The present invention relates to an industrial two-layer fabric having binding warps, and specifically relates to an industrial two-layer fabric that has no diagonal weave lines due to warp knuckles on the fabric surface, prevents transfer marks from forming by suppressing the separation or aggregation of adjacent wefts, and has excellent surface smoothness and running stability.
Industrial fabrics woven with warps and wefts have been widely used, and are exemplified by papermaking fabrics, conveyor belts, and filter cloths. The respective fabrics are required to have fabric characteristics suited for the purposes and using environments. Of these fabrics, the papermaking fabrics used in a papermaking process of, for example, dehydrating raw materials through meshes of the fabric are required to have particularly strict characteristics. For example, there are demands for a fabric having such excellent surface smoothness as to be unlikely to transfer wire marks of the fabric to paper and for a fabric that has dehydration characteristics for sufficiently and evenly removing water excessively contained in raw materials, also has such rigidity and wear resistance as to be suitably used even in severe environments, and can further maintain conditions required for producing good paper for a long period of time. In addition, fiber supporting characteristics, an improvement of papermaking yield, dimensional stability, and running stability are also required, for example. In recent years, papermaking machines work at higher speeds, and accordingly the papermaking fabrics are required to have much higher characteristics.
A twill weave is known as a typical weave pattern for the industrial two-layer fabric (for example, see Patent Document 1). The industrial two-layer fabric having such a twill weave pattern has diagonal weave lines on the surface and thus has a problem of transferring such diagonal weave lines onto the surface of paper. The paper or the like having such transfer marks has a poor appearance and has an adverse effect on printing characteristics. For example, ink spreads on such paper in mark directions during printing. As the method for solving such problems, the technique of making the surface of a fabric have a satin weave, a satin weave, or a broken twill weave in place of the twill weave. For example, Patent Document 2 discloses a technique of improving the surface nature, the rigidity in diagonal directions, and the running stability by making the surface pattern of a fabric be a broken twill weave.
However, when a conventional technique such as a satin weave is applied to a fabric, the fabric has some areas where knuckles are not sequentially present, thus adjacent wefts aggregate, and such an uneven arrangement of the wefts causes transfer marks unfortunately.
When the industrial fabric having a broken twill weave on the surface and disclosed in Patent Document 2 is used, adjacent wefts are separated or aggregate with time due to the pattern structure, and the separation or aggregation is unfortunately transferred to paper or the like as new transfer marks. In other words, the paragraph [0007] in cited document 2 discloses that when these twill lines are connected to each other, deterioration in the rigidity of a wire in one direction and generation of diagonal marks, which will otherwise occur in the twill weave, can be prevented, but dog-leg twill lines stand out and their marks appear clearly. In this structure, an upper side warp adjacent to a peak passes over a knuckle adjacent to the peak, or over an upper side weft, next passes under an upper side weft, and then passes over an upper side weft, and thus the force pushing up an upper side weft is generated when the upper side warp passes under the upper side weft. Accordingly, twill lines are markedly observed as disclosed in cited document 2.
There is no pattern that is a broken twill weave pattern but suppresses the separation or aggregation of adjacent wefts, prevents transfer marks, and satisfies all the characteristics required for fabrics, such as surface smoothness and running stability.
[Patent Document 1] Japanese Patent Laid-Open No. 2004-36052
[Patent Document 2] Japanese Patent Laid-Open No. 2006-322109
The present invention is directed to eliminate diagonal weave lines that appear on the surface of a fabric due to warp knuckles. The present invention is also directed to provide an industrial two-layer fabric that prevents transfer marks from forming by suppressing the separation or aggregation of adjacent wefts, which has occurred in conventional pattern structures, and has excellent surface smoothness and running stability.
The fabric pertaining to the present invention has been developed in order to eliminate diagonal weave lines and to suppress the separation or aggregation of wefts in the inside of the fabric. In other words, the present invention includes the following aspects in order to solve the problems in the related art.
(1) An industrial two-layer fabric includes an upper layer fabric including upper side warps and upper side wefts and a lower layer fabric including lower side warps and lower side wefts, and the upper layer fabric and the lower layer fabric are bound by warps that function as binding yarns. In the industrial two-layer fabric, warp knuckles are formed on a surface side, and each warp knuckle is formed by allowing a warp to pass over a single upper side weft; in a shaft adjacent to the warp knuckle, at least two other warp knuckles are arranged in a diagonal direction in a planar view; and the warp knuckles are sequentially arranged in such a way as to form a herringbone pattern on a surface layer side of the fabric.
