Claims
- 1. A measurement apparatus for making magnetic and gravity component measurements in a borehole, including measurements made while the apparatus is rotating about the borehole axis, comprising:a) a magnetic field component sensing device having at least two axes of sensitivity normal to the borehole axis and normal to each other, b) a gravity field component sensing device having at least two axes of sensitivity normal to the borehole axis and normal to each other, c) an inertial angular rotation sensing device having an axis of sensitivity along the borehole axis to sense inertial angular motion about the borehole axis, d) control, power and processing circuitry to operate said sensing devices and to process the outputs of said sensing devices to obtain stabilized component data in a coordinate system that does not rotate with the said measurement apparatus, e) communication circuitry to transmit output data to auxiliary equipment at the surface or in the borehole, f) support structure to support the elements a) through c), and g) said inertial angular rotation sensing device being an inertia-angle-measuring gyroscope.
- 2. A measurement apparatus for making magnetic and gravity component measurements in a borehole, including measurements made while the apparatus is rotating about the borehole axis, comprising:a) a magnetic field component sensing device having at least two axes of sensitivity normal to the borehole axis and normal to each other, b) a gravity field component sensing device having at least two axes of sensitivity normal to the borehole axis and normal to each other, c) an inertial angular rotation sensing device having an axis of sensitivity along the borehole axis to sense inertial angular motion about the borehole axis, d) a rotary drive mechanism to rotate the said sensing devices about the borehole axis or to permit stabilization of the sensitive axes of said sensing devices with respect to a fixed coordinate system, e) control, power and processing circuitry to operate said sensing devices and to process the outputs of said sensing devices to obtain data for the operation of said rotary drive mechanism to achieve stabilized component data in a coordinate system that does not rotate with the said measurement apparatus, f) communication circuitry to transmit output data to auxiliary equipment at the surface or in the borehole, g) support structure to support the elements a) through d), and h) said inertial angular rotation sensing device being an inertia-angle-measuring gyroscope.
- 3. A measurement apparatus for making magnetic and gravity component measurements in a borehole, including measurements made while the apparatus is rotating about the borehole axis, comprising:a) a magnetic field component sensing device having at least two axes of sensitivity normal to the borehole axis and normal to each other, b) a gravity field component sensing device having at least two axes of sensitivity normal to the borehole axis and normal to each other, d) an inertial angular rotation sensing device having an axis of sensitivity along the borehole axis to sense inertial angular motion about the borehole axis, d) control, power and processing circuitry to operate said sensing devices and to process the outputs of said sensing devices to obtain stabilized component data in a coordinate system that does not rotate with the said measurement apparatus, e) communication circuitry to transmit output data to auxiliary equipment at the surface or in the borehole, f) support structure to support the elements through c), and g) said inertial angular rotation sensing device being an inertia-angle-measuring gyroscope.
- 4. A measurement apparatus for making magnetic and gravity component measurements in a borehole, including measurements made while the apparatus is rotating about the borehole axis, comprising:a) a magnetic field component sensing device having at least two axes of sensitivity normal to the borehole axis and normal to each other, b) a gravity field component sensing device having at least two axes of sensitivity normal to the borehole axis and normal to each other, c) an inertial angular rotation sensing device having an axis of sensitivity along the borehole axis to sense inertial angular motion about the borehole axis, d) a rotary drive mechanism to rotate the said sensing devices about the borehole axis or to permit stabilization of the sensitive axes of said sensing devices with respect to a fixed coordinate system, e) control, power and processing circuitry to operate said sensing devices and to process the outputs of said sensing devices to obtain data for the operation of said rotary drive mechanism to achieve stabilized component data in a coordinate system that does not rotate with the said measurement apparatus, f) communication circuitry to transmit output data to auxiliary equipment at the surface or in the borehole, g) support structure to support the elements a) through d), and h) said inertial angular rotation sensing device being an inertial-angular-acceleration measuring devices.
- 5. A measurement apparatus for making magnetic and gravity component measurements in a borehole, including measurements made while the apparatus rotating about the borehole axis, comprising:h) a magnetic field component sensing device having a single axis of sensitivity normal to the borehole axis, i) a gravity field component sensing device having a single axis of sensitivity normal to the borehole axis, j) an inertial angular rotation sensing device having an axis of sensitivity along the borehole axis to sense inertial angular motion about the borehole axis, k) a rotary drive mechanism to rotate the said sensing device about the borehole axis or to permit stabilization of the sensitive axes of said sensing devices with respect to a fixed coordinate system, l) control, power and processing circuitry to operate sensing sensing devices and to process the outputs of said sensing devices to obtain data for the operation of said rotary drive mechanism to achieve stabilized component data in a coordinate system that does not rotate with the said measurement apparatus, m) communication circuitry to transmit output data to auxiliary equipment at the surface or in the borehole, and structure to carry and mount the elements cited in a) through e) above, and n) support structure supporting the elements h) through k).
- 6. The method of making magnetic and gravity component measurements in a borehole, including measurements made while measurement apparatus is rotating about one axis extending lengthwise of the borehole, including the steps:a) said apparatus provided to have a magnetic field component sensing device having at least two axes of sensitivity normal to the borehole axis and normal to each other, b) said apparatus provided to have a gravity field component sensing device having at least two axes of sensitivity normal to the borehole axis and normal to each other, c) said apparatus provided to have an inertial angular rotation sensing device having an axis of sensitivity along the borehole axis to sense inertial angular motion about the borehole axis, d) providing control, power and processing circuitry to operate said sensing devices and to process the outputs of said sensing devices to obtain stabilized component data in a coordinate system that does not rotate with the said measurement apparatus, e) and providing and operating communication circuitry to transmit output data to auxiliary equipment at the surface or in the borehole, and f) said inertial-angular rotation sensing device being provided and operated in the form of an inertial-angle-measuring gyroscope.
- 7. The method of making magnetic and gravity component measurements in a borehole, including measurements made while measurement apparatus is rotating about one axis extending lengthwise of the borehole, including the steps:a) said apparatus provided to have a magnetic field component sensing device having at least two axes of sensitivity normal to the borehole axis and normal to each other, b) said apparatus provided to have a gravity field component sensing device having at least two axes of sensitivity normal to the borehole axis and normal to each other, c) said apparatus provided to have an inertial angular rotation sensing device having an axis of sensitivity along the borehole axis to sense inertial angular motion about the borehole axis, d) providing control, power and processing circuitry to operate said sensing devices and to process the outputs of said sensing devices to obtain stabilized component data in a coordinate system that does not rotate with the said measurement apparatus, e) and providing and operating communication circuitry to transit output data to auxiliary equipment at the surface or in the borehole, and f) said inertial angular rotation sensing device being provided and operated in the form of an inertial-angular-acceleration-measuring device.
Parent Case Info
This application is a division of application Ser. No. 10/217,367 filed Aug. 12, 2002, now U.S. Pat. No. 6,651,496, issued on Nov. 25, 2003, which was based on provisional application Ser. No. 60/316,882 filed on Sep. 4, 2001.
US Referenced Citations (10)
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/316882 |
Sep 2001 |
US |