This application is based on and claims the benefit of priority from Japanese Patent Application Serial No. 2018-154140 (filed on Aug. 20, 2018) and Japanese Patent Application Serial No. 2019-139992 (filed on Jul. 30, 2019), the contents of which are hereby incorporated by reference in their entirety.
The present invention relates to an industrial device including a sensor, examples of which includes a device including a gear device such as a speed reducer.
An industrial device such as a speed reducer is housed in a housing filled with a lubricating oil so as to prevent damage to mechanical parts such as gears. When the mechanical parts are worn during operation of the industrial device, abrasion powder is mixed into the lubricating oil. An example of the abrasion powder is a conductive substance such as iron powder.
When wear of mechanical parts advances into the wear-out failure period in the failure rate curve (the bathtub curve), a larger amount of abrasion powder is mixed into the lubricating oil. For this reason, a sensor for sensing the amount of the abrasion powder in the lubricating oil can be used for accurate preventive maintenance of the mechanical parts.
As one example of such a sensor, Japanese Patent Application Publication No. 2005-331324 (“the '324 Publication”) discloses a sensor that senses the amount of metal powder in an oil. The sensor of the '324 Publication includes: a sensor head having a permanent magnet; a cup-shaped electrode provided on a distal end surface of the sensor head; and a plurality of rod-shaped conductive members arranged on an outer peripheral surface of the sensor head. The '324 Publication discloses that an output of the sensor is varied when a short circuit occurs between rod-shaped conductive members due to the abrasion powder accumulated (in a sensing region) between opposed end surfaces of the conductive members and the cup-shaped electrode subjected to a magnetic field by a permanent magnet. This variation of the sensor output indicates a degree of contamination of the oil.
Since industrial devices have various sizes from small to large and sizes of mechanical parts in the devices also largely vary, the amount of abrasion powder (conductive substance) produced during operation also varies depending on the devices. In particular, a small industrial device produces a small amount of conductive substance, and therefore, it may be difficult that the conductive substance accumulates on the sensor to an amount necessary for proper failure prediction. Therefore, it is demanded to collect the conductive substance onto the sensor to an amount necessary for failure prediction of the mechanical parts.
One object of the present invention is to provide an industrial device in which abrasion powder (conductive substance) can accumulate on a sensor to an amount necessary for proper failure prediction.
An industrial device according to an embodiment of the present invention comprises: a lubricant reservoir portion including a region in which a lubricant circulates; and a sensor including a pair of electrodes disposed in the region in which the lubricant circulates, the sensor being configured to sense variation of electric resistance between the pair of electrodes.
The industrial device according to an embodiment of the present invention may comprise a speed reducer.
The industrial device according to an embodiment of the present invention may further comprise: a hollow tubular member; and a center gear disposed in a vicinity of the sensor and configured to rotate about a center axis of the tubular member.
In the industrial device according to an embodiment of the present invention, the sensor may be disposed in a region facing the center gear.
In the industrial device according to an embodiment of the present invention, a bracket may be provided in the lubricant reservoir portion, and the sensor may be fixed to the bracket.
The industrial device according to an embodiment of the present invention may further comprise a drive source at least partially housed in a casing, and may be configured such that one end portion of the lubricant reservoir portion is defined by an end surface of the casing, a drive shaft of the drive source extends through the end surface of the casing, and the sensor is fixed to the end surface of the casing.
In the industrial device according to an embodiment of the present invention, the drive source may be a motor.
The industrial device according to an embodiment of the present invention may further comprise a carrier capable of rotating, the sensor being fixed to the carrier.
In the industrial device according to an embodiment of the present invention, the carrier may be connected to a first member.
In the industrial device according to an embodiment of the present invention, the first member may be a robot arm.
The industrial device according to an embodiment of the present invention may further comprise a crank member fixed at such a position as to face the sensor. In the industrial device according to an embodiment of the present invention, the sensor may be fixed at such a position as to face the crank member in an axial direction of the crank member.
An industrial device according to an embodiment of the present invention comprises: a lubricant reservoir portion for containing a lubricant; a sensor including a pair of electrodes disposed vertically below the lubricant reservoir portion, the sensor being configured to allow accumulation of conductive substance between the pair of electrodes, so as to sense variation of electric resistance between the pair of electrodes.