In the present invention, the “warp knuckle” means the place where a binding warp passes over an upper side weft to form a knuckle on the surface of a fabric. The warps forming knuckles include upper side warps in addition to binding yarns.
In the present invention, “over a single upper side weft” means that a binding warp does not pass over two or more upper side wefts adjacent to each other but a binding warp passes over only a single upper side weft to form a single knuckle. Accordingly, the warp knuckle never forms a long crimp on the surface of a fabric.
In the present invention, the “herringbone pattern” is a pattern in which a predetermined number of warp knuckles are arranged to form parallel lines in a diagonal direction with respect to a running direction in a planar view, and then the same number of warp knuckles are arranged to form lines inverted in the normal direction, thereby forming a zigzag pattern by the warp knuckles on the upper layer surface of a fabric. In other words, at the peak of the inversion part in the zigzag pattern, a single warp knuckle is placed.
In the present invention, in one shaft adjacent to the warp knuckle placed at a peak, two other warp knuckles are arranged in upward and downward diagonal directions, and in each shaft adjacent to a warp knuckle arranged at the midpoint between a peak and a corresponding peak forming the zigzag pattern, another warp knuckle is arranged on a diagonal line (in a diagonal direction).
(2) In the industrial two-layer fabric according to the aspect (1), a minimum number of the warp knuckles sequentially arranged between peaks forming the herringbone pattern is 3, and a maximum number of the sequentially arranged warp knuckles is twice a number of the upper side warps in a complete design.
In the present invention, the minimum arrangement number of the warp knuckles in connection with each other is 3 in a diagonal direction in a planar view. In other words, when a single warp knuckle is arranged between peaks in a zigzag pattern, the minimum value is 3. By adopting twice the total number of the upper side warps in a complete design as the maximum number of the warp knuckles, one side of the zigzag pattern is formed.
(3) In the industrial two-layer fabric according to the aspect (1) or (2), the warp knuckle arranged at the peak of the herringbone pattern is the binding yarn.
(4) In the industrial two-layer fabric according to any one of the aspects (1) to (3), all knuckles formed by the upper side wefts appearing on the surface side of the fabric have an equal length.
The present invention advantageously provides an industrial two-layer fabric without diagonal weave lines by forming a herringbone pattern of warp knuckles on the surface of the fabric. In addition, the present invention advantageously provides an industrial two-layer fabric that prevents transfer marks from forming by suppressing the separation or aggregation of adjacent wefts, which has occurred in pattern structures of conventional fabrics, and has excellent surface smoothness and running stability.
An industrial two-layer fabric of the present invention will be described hereinafter in detail.
The industrial two-layer fabric of the present invention includes two layers, an upper layer fabric including upper side warps and upper side wefts and a lower layer fabric including lower side warps and lower side wefts. The upper layer fabric and the lower layer fabric are bound by warps that function as binding yarns.
The industrial two-layer fabric of the present invention is characterized in that warp knuckles are formed on the surface side, and each warp knuckle is formed by allowing a warp to pass over a single upper side weft. In shafts adjacent to the warp knuckle, at least two other warp knuckles are arranged in diagonal directions in a planar view, and the warp knuckles are sequentially arranged in such a way as to form a herringbone pattern on the surface layer side of the fabric.
In the present invention, a single binding yarn forms a knuckle on the upper layer fabric, and at places adjacent to the knuckle, two warp knuckles are formed in diagonal directions. Thus, an uneven shape generated around a warp knuckle formed by a single binding yarn can be cancelled by the stress relation with two adjacent warp knuckles. Accordingly, dehydration marks of the fabric are suppressed to be transferred to paper, and consequently, the fabric can prevent transfer marks from forming on a contact face of the paper with the fabric and have good surface smoothness.
