The present disclosure relates generally to a telescoping light pole with an internal passage for electrical wiring and configured for a telescoping function facilitating worker access to a remote fixture.
Lighting systems are used in many applications, with different constructions provided for different environments. Lighting is particularly important in industrial applications, which often require work in low light conditions (e.g., at night). However, due to environmental conditions, accessing pole-mounted lights can be difficult and often dangerous. Adjustable lighting systems have been developed for industrial applications. As a result of the perils of ladder use in industrial settings, systems have been developed to safely lower the remote end (top end) of a light pole.
Aspects of the present disclosure relate to systems, methods, and devices for lighting fixture pole support. General embodiments may include a pole support system including a tubular lower support; a guide member interior to the lower support, the guide member extending substantially along a length of the lower support; a telescoping upper support inside the lower support and axially movable between an extended position and a retracted position, the upper support being at least partially received in an annular space between the lower support and the guide member; a biasing member biasing the upper support to the extended position; and a locking assembly partially surrounding the lower support at one end of the lower support. The locking assembly may include a body having a passage in which the upper support slides therethrough, the body attached to the lower support to enclose the passage at a first end while maintaining the passage in fluid communication with the interior of the lower support; and a lock configured to selectably engage the upper support to constrain axial motion of the upper support.
The biasing member may include a spring in the annular space between the lower support and the housing. The body may be attached to the lower support by at least one selectably sealingly engageable fastener. The guide member may include fluid-tight tubular. The system may include a base configured for coupling with the fluid-tight tubular and the lower support at corresponding ends opposite the locking assembly and configured to isolate an interior of the fluid-tight electrical conduit from the annular space between the lower support and the housing. The base may include a channel between the first end of the base and a second end of the base in fluid-tight communication with the fluid-tight tubular. The lock comprises a translational member configured to translate into the passage against the upper support. The locking assembly may include a raised surface in the passage opposite the translational member. The raised surface may be a ledge. The system may include electrical wiring, wherein a portion of the electrical wiring within the upper support is configured to conform to a length of a portion of the upper support above the locking mechanism. The system may include a wiring seal. The guide member may be coaxial with a longitudinal axis of the lower support.
Other general embodiments may include a pole support system including a tubular lower support; a fluid-tight wiring chamber interior to the lower support, the wiring chamber extending substantially along a length of the lower support; a telescoping upper support inside the lower support and axially movable between an extended position and a retracted position, the upper support being at least partially received in an annular space between the lower support and the wiring chamber; a biasing member biasing the upper support to the extended position; and a locking assembly partially surrounding the lower support at one end of the lower support. The locking assembly may include a body having a passage in which the upper support slides therethrough, the body attached to the lower support to enclose the passage at a first end while maintaining the passage in fluid communication with the interior of the lower support; and a lock configured to selectably engage the upper support to constrain axial motion of the upper support.
Other general embodiments may include a locking assembly for use in a pole support system, as described herein. For example, the locking assembly may include a body having a passage configured for sliding transmission of an upper support therethrough, the body configured for selectable sealing engagement to a tubular lower support to enclose the passage at a first end while maintaining the passage in fluid communication with the interior of the lower support; and a lock configured to selectably engage the upper support to constrain axial motion of the upper support.
The foregoing and other objects, features and advantages of the disclosure will be apparent from the following more particular descriptions of exemplary embodiments of the disclosure as illustrated in the accompanying drawings wherein like reference numbers generally represent like parts of exemplary embodiments of the disclosure.
The following figures are part of the present specification, included to demonstrate certain aspects of embodiments of the present disclosure and referenced in the detailed description herein. Unless otherwise noted, figures are not drawn to scale.
Exposed wiring for lighting systems is susceptible to environmental hazards, such as moisture. Some known systems have a passage interior to the pole running to the remote end, and wiring (wires, cables, etc.) running through the passage to the light fixture. Known systems are inefficient in protecting the installed wiring. Normal movement of the components often damages internal wiring (e.g., “pinching”).
Further, traditional industrial fixtures (particularly those with ballast hinges) are configured for use on a pole with a particular operational axis (e.g., the axis while in use). Because most industrial fixtures are not designed for use with a lowerable pole, changing the operational axis introduces instability in the fixture. One reason for the instability is the introduction when lowering the fixture of additional forces that are not present during normal operation. Forces having a component normal to the operational axis may be particularly problematic. Thus, traditional lowered poles using joints or the like for lowering may result in instability of the fixture, particularly while the pole is deviated from its operational axis. This instability may result in fixtures detaching prematurely, and possibly falling from height, which is a safety hazard.
It would be desirable to increase protection for wiring in light poles in industrial settings while still facilitating repair or maintenance of light fixtures atop the light pole by bringing the fixture to ground level. It would also be desirable to enable a single worker to perform the action of raising and/or lowering the fixture, thereby reducing the costs of labor relating to maintenance, while maintaining the pole in its operational axis.
Generally, embodiments of the present disclosure may relate to spring assisted telescoping industrial light poles. As part of the telescoping nature of the present disclosure, the upper support (or upper pole) is slidably engaged with the lower support (or lower pole). The telescoping supports, along with the spring assist, allow the top mounted light fixture to be moved up and down. Thus the light fixture can be raised or lowered to the position of a user in the identical operational axis. Thus safety is increased, as there is less risk of accident when moving the light fixture in relation to a user. Aspects of the present disclosure also relate to safeguards for the wiring providing power to the fixture. Further aspects relate to general robustness and longevity of the pole support system in environmental conditions likely to be experienced upon installation in an outdoor or marine industrial setting (e.g., mines, offshore oil rigs). For example, depending on the particular materials used, a 10-foot pole support system of the present design may be rated for winds of over 300 miles per hour.