The industrial device according to an embodiment of the present invention may further comprise another sensor including a pair of electrodes disposed vertically above the lubricant reservoir portion, the other sensor being configured to allow accumulation of conductive substance between the pair of electrodes, so as to sense variation of electric resistance between the pair of electrodes.
One object of the present invention is to provide an industrial device in which abrasion powder (conductive substance) can accumulate on a sensor to an amount necessary for proper failure prediction.
Embodiments of the present invention will now be described with reference to the appended drawings. Among various devices, a speed reducer will be focused on for convenience of the following description as an example of an industrial device according to embodiments of the invention.
The speed reducer 2 includes a casing 12 mounted to the flange 3, an input shaft 14 connected to an output shaft 13 of the drive source 4, and an output shaft 15 connected to the output-side device A1. The input shaft 14 and the output shaft 15 are supported so as to be rotatable about an axis AX relative to the casing 12. Output of the drive source 4 is input to the speed reducer 2 via the input shaft 14, reduced by the speed reducer 2, and then transmitted to an output-side device A1 via the output shaft 15. Thus, the output-side device A1 and the flange 3 are rotatable relative to each other.
The flange 3 is a tubular member having a hollow portion and houses at least a part of the speed reducer 2. The drive source 4 is mounted to the flange 3. An opening portion in one end of the flange 3 in the direction along the axis AX is closed by the speed reducer 2, and an opening in the other end is closed by the drive source 4. Thus, the flange 3 contains a tightly closed hollow portion (that is, a lubricant reservoir portion) S. The lubricant reservoir portion S contains a lubricant such as a lubricating oil, and the flange 3 also serves as an oil bath.
The casing 12 of the speed reducer 2 houses, for example, a gear mechanism. A space in the casing 12 communicates with the lubricant reservoir portion S in the flange 3. During operation of the speed reducer 2, rotation of the gear mechanism in the casing 12 causes circulation (or convection) of the lubricant between the space in the casing 12 and the space in the flange 3. As the lubricant is circulated, the conductive substance such as abrasion powder produced in the speed reducer 2 is circulated or discharged into the lubricant reservoir portion S in the flange 3. The lubricant reservoir portion S may include a space in the speed reducer 2, in addition to the hollow portion of the flange 3.
In the lubricant reservoir portion S, a sensor 5 for sensing the conductive substance contained in the lubricant is installed. A magnet of the sensor 5 causes the conductive substance contained in the lubricant to be accumulated between a pair of electrodes, and the sensor 5 detects the conductive substance in the lubricant by sensing a change in the electric resistance between the pair of electrodes. For example, the sensor 5 is installed in a region A shown in
Next, with reference to
As shown in
The box-shaped electrode 8 is a magnetic member formed of a magnetic material having electric conductivity such as iron, ferrite, or silicon steel. The box-shaped electrode 8 has a substantially cylindrical shape and its opening is closed on one end in the axial direction (the bottom in the sectional view of
In the box-shaped electrode 8, there is disposed a resin material 10, which is a non-magnetic material (an insulator). In this manner, the center electrode (first electrode) 6 and the magnet 7 are formed such that at least a part of them are buried in the central region of the resin material. The box-shaped electrode 8 is arranged so as to surround the magnet 7 and the resin material 10. The shapes of the magnet 7 and the center electrode 6 are not limited to cylindrical shapes but may be a rectangular parallelepiped, a polygonal column, or the like.
As shown in the sectional view of
Output lines (signal lines 41, 42 shown in
The output lines are connected, at the output ends thereof, to a sensor driving circuit (not shown). The sensor driving circuit monitors a resistance value of the sensor 5 to predict a failure of the mechanical parts based on variation of the resistance value due to the accumulation of the conductive substance between the electrodes. When a certain amount of conductive substance accumulates in the gap GA, the electric resistance between the center electrode 6 to which a voltage is applied and the box-like electrode 8 decreases, and output levels of the output lines change. The sensor driving circuit detects the decrease in the electric resistance to predict a failure of the mechanical parts. The decrease in the electric resistance may be indicated with an On signal (with electricity passing) and an Off signal (with no electricity passing), so that it is possible to perform sensing between these On and Off states (hereinafter referred to as “digital sensing”).
The sensor driving circuit is connected to a superior control device such as a manipulator in a wired or wireless manner. A circuit board 43 in
When sensing the variation of the output levels of the output lines received from the circuit board 43, the superior control device may give an alert for demanding maintenance of, for example, the speed reducer 2 with a predetermined notification means (a display or a voice output device).