The yarn used in the industrial two-layer fabric of the present invention can be selected depending on the purpose. The usable yarn is exemplified by monofilaments, multifilaments, spun yarns, finished yarns subjected to crimping or bulking, commonly called textured yarns, bulky yarns, and stretch yarns, and combination yarns prepared by intertwining them. As for the cross-section shape of the yarn, not only yarns having a circular shape but also yarns having a short shape such as a quadrangular shape and a star shape, yarns having an elliptical shape, and hollow yarns can be used. The raw material of the yarn can be freely selected, and usable examples include polyester, polyamide, polyphenylene sulfide, polyvinylidene fluoride, polypropylene, aramid, polyether ether ketone, polyethylene naphthalate, polytetrafluoroethylene, cotton, wool, and metals. Needless to say, yarns prepared from a copolymer and yarns prepared by blending or adding various substances to such a material can be used according to the purpose. For typical papermaking wires, polyester monofilaments having rigidity and excellent dimensional stability are preferably used as upper side warps, lower side warps, binding yarns, and upper side wefts. As lower side wefts required to have wear resistance, yarns are preferably interwoven to ensure the rigidity and to improve the wear resistance. For example, polyester monofilaments and polyamide monofilaments are alternately arranged.
Embodiments of the industrial two-layer fabric of the present invention will next be described. The embodiments described below are merely examples of the present invention and are not intended to limit the present invention.
Embodiments of the industrial two-layer fabric of the present invention will be described with reference to drawings.
The mark X indicates that an upper side warp is positioned over an upper side weft; the mark ● indicates that a binding yarn is positioned over an upper side weft; the mark ▴ indicates that a binding yarn is positioned under a lower side weft; and the mark ◯ indicates that a lower side warp is positioned under a lower side weft.
Some upper side warps are vertically overlapped with some lower side warps, and some upper side wefts are vertically overlapped with some lower side weft. Depending on an arrangement ratio, no lower side weft is placed under some upper side wefts. In the design diagrams, yarns are exactly vertically overlapped, but this arrangement is for convenience of drawings. In an actual fabric, yarns may be displaced.
Each of the warp knuckles formed on the surface side is formed by allowing a warp to pass over a single upper side weft. For example, as shown in
By sequentially arranging warp knuckles as described above, a herringbone pattern can be formed on the surface layer side of a fabric. By forming the herringbone pattern as shown in
In the industrial fabric of the first embodiment, the number of warp knuckles sequentially arranged between peaks forming the herringbone pattern is 3.
A single binding yarn forms a knuckle on the upper layer fabric, and at places adjacent to the knuckle, two warp knuckles are formed in diagonal directions. Thus, an uneven shape generated around a warp knuckle formed by a single binding yarn can be cancelled by the stress relation with two adjacent warp knuckles. Hence, an industrial two-layer fabric that prevents transfer marks from forming on a contact face of paper with the fabric and has excellent surface smoothness and running stability can be provided.
Each of the warp knuckles formed on the surface side is formed by allowing a warp to pass over a single upper side weft. For example, as shown in
As shown in
By sequentially arranging warp knuckles as described above, a herringbone pattern can be formed on the surface layer side of a fabric. In the herringbone pattern of the second embodiment, the upper side binding warp 1Ub passes over the upper side wefts (1′U, 4′U,) to form two warp knuckles (●); the lower side binding warp 1Lb passes over the upper side wefts (7′U, 10′U) to form two warp knuckles (●); the upper side binding warp 4Ub passes over the upper side wefts (4′U, 7′U,) to form two warp knuckles (●); and the lower side binding warp 4Lb passes over the upper side wefts (1′U, 10′U) to form two warp knuckles (●). These eight warp knuckles correspond to peaks of the herringbone pattern. The industrial fabric of the second embodiment is characterized in that all the eight warp knuckles are formed by binding yarns.
In the industrial fabric of the second embodiment, the number of warp knuckles sequentially arranged between peaks forming the herringbone pattern is 4.
By forming the herringbone pattern as shown in
A single binding yarn forms a knuckle on the upper layer fabric, and at places adjacent to the knuckle, two warp knuckles are formed in diagonal directions. Thus, an uneven shape generated around a warp knuckle formed by a single binding yarn can be cancelled by the stress relation with two adjacent warp knuckles. Hence, an industrial two-layer fabric that prevents transfer marks from forming on a contact face of paper with the fabric and has excellent surface smoothness and running stability can be provided.
