Persistent crying and poor infant sleep are perennial and ubiquitous causes of parent frustration. During the first months of life, babies fuss/cry an average of about 2 hours/day and wake about 2 to 3 times a night. One in six infants are brought to a medical professional for evaluation for sleep/cry issues.
Infant crying and parental exhaustion are often demoralizing and lead to marital conflict, anger towards the baby and impaired job performance. In addition, they are primary triggers for a cascade of serious/fatal health sequelae, including postpartum depression (which affects about 15% of all mothers and about 25 to about 50% of their partners), breastfeeding failure, child abuse and neglect, suicide, SIDS/suffocation, maternal obesity, cigarette smoking, excessive doctor visits, overtreatment of infants with medication, automobile accidents, dysfunctional bonding, and perhaps infant obesity.
Traditional parenting practices have utilized swaddling, rhythmic motion and certain sounds to soothe fussing infants and promote sleep (by reducing sleep latency and increasing sleep efficiency). “Sleep latency” is defined as the length of time between going to bed and falling asleep. “Sleep efficiency” is defined as the ratio of time spent asleep (total sleep time) to the amount of time spent in bed. Swaddling, rhythmic motion and certain sounds imitate elements of a baby's in utero sensory milieu and activate a suite of brainstem reflexes, the calming reflex. Swaddling is a method of snug wrapping with the arms restrained at the baby's sides. This imitates the tight confinement babies experience in the womb. Swaddling also inhibits startling and flailing, which often interrupts sleep and starts/exacerbates crying.
Rhythmic motion replicates the movement fetuses experience when the mother is walking. The motion stimulates the vestibular apparatus in the semicircular canals of the inner ear. A specific, rumbling low-frequency noise imitates the sound created by the turbulence of the blood flowing through the uterine and umbilical arteries. In utero the sound level babies hear has been measured at between 72 and 92 dB. Each baby has a specific and distinctive unique mix of motion and sound that most efficiently activates his or her calming reflex. This preferred mix stays consistent through the first months of life (i.e. babies who respond best to swaddling plus motion continue to respond to those modalities over time and don't abruptly switch their preference to swaddling plus sound).
The calming reflex has several constant characteristics. It is triggered by a stereotypical sensory input; produces a stereotypical behavioral output; demonstrates a threshold phenomenon (i.e. stimuli that are too mild may not be sufficient to activate a response); has a threshold that varies between individuals (i.e. is higher or lower for any given child); the threshold varies by state (e.g. fussing and crying raise the level of stimulation required to exceed threshold and bring about reflex activation).
Since the nominal level of a stimulus needed to reach the triggering threshold of the calming reflex differs from one child to the next, failure to exceed a particular child's threshold level often results in a total absence of a calming response. For example, slow smooth motion may calm one upset infant, yet be too subdued to calm another. Likewise, moderately loud sound may reach the calming threshold for one child, but not another. Once triggered, the stereotypical output of the calming reflex is a reduction of motor output and state. The intensity of sound and motion needed to trigger any particular baby's calming reflex is much greater than the levels needed to keep the calming reflex activated. “State” describes an infant's level of attention to and interaction with the environment. Infants experience six states: quiet sleep, active sleep, drowsiness, quiet alert, fussing and crying.
However, despite the convenience and availability of swaddling, rhythmic motion and sound, these methods fail to calm and promote sleep in a large portion of the infant population because they are not being applied correctly. To reduce infant crying and promote sleep parents often bring the baby into their own bed. However, this is problematic because sharing a bed with a parent has been proven to raise an infant's risk of Sudden Infant Death Syndrome (SIDS) and accidental suffocation (which has been increasing by 14% per year for approximately twenty years). The hazard of bed sharing is further elevated if the parent is extremely fatigued. Like inebriation, exhaustion reduces adult judgment and responsiveness. Over 50% of new parents report sleeping fewer than 6 hours/night, the level demonstrated in adults to simulate a level of attention impairment comparable to inebriation. For this reason, sleeping with an exhausted parent further increases the SIDS risk associated with bed sharing and further increases the suffocation risk (e.g. from accidental overlaying of the parents body over the infant's head).
Other behaviors that exhausted parents engage in to calm crying and promote sleep also directly raise the risk of SIDS and suffocation (e.g. falling asleep with the baby on a couch, placing the baby on the stomach to sleep). Medical authorities recommend parents avoid bed sharing and place sleeping babies in cribs. However, cribs are problematic. Babies sleeping supine in cribs have a higher risk of plagiocephaly (flattening of the skull), which may require expensive and inconvenient medical treatment, and may result in a permanent deformity. In addition, a crib's flat, quiet, nonmoving surface is devoid of the swaddling, rhythmic motion and sound that reduce crying, reduce sleep latency and increase sleep efficiency.
