Industrial robot

Information

  • Patent Grant
  • 5006035
  • Patent Number
    5,006,035
  • Date Filed
    Friday, March 31, 1989
    35 years ago
  • Date Issued
    Tuesday, April 9, 1991
    33 years ago
Abstract
An industrial robot has a robot unit (10) comprising a fixed base (12) and movable robot components (16, 18, 20) operatively controlled by driving motors (M.theta., MW, MU, M.alpha., M.beta., M.gamma.) provided with absolute position detecting encoders (EC.theta., ECW, ECU, EC.alpha., EC.beta., EC.gamma.). The swivel body (16) among the movable robot components, mounted on the fixed base (12) is mounted, on its mount, with the driving motor (M.theta.) for operatively controlling the same, and is mounted with and holds a battery (46) for supplying a backup voltage to the encoders of the driving motors (MW, MU, M.alpha., M.beta., M.gamma.) for operatively controlling the movable robot components (18, 20). The battery is connected electrically by cables (48, 49) to the encoders (EC.theta., ECW, ECU, EC.alpha., EC.beta., EC.gamma.).
Description
Claims
  • 1. In an industrial robot having a robot unit comprising a fixed base and movable robot components, said movable robot components including a swivel body having an outerface and mounted on the fixed base so as to swivel about a longitudinal axis, a first robot arm pivotally joined to one end of the swivel body, and a second robot arm pivotally joined to one end of the first robot arm and provided with a robot wrist unit, characterized in that a first driving motor is mounted on said swivel body for swiveling said swivel body on said fixed base, second driving motors are mounted on said swivel body for pivoting said first robot arm on said swivel body and for pivoting said second robot arm on said first robot arm, respectively, and third drive motors are mounted on said second robot arm for driving said wrist unit, each of said motors of said first, second and third motors each having mounted on each, respective, motor an absolute position detecting encoder, and a battery mounted on said outerface of said swivel body and connected to each said encoder of each said second and third driving motors for supplying backup voltage to said encoders of said second and third drive motors for driving said movable robot components, other than said swivel body, mounted on said swivel body.
  • 2. In an industrial robot according to claim 1, wherein said driving motor for operatively controlling said swivel body is mounted with the axis of the output shaft thereof in alignment with the axis of the swivel motion of the swivel body, and said battery for supplying backup voltage is disposed beside said swivel body driving motor.
  • 3. In an industrial robot as recited in claim 1, wherein said battery is replaceably contained in a battery case.
Priority Claims (1)
Number Date Country Kind
60-89907 Apr 1985 JPX
DISCLOSURE OF THE INVENTION

This application is a continuation of application Ser. No. 010,092, filed as PCT/JP86/00208, on Apr. 25, 1986, published as WO86/06312, on Nov. 6, 1986, now abandoned. 1. Technical Field The present invention relates to an industrial robot and, more particularly, to a backup voltage supply battery mounting construction for an industrial robot equipped with a driving motor provided with an absolute position detecting encoder for controlling the respective actions of the movable robot components. 2. Background Art An absolute position detecting encoder capable of detecting and storing the present angular position of a rotary shaft through the calculation and storage of the direction of rotation, the number of rotation, and angular position in one cycle of rotation of the rotary shaft is proposed in Japanese Unexamined Patent Publication No. 60-218,029 (corresponding U.S. patent application Ser. No. 696,560 filed on Jan. 30, 1985, and corresponding EPC Patent Application No. 85,101,295.5 filed on Feb. 7, 1985), and a driving motor incorporating such an absolute position detecting encoder and capable of detecting the present angular position of the output shaft thereof has been provided. The application of a driving motor provided with such an absolute position detecting encoder to control the actions of the movable robot components of an industrial robot enables the detection of the respective present position of the movable robot components interlocked with the output shaft of the driving motor, and storing the data of the present respective positions of the movable robot components. Accordingly, the robot control operation of a robot controller can be started quickly according to teaching data and can be very accurately carried out by reading the data of the present positions of the movable robot components. When, however, the driving motor provided with the above-mentioned absolute position detecting encoder is applied to an industrial robot, it is necessary to provide the industrial robot with a battery for supplying a backup voltage to prevent the extinguishment of the data stored in the absolute position detecting encoder, so that a backup voltage is applied to the absolute position detecting encoder when a feeder line for supplying an excitation voltage from the robot controller to the absolute position detecting encoder in the normal state is disconnected from the absolute position detecting encoder for robot maintenance work or when the absolute position detecting encoder is accidentally disconnected from the robot controller. Accordingly, the battery must be always provided on the robot unit. But, since most recent industrial robots have a swivel body mounted on a fixed base disposed at the lowermost position of the robot unit, electric cables and pipes of the industrial robot are twisted as the swivel body is driven for swivel motion, which is liable to cause breakage of the electric cables and the pipes. In view of such an inconvenience, it is necessary to arrange the cable extending between the backup voltage supplying battery and each driving motor in such a way that the cable will not be twisted and accidentally broken by the swivel motion of the swivel body. Accordingly, it is an object of the present invention to provide an industrial robot having a construction capable of meeting the foregoing conditions of the battery mounting construction. In order to achieve the above-mentioned object, according to the present invention, a driving motor for operatively controlling the swivel body mounted on the fixed base of the robot unit of an industrial robot is mounted on the swivel body, and a backup voltage supplying battery for supplying backup voltage to the absolute position detecting encoder of the driving motor for the swivel body, and those of driving motors for operatively controlling the other movable components, is mounted and held on the swivel body to prevent twisting, and hence, breakage, of cables extending between the backup voltage supplying battery and the encoders.

US Referenced Citations (7)
Number Name Date Kind
4117320 Tomlinson et al. Sep 1978
4531885 Molaug Jul 1985
4610598 Hamada et al. Sep 1986
4631658 Easthill Dec 1986
4636138 Gorman Jan 1987
4654829 Jiang et al. Mar 1987
4699563 Yokose Oct 1987
Foreign Referenced Citations (3)
Number Date Country
54-126379 Mar 1979 JPX
58-191982 Dec 1983 JPX
59-5037 Feb 1984 JPX
Continuations (1)
Number Date Country
Parent 10092 Dec 1986