019 for KR App. No. 10-2013-0025858, with English Translation, 8 pages. |
Office Action dated Apr. 27, 2018 in corresponding TW Application No. 102108345, 11 pages. |
Office Action dated Aug. 23, 2017 in corresponding CN Application No. 201310074946.8, 10 pages. |
Office Action dated Aug. 25, 2017 in corresponding CN Application No. 201310075086.X, 10 pages. |
Office Action dated Dec. 12, 2017 issued in corresponding Japanese Patent Application No. 2013-047048, 11 pages. |
Office Action dated Feb. 21, 2017, issued in corresponding Taiwanese Patent Application No. 102108342, 10 pages. |
Office Action dated Jan. 31, 2017 in corresponding JP Application No. 2013-047049, 5 pages. |
Office Action dated Jun. 29, 2017 issued in corresponding EP Patent Application No. 14000885.5, 4 pages. |
Office Action dated Mar. 21, 2017 issued in corresponding Japanese Patent Application No. 2013-047048, 12 pages. |
Office Action dated Mar. 27, 2018 issued in corresponding Chinese Patent Application No. 201310075086.X, 12 pages. |
Office Action dated Mar. 30, 2018 issued in corresponding Chinese Patent Application No. 201310074946.8, 12 pages. |
Office Action dated May 8, 2018, issued in corresponding Japanese Patent Application No. 2013-047048, 2 pages. |
Office Action dated Nov. 28, 2017 in corresponding JP Application No. 2013-047049, 5 pages. |
Office Action dated Oct. 29, 2018 in corresponding KR Application No. 10-2013-0025858, 12 pages. |
Office Action dated Oct. 29, 2018 in corresponding KR Application No. 10-2013-0026135, 12 pages. |
Office Action dated Sep. 12, 2018 in corresponding CN Application No. 201310074946.8, 9 pages. |
Office Action dated Sep. 12, 2018 in corresponding CN Application No. 201310075086.X, 10 pages. |
Office Action dated Sep. 27, 2016 in corresponding EP Application No. 13 001 121.6, 6 pages. |
Office Action dated Sep. 27, 2016 in corresponding EP Application No. 13 001 130.7 6, pages. |
QI 2009, “System Description Wireless Power Transfer”, vol. 1, Low Power, Version 0.95, Jul. 2009, 76 pages. |
QI 2010, “System Description Wireless Power Transfer”, vol. 1, Low Power, Part 1: Interface Definition, Version 1.0.1, Oct. 2010, Wireless Power Consortium, 86 pages. |
Relative Permativity—Dielectric Constant—Jul. 2011, 3 pages. |
Samsung Ex. 1002, Samsung Electronics Co., Ltd., v. NuCurrent, Inc., U.S. Pat. No. 8,680,960, Declaration of Dr. Steven Leeb, Mar. 22, 2019, 115 pages. |
Sun M., et al., “Apparatus for Wireless Power and Data Transfer over a Distance”, University of Pittsburgh, Jun. 2009, 30 pages. |
Wikipedia, “Ferrite (magnet),” May 16, 2017, retrieved via Wayback machine at https://web.archive.org/web/20170516230201/https://en.wikipedia.org/wiki/Ferrite_(magnet) (Year: 2017), 5 pages. |
Yoon, Y., “Embedded Conductor Technology for Micromachined RF Elements”, Journal of Micromechanics and Micro engineering, Jun. 2005, 11 pages. |
Barcelo T., “Wireless Power User Guide”, Linear Technology, Application Note 138, Oct. 2013, 8 pages. |
Burghartz, J., “On the Design of RF Spiral Inductors on Silicon”, IEEE Transactions on Electron Devices, vol. 50, No. 3, Mar. 2003, pp. 718-729. |
