This application is a U.S. national phase application of PCT International Application PCT/JP2006/300989.
The present invention relates to an industrial robot used for welding, for example, and used in floor-mounted or a ceiling-mounted installation.
Conventionally, as an installing and using method of a welding multi-joint robot (an industrial robot), floor-mounted use, ceiling-mounted use, or the like, is generally known.
First arm 112 rotates with respect to base 111 for installation. Second arm 113 pivots with respect to first arm 112, and third arm 114 pivots with respect to second arm 113. Furthermore, fourth arm 115 pivots with respect to third arm 114. Welding wire feeder 116 feeds a welding wire. Fixing device 117 fixes welding wire feeder 116 to the industrial robot. Torch cable 118 feeds the welding wire from welding wire feeder 116 to welding torch 119.
In
Therefore, when a robot used in a state in which it is mounted on the floor is used in a state in which it is mounted on the ceiling, or when a robot used in a state in which it is mounted on a ceiling is used in a state in which it is mounted on a floor, the position to which welding wire feeder 116 is attached has to be changed. In order to correspond to such a change, it is necessary to provide fixing positions of wire feeder 116 for both floor-mounted use and ceiling-mounted use. That is to say, two or more positions to which wire feeder 116 is attached need to be provided. Furthermore, it is necessary to prepare attaching members for fixing welding wire feeder 116 corresponding to each use form of floor-mounted use and ceiling-mounted use. Thus, it takes a time to change the use forms, and the cost therefor rises.
Furthermore, in coupling of a feeder cable for electrically coupling between welding wire feeder 116 and the inside the robot, it is necessary to additionally consider a wiring method corresponding to each use form. Thus, it takes a time to change the coupling corresponding to the use form.
Furthermore, in the structure shown in
In order to resist this load, the strength and rigidity of fixing device 117 is required to be increased. That is to say, the size and mass of a member constituting fixing device 117 may be increased. Such a configuration deteriorates the motion performance of the industrial robot and adversely affects the approaching performance to a welding work and a jig for fixing the welding work.
An industrial robot of the present invention includes a base for installation, a first arm, a second arm, a third arm, a wire feeder, a welding torch, and a torch cable. The first arm rotates with respect to the base. The second arm pivots with respect to the first arm. The third arm pivots with respect to the second arm. The torch cable is coupled to the wire feeder and feeds a welding wire to the welding torch. The wire feeder is provided to the second arm and is rotatable around a rotation axis. In this structure, a position in which the wire feeder is provided is common in a robot used in a state in which it is mounted on a floor and a robot used in a state in which it is mounted on a ceiling. Then, by rotating the wire feeder, floor-mounted use and ceiling-mounted use become possible.
Base 11 is provided to install the industrial robot on a floor surface, a ceiling surface, or the like. First arm 12 rotates with respect to base 11. Fourth arm 13 pivots with respect to first arm 12, and second arm 14 pivots with respect to fourth arm 13. That is to say, second arm 14 pivots with respect to first arm 12. Third arm 15 pivots with respect to second arm 14. Welding wire feeder (hereinafter, referred to as “feeder”) 16 is provided at the upper side of second arm 14. Torch cable 18 feeds a welding wire from feeder 16 to welding torch 19.
Fixing device 17 is provided to attach feeder 16 to second arm 14. Fixing device 17, which has rotation axis 17A for allowing feeder 16 to turn, rotatably fixes feeder 16 and fixes the rotation angle of feeder 16. Thus, fixing device 17 fixes feeder 16 at a position in which feeder 16 is offset in the horizontal direction to a degree in which torch cable 18 attached to feeder 16 does not interfere with third arm 15. That is to say, feeder 16 is provided to second arm 14 and can rotate around rotation axis 17A.
Fourth arm 13 is attached like a cantilever to first arm 12 and second arm 14. That it to say, fourth arm 13 is attached to one side face of first arm 12 and to one side face of second arm 14. Feeder 16 is located on the opposite side to fourth arm 13 relatively to a rotating axis (not shown) of first arm 12. The rotating axis of first arm 12 is an axis for rotatably attaching a first arm 12 to base 11.