The magnet 7 is magnetized to form a magnetic flux path ϕA (not shown) in a predetermined direction. In particular, a strong magnetic flux flows in the gap GA around the center electrode 6. By a magnetic force of the magnet 7, the conductive substance from mechanical parts (for example, the conductive substance from mechanical parts mixed in the lubricating oil) is attracted into the gap GA.
Here, as wear of mechanical parts advances into the wear-out failure period in the failure rate curve (the bathtub curve), the amount of produced conductive substance increases, but this amount greatly differs depending on the size of the industrial device. In general, a larger device contains a larger number of mechanical parts or mechanical parts of a larger size, and therefore, more conductive substance is produced. By contrast, a small device produces a small amount of conductive substance, and therefore, it may be difficult that the conductive substance accumulates on the sensor to an amount necessary for proper failure prediction. Therefore, it is preferable to collect the conductive substance onto the sensor 5 to an amount necessary for failure prediction of the mechanical parts.
As described above, the industrial device 1 includes the sensor 5 installed in the region A where the lubricant is circulated. Thus, the conductive substance contained in the lubricant tends to pass by the sensor 5, so as to be attracted toward the sensor 5. Accordingly, the abrasion powder (conductive substance) can accumulate on the sensor 5 to an amount necessary for proper failure prediction.
Next, an industrial device 101 according to a second embodiment of the present invention will be described with reference to
As with the industrial device 1 shown in
The industrial device 101 includes a hollow tubular member 17 and a center gear 18 that rotates about the center axis of the tubular member 17. The sensor 5 is disposed in the vicinity of the center gear 18.
Since the sensor 5 is disposed in the vicinity of the center gear 18, the rotation of the center gear 18 causes the lubricant to circulate, such that a larger amount of conductive substance can be collected. Accordingly, the abrasion powder (conductive substance) can accumulate on the sensor 5 to an amount necessary for proper failure prediction.
In the industrial device 101, the sensor 5 is installed in a region facing the center gear 18. Thus, the rotation of the center gear 18 can cause the lubricant to circulate toward the sensor, such that a larger amount of conductive substance can be collected. Accordingly, the abrasion powder (conductive substance) can accumulate on the sensor 5 to an amount necessary for proper failure prediction.
The industrial device 101 further includes a bracket 19 in the lubricant reservoir portion S, and the sensor 5 is fixed to the bracket 19. Thus, the sensor is positioned to face the center gear 18, such that a larger amount of conductive substance can be collected. Accordingly, the abrasion powder (conductive substance) can accumulate on the sensor 5 to an amount necessary for proper failure prediction. The bracket 19 may be mounted with a screw to an appropriate location in the industrial device 1, but the mounting method can be changed if necessary.
Next, an industrial device 201 according to a third embodiment of the present invention will be described with reference to
The industrial device 201 includes: the lubricant reservoir portion S for containing the lubricant; and the sensor 5 having a pair of electrodes (that is, a first electrode 6 and a second electrode 8) and configured to apply a voltage between the pair of electrodes and allow accumulation of the conductive substance between the pair of electrodes, thereby to sense variation of electric resistance between the pair of electrodes.
The industrial device 201 includes a drive source 4 that is partially housed in a casing 20. For example, the drive source 4 is a motor. One end portion of the lubricant reservoir portion S is defined by an end surface 22 of the casing 20. A drive shaft 21 of the drive source 4 extends through the end surface 22 of the casing 20, and the sensor 5 is fixed to the end surface 22 of the casing 20. Thus, the rotation of the drive shaft 21 of the drive source 4 can cause the lubricant to circulate toward the sensor 5, such that a larger amount of conductive substance can be collected. Accordingly, the abrasion powder (conductive substance) can accumulate on the sensor 5 to an amount necessary for proper failure prediction. In addition, as compared to the case where the sensor 5 is provided on the flange 3, the flange 3 can be shaped more simply, and the connection line of the drive source 4 and the connection line of the sensor 5 can be disposed together more easily.
Next, an industrial device 301 according to a fourth embodiment of the present invention will be described with reference to
The industrial device 301 includes: the lubricant reservoir portion S for containing the lubricant; and the sensor 5 having a pair of electrodes (that is, a first electrode 6 and a second electrode 8) and configured to apply a voltage between the pair of electrodes and allow accumulation of the conductive substance between the pair of electrodes, thereby to sense variation of electric resistance between the pair of electrodes.