Decision of Dismissal of Amendment issued in corresponding Japanese Patent Application No. 2013-047048, dated May 8, 2018, 7 pages. |
EP Communication pursuant to Rule 62 EPC regarding extended European Search Report dated May 15, 2019, for EP App. No. 16835665.7-1212, 16 pages. |
EP Office Communication Pursuant to Article 94(3) dated Jan. 17, 2019 for EP App. No. 13001121.6-1216, 4 pages. |
European Patent Office, Extended European Search Report mailed on Aug. 1, 2013, issued in connection with EP Application No. 13001121.6, 6 pages. |
European Patent Office, Extended European Search Report mailed on Aug. 1, 2013, issued in connection with EP Application No. 13001130.7, 6 pages. |
European Patent Office, Extended European Search Report mailed on Nov. 4, 2014, issued in connection with EP Application No. 14000885.5, 8 pages. |
European Patent Office, Extended European Search Report mailed on Aug. 7, 2014, issued in connection with EP Application No. 10751119.8, 12 pages. |
European Patent Office, Extended European Search Report mailed on Jun. 12, 2019, issued in connection with EP Application No. 19154162.2, 9 pages. |
European Patent Office, Partial Supplementary European Search Report mailed on Feb. 14, 2019, issued in connection with EP Application No. 16835665.7, 10 pages. |
Ex. 1001 U.S. Pat. No. 8,698,591, Singh, Apr. 15, 2014, 49 pages. |
Ex. 1001 U.S. Pat. No. 8,710,948 to Singh et al., Apr. 29, 2014, 49 pages. |
Ex. 1001 U.S. Pat. No. 9,300,046 to Singh et al., Mar. 29, 2016, 50 pages. |
Ex. 1003—CV of Dr. Steven B. Leeb, Mar. 22, 2019, 7 pages. |
Ex. 1004 File History of U.S. Pat. No. 8,710,948 to Singh et al., Apr. 29, 2014, 213 pages. |
Ex 1004—File History for U.S. Pat. No. 8,680,960, Singh, Mar. 25, 2014, 201 pages. (in two attachments due to size). |
Ex. 1004—Prosecution History of U.S. Pat. No. 8,698,591, Singh, Apr. 15, 2014, 180 pages. |
Ex. 1004—Prosecution History of U.S. Pat. No. 9,300,046, Singh, Mar. 29, 2016, 322 pages (in two attachments A and B) due to size. |
Ex. 1005—U.S. Pat. No. 20070267718A1 to Lee, Nov. 22, 2007, 13 pages. |
Ex 1006—Semat—Physics Chapters 29-32, 81 pages, (1958). |
Ex 1009—U.S. Pat. No. 20090096413 to Partovi, Apr. 16, 2009, 88 pages. |
Ex. 1010—IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition (1996), 9 pages. |
Ex. 1011—US20070089773A1 to Koester et al., Apr. 26, 2007, 26 pages. |
Ex. 1012—US20120280765 to Kurs, Nov. 8, 2012, 122 pages. |
Ex. 1012—U.S. Pat. No. 6,432,497 to Bunyan, Aug. 13, 2002, 12 pages. |
Ex. 1014 U.S. Pat. No. 6,083,842 to Cheung et al., Jun. 4, 2000, 8 pages. |
Ex. 1015 Reinhold, et al., “Efficient Antenna Design of Inductive Coupled RFID-Systems with High Power Demand,” Journal of Communication, Nov. 2007, vol. 2, No. 6, pp. 14-23. |
Ex. 1016 U.S. Pat. No. 4,549,042 to Akiba et al., Oct. 22, 1985, 8 pages. |
Ex. 1018—Wheeler, “Formulas for the Skin Effect,” Proceeding of the I.R.E, Sep. 1942, pp. 412-424. |
Ex. 1019—Kyriazidou—U.S. Pat. No. 7,236,080, Jun. 26, 2007, 12 pages. |
Ex. 1020 Alldred, et al., “A 1.2 V, 60 Ghz Radio Receiver With Onchip Transformers and Inductors in 90 nm CMOS,” Proc. IEEE Compound Semiconductor Integrated Circuits SYmp., pp. 51-54, Nov. 2006 (“Alldred”), 12 pages. |
Ex. 1031 Ahn 7030725, Apr. 18, 2006, 9 pages. |