The principles of the disclosure are explained by describing in detail, specific example embodiments of devices, systems, and methods for facilitating access to industrial lighting. Aspects of the present disclosure resist deleterious conditions, such as, for example, rain, high winds, impact, conditions associated with industrial environments, and so on.
General embodiments of the disclosure include pole support systems and devices for incorporation within a pole support system. The pole support system may be configured for use with traditional light fixtures and enable height adjustment of a fixture via a telescoping upper pole. More specific example embodiments are described below. Embodiments relate to wired support systems (e.g., ‘wired poles’). A wired pole may include wiring or cabling operatively coupled with the lighting or other mounted item. Some aspects of the present disclosure may allow toggling between optimal orientations for maintenance and operation more easily, safely and/or rapidly.
Example embodiments were chosen and described in order to best explain the principles of the disclosure and their practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated. Those skilled in the art will understand, however, that the invention may be embodied as many other devices, systems, and methods. For example, various aspects of the methods and devices may be combined in various ways or with various products, including existing products. Many modifications and variations will be apparent to those of ordinary skill in the art. The scope of the invention is not intended to be limited by the details of example embodiments described herein. The scope of the disclosure should be determined through study of the appended claims.
Specific design details have been provided for illustration, but should not be considered limiting. Readers of skill in the art will recognize that many variations of telescoping pole support systems may be implemented consistent with the scope of the disclosure as described by the appended claims.
Upper support 102 lies inside the lower support 106 and is axially movable between an extended position and a retracted position. Locking assembly 104 at least partially surrounds the lower support 106 at one end of the lower support 106. The upper support 102 may be at least partially received in an annular space 109 between the lower support 106 and the guide member 108. The guide member 108 may be concentric with the lower support 106 and/or upper support 102. A biasing member 110 in the annular space 109 biases the upper support 102 to the extended position. The biasing member 110 may be implemented as a spring (as shown), an elastomeric member, a pneumatic or hydraulic system, and so on.
In operation, an attached light fixture 122 is accessible by adjusting the pole support system height via the upper support 102 retracting into the lower support 106. The telescoping connection between the upper support 102 and the lower support 106 is aided by the “spring assist” from the biasing member 110. The spring assist reduces the amount of strength needed to raise or lower the upper support to a desired height. The light fixture 122 is secured at a desired height by the lock assembly 104.
Locking assembly 104 includes a chamfer away from the upper support on the upper surface to resist standing water while maintaining structural strength. Other embodiments may include an arched upper surface, a level upper surface, or other designs. The lower surface may be the same or different than the upper surface. It is to be understood that varying designs may have associated advantages and disadvantages that recommend their use, and that all such variations are within the scope of the present disclosure.
Lock 116 is configured to selectably engage the upper support 102 to constrain axial motion of the upper support 102. The locking assembly 104 further includes a raised surface 124 in the passage. Lock 116 may be implemented using various fasteners or biasing mechanisms.
Referring to
Referring to
Referring to
The light fixture 122 is connected to the upper support 102. The illumination source of the light fixture 122 is powered through a connection to the electrical system, comprising a power source and wiring 112. The power source can be externally supplied or provided in a base, which may act as a support for the first pole. The wire is protected within the supports. More specifically, the wire is housed in the guide member or wiring chamber of the lower support and the interior chamber of the upper support. This positioning separates the wire from the spring assist system (e.g., biasing member 110). The provision of a separate housing for the wiring 112 is prevents the wire from interacting with or becoming damaged by the spring assist. In addition, the sealed conduit of the guide member or wiring chamber protects the wire from moisture, which can also be problematic.
The discussion above has focused primarily on embodiments of the disclosure for use with industrial light poles. Other embodiments may be used with other types of elongate objects, or in other environments. It should be understood that the inventive concepts disclosed herein are capable of many modifications. To the extent such modifications fall within the scope of the appended claims and their equivalents, they are intended to be covered by this patent.
This applications claims priority from U.S. Provisional Application Ser. No. 61/908,540, filed Nov. 25, 2013, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1309375 | Taylor | Jul 1919 | A |
2063263 | Murphy | Dec 1936 | A |
2490125 | Greppin | Dec 1949 | A |
2642246 | Larry | Jun 1953 | A |
2849204 | Petrick | Aug 1958 | A |
2896972 | Zavertnik | Jul 1959 | A |
3034098 | Clasen | May 1962 | A |
3055972 | Peterson | Sep 1962 | A |
3410995 | Gray | Nov 1968 | A |
3736417 | Williams | May 1973 | A |
4152757 | Bilson et al. | May 1979 | A |
4390933 | Warshawsky | Jun 1983 | A |
4527225 | Hartman | Jul 1985 | A |
4874991 | Ruskin | Oct 1989 | A |
5003442 | Gallo et al. | Mar 1991 | A |
5425526 | Shen | Jun 1995 | A |
7234847 | Yoshimori et al. | Jun 2007 | B2 |
8602613 | Pike et al. | Dec 2013 | B2 |
20030137847 | Cooper | Jul 2003 | A1 |
20060146550 | Simpson et al. | Jul 2006 | A1 |
20060279948 | Tsai | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
406081 | Feb 1934 | GB |
2296558 | Jul 1996 | GB |
2490658 | Nov 2012 | GB |
Number | Date | Country | |
---|---|---|---|
20150144372 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
61908540 | Nov 2013 | US |