If feeder 16 is attached to the same side as fourth arm 13 relatively to the rotating axis of first arm 12, when second arm 14 pivots, feeder 16 interferes with fourth arm 13. Therefore, the operation range of second arm 14 is restricted. Furthermore, in order to avoid the interference of feeder 16 to fourth arm 13, the position to which feeder 16 is attached is required to be offset to the outside of fourth arm 13. This structure leads to increase in the size and weight of fixing device 17, resulting in deterioration of the motion performance and approaching performance to a welding work, etc. in an industrial robot.
When feeder 16 is attached to the opposite side to fourth arm 13 relatively to the rotating axis of first arm 12, problems associated with interference mentioned above or unnecessary increase in the size and weight of fixing device 17 do not arise. Therefore, deterioration of the motion performance and approaching performance to a welding work, etc. in an industrial robot can be prevented.
Next, in the industrial robot having the above-mentioned configuration, the use form of the industrial robot is described as to the case in which floor-mounted use shown in
Thus, fixing device 17 for fixing feeder 16 to second arm 14 can be commonly used at the time of floor-mounted use and the time of ceiling-mounted use. That is to say, it is not necessary that fixing devices are provided independently at the time of the floor-mounted use and the time of ceiling-mounted use. Furthermore, the position to which the fixing device is attached is common and the position is not required to be changed.
Furthermore, fixing device 17 is provided with rotation axis 17A that allows feeder 16 to rotate. Then, according to whether floor-mounted installation or ceiling-mounted installation, feeder 16 is allowed to rotate around rotation axis 17A. Thus, by changing an angle of feeder 16, the position of torch cable 18 can be changed into the direction suitable for the time of the floor-mounted use and ceiling-mounted use. That is to say, an attachment angle of feeder 16 is changed by rotating feeder 16 without changing the position to which feeder 16 is attached between the time of floor-mounted use and the time of ceiling-mounted use. Since only this configuration can correspond to both the floor-mounted use and ceiling-mounted use of an industrial robot, an industrial robot with excellent workability can be obtained.
Note here that depending on a method of carrying out welding and a shape of a welding base material, and the like, torch cable 18 may be required to be fixed in order to restrict the interference range of touch cable 18. In such a case, by using rotation fixing part 31, a bolt, or the like, shown in
Furthermore, as shown in
Furthermore, as shown in
As mentioned above, with the configuration in which the distance between location of the gravity center 41 and the pivot axis of third arm 15 is short, a strong attachment member for attaching feeder 16 is not required to be provided. Thus, the industrial robot can have a compact size and light weight.
Note here that, in this exemplary embodiment, fourth arm 13 is pivotably provided between first arm 12 and second arm 14. However, feeder 16 may be provided on second arm 14 in an industrial robot that does not have fourth arm 13.
An industrial robot of the present invention can be used both at the time of floor-mounted use and ceiling-mounted use. Therefore, it is useful as an industrial robot capable of carrying out welding and the like, by mounted on a floor, on a ceiling, or the like.
Number | Date | Country | Kind |
---|---|---|---|
2005-247120 | Aug 2005 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2006/300989 | 1/24/2006 | WO | 00 | 7/17/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/026438 | 3/8/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4952769 | Acheson | Aug 1990 | A |
5293107 | Akeel | Mar 1994 | A |
5606235 | Mauletti | Feb 1997 | A |
6250174 | Terada et al. | Jun 2001 | B1 |
20040261562 | Haniya et al. | Dec 2004 | A1 |
20050166699 | Meyerhoff et al. | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
1 568 449 | Aug 2005 | EP |
1 669 151 | Jun 2006 | EP |
63-95674 | Jun 1988 | JP |
6-315879 | Nov 1994 | JP |
06-86868 | Dec 1994 | JP |
6-86868 | Dec 1994 | JP |
7-205065 | Aug 1995 | JP |
08-057648 | Mar 1996 | JP |
8-57648 | Mar 1996 | JP |
08057648 | Mar 1996 | JP |
08-155881 | Jun 1996 | JP |
10-175188 | Jun 1998 | JP |
2004-261878 | Sep 2004 | JP |
2006-007256 | Jan 2006 | JP |
WO 2006001177 | Jan 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080271561 A1 | Nov 2008 | US |