Ex. 1032—U.S. Pat. No. 5,745,331 to Shamouilian et al., Apr. 28, 1998, 23 pages. |
Ex. 1033—Hu, et al., “AC Resistance to Planar Power Inductors and the Quasidistributed Gap Technique,” IEEE Transactions on Power Electronics, vol. 16, No. 4, Jul. 2001 (“Hu”), 13 pages. |
Ex. 1035—A 1.2V 60-GHz Radio Receiver With On-Chip Transformers and Inductors in 90-nm CMOS, 2006 IEEE Compound Semiconductor Integrated Circuit Symposium, Nov. 12-15, 2006, 2 pages. |
Ex. 1036 Kraemer, et al., “Architecture Considerations for 60 GhzPulse Transceiver Front-Ends,” CAS 2007 Proceedings vol. 2, 2007, Int'l Semiconductor Conference (2007), 26 pages. |
Ex. 1037—Varonen, et al., “V-band Balanced Resistive Mixer in 65-nm CMOS,” Proceedings of the 33rd European Solid-State Circuits Conference, 2007, 22 pages. |
Ex. 1038—AC Resistance of Planar Power Inductors and the Quasidistributed Gap Technique, IEEE Transactions on Power Electronics, vol. 16, Issue 4, Jul. 2001, 2 pages. |
Ex. 1039—Lopera et al., “A Multiwinding Modeling Method for High Frequency Transformers and Inductors”, IEEE Transactions on Power Electronics, vol. 18, No. 3, May 2003, 14 pages. |
Ex. 1040—Leonavicius et al., “Comparison of Realization Techniques for PFC Inductor Operating in Discontinuous Conduction Mode,” IEEE Transactions on Power Electronics, vol. 19, No. 2, Mar. 2004, 14 pages. |
Ex. 1041—Roshen W.A., “Fringing Field Formulas and Winding Loss Due to an Air Gap,” IEEE Transactions on Magnetics, vol. 43, No. 8, Aug. 2007, 12 pages. |
Extended Search Report dated Sep. 10, 2019 for EP 19188841.1-1216, 11 pages. |
First Office Action dated Aug. 5, 2019 for Chinese App. No. 201680058731.9, English Translation, 6 pages. |
International Searching Authority, PCT International Search Report and Written Opinion, PCT International Application No. PCT/US2021/042768 dated Nov. 11, 2021, 10 pages. |
International Searhing Authority, International Search Report and Written Opinion mailed on Nov. 8, 2017, issued in connection with International Application No. PCT/US2017/048708, filed on Aug. 25, 2017, 10 pages. |
International Searhing Authority, International Search Report and Written Opinion mailed on Oct. 14, 2016, issued in connection with International Application No. PCT/US2016/045588, filed on Aug. 4, 2016, 9 pages. |
International Searhing Authority, International Search Report and Written Opinion mailed on Feb. 21, 2018, issued in connection with International Application No. PCT/US2017/065329, filed on Dec. 8, 2017, 7 pages. |
International Searhing Authority, International Search Report and Written Opinion mailed on Oct. 28, 2016, issued in connection with International Application No. PCT/US2016/047607, filed on Aug. 18, 2016, 7 pages. |
IPR2019-00858—Samsung Electronics Co., Ltd. v. NuCurrent, Inc., Petition for Inter Partes Review of U.S. Pat. No. 8,680,960, Mar. 22, 2019, 90 pages. |
Number | Date | Country | |
---|---|---|---|
20230412215 A1 | Dec 2023 | US |
Number | Date | Country | |
---|---|---|---|
62511688 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17699597 | Mar 2022 | US |
Child | 18317655 | US | |
Parent | 15989793 | May 2018 | US |
Child | 17699597 | US |