The present invention is directed to an industrial ductwork system, and more particularly, to a ductwork system having uniform structural modules to improve design, manufacture, transportation, and assembly of ductwork systems.
Industrial ductwork systems are custom designed, manufactured at a manufacturing facility, transported to a job site, and then assembled. Because of the substantial size of a ductwork structure, the structure must be manufactured in transportable sections, which are subsequently transported to the job site. Transportation of the structural components may require over a hundred transport trucks. Current industrial ductwork systems, which are shipped via truck, do not use uniform modular components. As a result, all steps in the process are more labor intensive and thus more expensive.
For example, the designing step is more labor intensive because the designers must configure the ductwork structure in unique transportable structural sections for delivery to the job site. The manufacturing step is more labor intensive because each structural section is unique, thus custom manufacturing processes are required for each structural section and quality control is thereby complicated. The transportation step is more labor intensive because each structural section is unique such that each transportable load has its own unique issues to be addressed. Finally, assembly is more labor intensive because the structural sections are not uniformly attached to each other, thus assembly is more time-consuming, substantial field welding is typically required, and quality control is thereby complicated.
Accordingly, what is needed, and is not found in the prior art, is a ductwork system having uniform structural modules and easily constructed connections that expedite and facilitate the design, manufacture, transportation, and assembly of ductwork systems.
The present invention relates to a modular system of designing, manufacturing, transporting and installing large, industrial ducts primarily designed for conducting gaseous substances such as air. Each module is C-shaped and preferably has more than one stiffener that runs the width of the module as well as a stiffener that runs along the module's periphery and serves as a flange, both strengthening the modules and connecting them to other modules. Two modules are fitted together to form a duct unit having a rectangular cross section and a flange on each end. Braces and struts are placed within the duct unit to strengthen the structure. The duct unit is then attached to other duct units also made by pairing two modules together. How many duct units are fastened together will depend on the desired length of the ductwork. Although the modules described herein are intended for large, industrial size ductworks, the same system is readily applied to duct systems of any size.
These and other features of the invention will become apparent from the following detailed description of the preferred embodiment of the invention.
The present invention comprises a ductwork system having uniform structural modules to improve design, manufacture, transportation, and assembly of ductwork systems. These modules 10 are comprised of a side plate 14, a top plate 12 and a bottom plate 13 both attached to the side plate. Plates 12 and 14 form an approximately 90° angle and plates 14 and 13 form an approximately 90° angle. Plates 12 and 13 are approximately parallel. Plates 12, 13, and 14 are re-enforced with a series of metal stiffeners 16 that horizontally traverse the plates. The number and size of the stiffeners 16 will depend upon the dimensions of the modules, the strength of the materials used and the anticipated stress applied to the ductwork. In one embodiment, top plate 12 and bottom plate 13 are each approximately 10 feet wide and 10 feet long, while side plate 14 is about 10 feet wide and about 50 feet long. Because of their large size, plates 12, 13 and 14 may be either made from one large plate or several smaller plates welded together. They could also be made from several smaller plates of a composite, plastic or other material.
Modules 10 have a top mating stiffener 20 and a bottom mating stiffener 23. Mating stiffeners 20 and 23 have mating points 18. In this embodiment, mating points 18 comprise bolt holes that align with corresponding bolt holes of a mating point on a second module and are used to connect the two modules to one another to form a duct unit 30 as shown in
Modules 10 also have flange stiffeners 24 on both ends of the module. Flange stiffeners 24 run the entire length of the module 10 each starting at top mating stiffener 20 and continuing to bottom mating stiffener 23. Flange stiffeners 24 have splicing points 19 for connecting to flange stiffeners of other modules. While flange stiffeners are designed to facilitate connection between modules, they also provide structural strength to modules. When two modules are joined to form a duct unit 30, the flange stiffeners 24 of the two modules form complete flanges around the two ends of duct unit 30.
Each module 10 preferably has diagonal support braces 22 that are secured at the manufacturing facility to provide structural support during shipping and handling as well as to the completed ductwork system. Modules 10 each have two braces 22, one attached to top plate 12 and side plate 14, and the other attached to bottom plate 13 and side plate 14. Additional braces and struts are incorporated once two modules have been mated to form a duct section. These braces and struts are typically attached to one of the flange stiffeners, providing a more secure connection.
Metal alloys, composite materials, solid polymeric materials and combinations thereof are suitable for constructing the plates, stiffeners and braces of the modules. Which material is most preferable will depend on the environment that the ductwork system will be in, dimensions of the ductwork and availability of different materials.
The use of gusset plates, connection plates and slot pipes is well known in the art and are preferred in the present invention because of the ease with which they are assembled and the strength they provide. However, other methods of assembling a support structure may be used.
Those skilled in the art will appreciate that the design of the reinforcing brace and strut structure described herein is only one of many suitable patterns in which to arrange braces and struts to support the structure of the ductwork system.
The design of the structural modules 10 facilitates transport to the job site (see
After two modules have been connected to one another, struts and braces are added (see
As with mating points 18, splicing points 19 are bolt holes. Two duct sections 30 are placed next to each other such the bolt holes of splicing points 19 are aligned. The two sections are then bolted together. Bolt holes such as those shown in the figures are preferred. However, a variety of other mating methods and devices may be used.
The splicing of two duct units 30 results in seams 66 forming between the connected flange stiffeners. This seam may be welded and/or sealed with a sealant or insulation.
While the invention has been shown and described in some detail with reference to a specific exemplary embodiment, there is no intention that the invention be limited to such detail. On the contrary, the invention is intended to include any alternative or equivalent embodiments that fall within the spirit and scope of the invention as described and claimed herein.
The present application claims priority to U.S. Provisional Patent Application No. 60/731,743, filed Oct. 31, 2005, the disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60731743 | Oct 2005 | US |