1. Field of the Invention
The present invention relates to an inductor, and more particularly to an inductor mechanism including a structure for increasing the contact area for the terminals of the inductor mechanism and for preventing the terminals of the inductor mechanism from becoming failure or from being damaged or disconnected or disengaged from other electrical facilities or products and for reducing or decreasing or preventing the defective products from being generated.
2. Description of the Prior Art
Typical inductors have been developed and provided for inducing the current and comprise one or more cores and one or more coils or conductive members wound or attached or mounted or engaged onto and around the core for inducing or generating the current.
For example, U.S. Pat. No. 5,751,203 to Tsutsumi et al., U.S. Pat. No. 6,154,112 to Aoba et al., and U.S. Pat. No. 7,042,324 to Watanabe disclose several of the typical inductors each comprising one or more coils or conductive members engaged into a drum-shaped core member for inducing or generating the electric current, and a cylindrical core disposed around the drum-shaped core and the coil, and a terminal table attached or mounted or engaged onto the drum-shaped core and the coil and the cylindrical core.
The typical inductors include a coil having two ends drawn through a gap that is formed between the terminal table and the drum-shaped core and the coil and the cylindrical core for coupling or connecting to winding terminals.
However, recently, the electrical facilities or electrical products have been developed and become more and more compact in size or volume, such that only a tiny space or volume or chamber is formed or provided in the electrical facilities or electrical products for receiving or accommodating various kinds of electrical parts or elements therein, and the ends or the terminals of the coil may have a good chance to be disconnected or disengaged from the other electrical parts or elements of the electrical facilities or electrical products, and the electrical shortage may have a good chance to be happened or generated in the electrical facilities or electrical products.
The present invention has arisen to mitigate and/or obviate the afore-described disadvantages of the conventional inductive members or inductor mechanisms.
The primary objective of the present invention is to provide an inductor mechanism including a structure for increasing the contact area for the terminals of the inductor mechanism and for preventing the terminals of the inductor mechanism from becoming failure or from being damaged or disconnected or disengaged from other electrical facilities or products and for reducing or decreasing or preventing the defective products from being generated.
In accordance with one aspect of the invention, there is provided an inductor mechanism comprising a base member including two opposite side portions, a bottom portion, and an upper portion, a conductive coil member engaged in the base member, and including two terminals extended toward the side portions of the base member respectively, two conductive coverings attached to the side portions of the base member respectively and electrically connected to the terminals of the coil member respectively, and two electro-plated devices attached to the conductive coverings respectively.
The electro-plated devices each include a first layer attached onto the conductive covering respectively, a second layer attached onto the first layer respectively. The electro-plated devices each may further include a third layer attached onto the second layer respectively.
The first layer and the second layer and/or the third layer may be made of a material selected from copper, brass, nickel, tin, or silver, or the like. The coil member may include a cross section selected from circular, elliptical, or olivary cross section, or the like.
Further objectives and advantages of the present invention will become apparent from a careful reading of the detailed description provided hereinbelow, with appropriate reference to the accompanying drawings.
Referring to the drawings, and initially to
For example, the magnetic or metallic powders may be selected from carbonyl iron powder, iron-based alloy powder, amorphous iron-based alloy powder, or the like, and may include an outer diameter ranging between 1 to 100 μm, the organic resin materials for the base member 10 may include a weight percentage of the base member 10 ranging between 1 to 10%. The base member 10 further includes a conductive device or coil member 20 disposed or fitted or embedded or engaged within the base member 10, and the coil member 20 includes two terminals 21, 22 extended or provided or directed toward the two opposite side portions 11, 12 of the base member 10, and preferably exposed or flush with the opposite side portions 11, 12 of the base member 10 respectively. It is preferable, but not necessarily that the coil member 20 is covered or coated or applied with an outer painted or coated or applied covering layer, and may be made of the materials selected from copper, brass, nickel, tin, or silver, or the like, and the terminals 21, 22 and/or the coil member 20 may include a circular or elliptical or olivary cross section or the like.
The inductor mechanism 1 further includes two adhesive membranes or conductive coating members or coverings 30, 31 and disposed or attached or mounted or secured or coated or printed or painted or applied onto the two opposite side portions 11, 12 of the base member 10 respectively and electrically contacted and connected or coupled to the terminals 21, 22 of the coil member 20 respectively (
The coverings 30, 31 are also partially disposed or attached or mounted or secured or coated or printed or painted or applied onto the bottom portion 15 and/or the upper portion 16 and/or the side portions 11, 12 of the base member 10 respectively for allowing the conductive coverings 30, 31 to be solidly and stably anchored or secured or retained to the base member 10. The inductor mechanism 1 further includes two conductive coating element or electro-plated devices 5 disposed or attached or mounted or secured or coated or printed or painted or applied onto the two coverings 30, 31 respectively, and the electro-plated devices 5 each may include one or more electro-plated layers 50, 51, 52 disposed or attached or mounted or secured or coated or printed or painted or applied onto the outer peripheral portion of the two coverings 30, 31 respectively.
For example, the one or more layers 50, 51, 52 of the electro-plated devices 5 may be made of the materials selected from copper, brass, nickel, tin, or silver, or the like, and the electro-plated devices 5 each include an inner or first layer 50 disposed or attached or mounted or secured or coated or printed or painted or applied onto the outer peripheral portion of the covering 30, 31 respectively, a middle or intermediate or second layer 51 disposed or attached or mounted or secured or coated or printed or painted or applied onto the outer peripheral portion of the inner or first layer 50 respectively, and an outer or third layer 52 disposed or attached or mounted or secured or coated or printed or painted or applied onto the outer peripheral portion of the middle or intermediate or second layer 51 respectively.
For example, the layers 50, 51, 52 of the electro-plated devices 5 may be electro-plated, chemical-plated, or sputtered onto the coverings 30, 31 respectively, the coverings 30, 31 may include a dimension or standard or thickness ranging between 0.01 to 30 μm, the inner or first layers 50 may include a thickness ranging between 5 to 100 μm, the middle or intermediate or second layers 51 may include a thickness ranging between 0.01 to 30 μm, and the outer or third layers 52 may also include a thickness ranging between 0.01 to 30 μm.
It is to be noted that the coil member 20 may be made of the materials selected from copper, brass, nickel, tin, or silver, or the like, and the conductive coverings 30, 31 may also be made of the materials selected from copper, brass, nickel, tin, or silver, or the like and may be suitably and electrically connected or coupled to the terminals 21, 22 of the coil member 20 and may suitably increase the conductive area for the terminals 21, 22 of the coil member 20 and also for the layers 50, 51, 52 of the electro-plated devices 5, and thus may prevent the terminals 21, 22 of the coil member 20 of the inductor mechanism 1 from becoming failure or from being damaged or disconnected or disengaged from other electrical facilities or products and for reducing or decreasing or preventing the defective products from being generated, or the defective rate for the products may be suitably reduced or decreased.
Accordingly, the inductor mechanism in accordance with the present invention includes a structure for increasing the contact area for the terminals of the inductor mechanism and for preventing the terminals of the inductor mechanism from becoming failure or from being damaged or disconnected or disengaged from other electrical facilities or products and for reducing or decreasing or preventing the defective products from being generated.
Although this invention has been described with a certain degree of particularity, it is to be understood that the present disclosure has been made by way of example only and that numerous changes in the detailed construction and the combination and arrangement of parts may be resorted to without departing from the spirit and scope of the invention as hereinafter claimed.