As shown in
In the industrial two-layer fabric of the third embodiment, the number of warp knuckles between peaks forming a herringbone pattern is 16, which is twice the number of upper side warps, 8. In other words, the number of warp knuckles sequentially arranged is 16 in total: from the warp knuckle as the peak at the intersection of warp 8 and weft 16, warp 7-weft 15, warp 6-weft 14, warp 5-weft 13, warp 4-weft 12, warp 3-weft 11, warp 2-weft 10, warp 1-weft 9, warp 8-weft 8, warp 7-weft 7, warp 6-weft 6, warp 5-weft 5, warp 4-weft 4, warp 3-weft 3, warp 2-weft 2, to warp 1-weft 1 as the other peak at which the line is inverted in the normal direction to form a zigzag pattern.
By sequentially arranging warp knuckles as described above, a herringbone pattern can be formed on the surface layer side of a fabric. Thus, an industrial two-layer fabric having no diagonal weave lines, giving no transfer marks, and having excellent surface smoothness and running stability can be provided.
In the industrial two-layer fabric of the fourth embodiment, the number of warp knuckles between peaks forming a herringbone pattern is 3. The number of peaks of the herringbone pattern is four in total: warp 1-weft 1, warp 3-weft 3, warp 4-weft 1, and warp 6-weft 3. Such complete designs are connected vertically and horizontally to form a herringbone pattern in a running direction. Thus, an industrial two-layer fabric having no diagonal weave lines, giving no transfer marks, and having excellent surface smoothness and running stability can be provided.
In the industrial two-layer fabric of the fifth embodiment, the number of warp knuckles between peaks forming a herringbone pattern is 5. The number of peaks of the herringbone pattern is 6 in total: warp 1-weft 4, warp 1-weft 8, warp 5-weft 4, warp 5-weft 8, warp 9-weft 4, and warp 9-weft 8. Such complete designs are connected vertically and horizontally to form a herringbone pattern in a running direction. Thus, an industrial two-layer fabric having no diagonal weave lines, giving no transfer marks, and having excellent surface smoothness and running stability can be provided.
Black areas are projected areas on the fabric surface.
Number | Date | Country | Kind |
---|---|---|---|
2015-067897 | Mar 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/059307 | 3/24/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/158640 | 10/6/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6896009 | Ward | May 2005 | B2 |
6959737 | Ward | Nov 2005 | B2 |
7270151 | Nagura | Sep 2007 | B2 |
7306014 | Nagura | Dec 2007 | B2 |
7343938 | Takimoto | Mar 2008 | B2 |
7357156 | Ueda | Apr 2008 | B2 |
7412991 | Takimoto | Aug 2008 | B2 |
7441566 | Ward | Oct 2008 | B2 |
7464731 | Fujisawa | Dec 2008 | B2 |
7484537 | Ueda | Feb 2009 | B2 |
8809211 | Ueda | Aug 2014 | B2 |
8853107 | Ueda | Oct 2014 | B2 |
20040182464 | Ward | Sep 2004 | A1 |
20040231745 | Quigley | Nov 2004 | A1 |
20050067040 | Quigley | Mar 2005 | A1 |
20050121097 | Ward | Jun 2005 | A1 |
20060040578 | Nagura | Feb 2006 | A1 |
20060112999 | Nagura | Jun 2006 | A1 |
20060116042 | Nagura | Jun 2006 | A1 |
20060249220 | Barrett | Nov 2006 | A1 |
20060260708 | Ueda | Nov 2006 | A1 |
20070068590 | Quigley | Mar 2007 | A1 |
20070095416 | Ueda | May 2007 | A1 |
20070095417 | Fujisawa | May 2007 | A1 |
20070101560 | Luger | May 2007 | A1 |
20070157987 | Ward | Jul 2007 | A1 |
20090050231 | Barrett | Feb 2009 | A1 |
20110114278 | Stone | May 2011 | A1 |
20120135656 | Ueda | May 2012 | A1 |
20120135657 | Ueda | May 2012 | A1 |
Number | Date | Country |
---|---|---|
49-075806 | Jul 1974 | JP |
2004-36052 | Feb 2004 | JP |
2006-520862 | Sep 2006 | JP |
2006-322109 | Nov 2006 | JP |
Entry |
---|
International Search Report issued in Application No. PCT/JP2016/059307 with English translation dated Jun. 21, 2016 (3 pages). |
Written Opinion of International Searching Authority issued in Application No. PCT/JP2016/059307 dated Jun. 21, 2016 (5 pages). |
Number | Date | Country | |
---|---|---|---|
20180142385 A1 | May 2018 | US |