The industrial device 1 according to an embodiment of the present invention includes the carrier 23 that is rotatable, and the sensor 5 is fixed to the carrier 23. The sensor 5 rotates with the carrier 23, and thus sensor 5 contacts with much lubricant while moving. Accordingly, the abrasion powder (conductive substance) can accumulate on the sensor 5 to an amount necessary for proper failure prediction.
Next, an industrial device 401 according to a fifth embodiment of the present invention will be described with reference to
The industrial device 401 includes: the lubricant reservoir portion S for containing the lubricant; and the sensor 5 having a pair of electrodes (that is, a first electrode 6 and a second electrode 8) and configured to apply a voltage between the pair of electrodes and allow accumulation of the conductive substance between the pair of electrodes, thereby to sense variation of electric resistance between the pair of electrodes.
The industrial device 401 includes the carrier 23 connected to the first member 24. The first member 24 is, for example, a robot arm. The speed reducer 2 and the members attached thereto can rotate relative to the flange 3, and the sensor 5 is fixed to the first member 24. The sensor 5 rotates with the first member 24, and thus sensor 5 contacts with much lubricant while moving. Accordingly, the abrasion powder (conductive substance) can accumulate on the sensor 5 to an amount necessary for proper failure prediction.
The industrial device 401 includes a crank member (crank mechanism) 25, and the sensor is fixed at such a position as to face the crank member 25. The sensor 5 is fixed at such a position as to face the crank member 25 in the axial direction of the crank member 25. Thus, the sensor 5 contacts with much lubricant while moving in the vicinity of the crank member 25, such that a larger amount of conductive substance can be collected. Accordingly, the abrasion powder (conductive substance) can accumulate on the sensor 5 to an amount necessary for proper failure prediction.
Next, an industrial device 501 according to a sixth embodiment of the present invention will be described with reference to
The industrial device 501 includes: the lubricant reservoir portion S for containing the lubricant; and the sensor 5 having a pair of electrodes (that is, a first electrode 6 and a second electrode 8) and configured to apply a voltage between the pair of electrodes and allow accumulation of the conductive substance between the pair of electrodes, thereby to sense variation of electric resistance between the pair of electrodes.
In the industrial device 501, the sensor 5 is positioned vertically below the lubricant reservoir portion S. The industrial device 501 is disposed such that, for example, a drive shaft of the drive source 4 is orthogonal to the vertical direction. The sensor 5, which is disposed below the oil bath, readily collects the conductive substance precipitated due to insufficient stirring of the lubricant, facilitating the failure prediction of the industrial device 1. Since the precipitated conductive substance can be readily attracted, the abrasion powder (conductive substance) can accumulate on the sensor 5 to an amount necessary for proper failure prediction.
The industrial device 501 includes another sensor 5 having a pair of electrodes and configured to allow accumulation of the conductive substance between the pair of electrodes, thereby to sense variation of electric resistance between the pair of electrodes. The other sensor 5 is positioned vertically above the lubricant reservoir portion S. When stirring of the lubricant is insufficient, conductive substance produced upon a failure of the speed reducer precipitates on the sensor 5 disposed above the oil bath. In this arrangement, the sensor 5 disposed above the oil bath, which receives less conductive substance accumulated thereon, reacts a certain period of time after the failure of the speed reducer (more conductive substance is distributed after the failure). Therefore, it is possible that the sensor 5 disposed vertically below the oil bath that more readily collects conductive substance precipitated thereon is used for failure prediction, and the sensor 5 disposed vertically above the oil bath detects a large amount of conductive substance distributed upon a failure to detect the failure, thus achieving less erroneous sensing operation. With further sensors 5 added, a sensor group can be constituted that is capable of more reliable and accurate sensing.
The examples of the embodiments of the present invention have been described above. The embodiments of the present invention are not limited to the above examples but can be modified variously within the scope of the technical idea of the present invention. For example, the embodiments of the present invention include combinations of the above examples described herein and obvious embodiments.
Number | Date | Country | Kind |
---|---|---|---|
2018-154140 | Aug 2018 | JP | national |
2019-139992 | Jul 2019 | JP | national |