In an attempt to improve infant sleep in cribs, parents have employed several methods (prone sleeping, swaddling, rocking motion, sound), however each is problematic. For example, the prone position is associated with a 3-4 fold increased risk of SIDS. Swaddled babies can roll to the stomach position (prone), which is associated with an 8-19 fold increased risk of SIDS. Rocking motion delivery systems (e.g. swings, cradles and hammocks) all present problems. When sitting in a swing, a baby's head can roll forward and create an airway obstruction. Cradles and hammocks require parents to be the motion-powering energy source, and thus can be done for only a limited part of the sleep period. Sound delivery devices (e.g. fans, air filters, hair driers, sound machines and white noise CDs) may be cumbersome and expensive and the volume, quality or frequency profile of the sound they produce may be excessive or too different from in utero sound to be effective.
Over the past twenty years, attempts have been made to engineer technological methods to create infant calming/sleep devices to deliver sound and motion more conveniently. One such device, a motorized cradle, was designed to rock sleeping babies in an arc along the head-foot axis. This product allowed the cradle to come to rest at an angle, in a partial swing position, which resulted in multiple infant deaths. Another device, designed to simulate a car traveling at about 55 miles per hour, is comprised of 2 parts: a vibrating motor that fixes to the underside of the crib and a speaker that fixes to the sidewall. Still another device has a motorized crib that moves back and forth (about 10 cm in each direction along the head-foot axis; each swing lasting about 1.8 seconds). A sensor activates the device's motor for a limited period of time when it detects the infant's cry. Still other devices have introduced sound machines or mats that vibrate for short periods of time to be placed under the baby to encourage sleeping.
These and other current infant calming/sleep devices deliver fixed and unchangeable motion and sound. This is a problem because each baby has a different mix of sound and motion that most efficiently calms the child and promotes sleep. For example, some babies respond best to swaddling plus motion, others swaddling plus sound. Another problem with fixed motion and sound infant calming/sleep devices is that each baby has a unique level of motion and sound that induces calming and sleep most efficiently. For example, slow rocking may reduce sleep latency for one infant, yet be too subdued to do so in another infant. And, quiet sound may be sufficient to increase sleep efficiency for one baby, but not another. Also, the intensity of sound and motion that a baby needs to trigger the calming reflex is much greater than the levels needed to keep the calming reflex activated.
Still another problem with fixed motion and sound infant calming/sleep devices is that the intensity of the stimuli needed to activate the calming reflex and induce calm and sleep varies substantially as a child's state changes. For example, most fussy babies require more vigorous, jiggly motion (with rapid acceleration-deceleration) and more vigorous sound inputs (as loud as a vacuum cleaner—75 to 80 dB). On the other hand, calm, sleepy babies need less vigorous inputs. Further, current infant calming/sleep devices do not continue all night long; do not deliver optimal sound and motion for triggering the calming reflex; do not increase and decrease their sensory input in a step-wise fashion to vary the sensory input intensity to give the baby the most effective level of stimulation; lack the ability to reduce the sensory input over time to wean a baby off the stimuli as he or she ages.
Therefore, a need exists for an infant calming/sleep system that overcomes or minimizes the above-mentioned problems.
The invention generally is directed to a method for aiding calming and sleep of an infant.
In one embodiment, the invention is an infant calming/sleep-aid device that includes a main moving platform that moves in a reciprocating manner. An actuator drives the reciprocating movement of the main moving platform and a moving head platform linked to the main moving platform reciprocates in response to reciprocating movement of the main moving platform. In a preferred embodiment, at least one of a motion sensing device and a sound sensing device are, respectively, at or proximate to the moving head platform. A logic circuit links at least one of the motion sensing device and the sound sensing device to the main moving platform, whereby signals detected by at least one of the motion sensing device and the sound sensing device cause the logic circuit to modulate the movement of the main moving platform.
In another embodiment, the infant calming/sleep-aid device includes a rigid base and a main movement linkage or bearing extending from the base. The main moving platform is mounted on the main movement linkage or bearing, whereby the main moving platform is movable on the main movement linkage or bearing relative to the base. An actuation assembly that controls movement of the main moving platform about the main movement linkage or bearing relative to the rigid base includes an actuator mounted to the rigid base.
In another embodiment, the invention is a method for aiding the calming of a fussy infant or the sleep of an infant, comprising the step of moving the infant in a reciprocating manner about an axis that intersects the infant at a 90° angle to a major plane of the surface supporting the infant.
In another embodiment, the invention is an adaptive calming and sleep aid method, including the steps of moving an infant in a reciprocating manner about an axis that intersects the infant and is orthogonal to a major plane of the surface supporting the infant. At least one of a sound generated by a sound generating device and a reciprocating movement is modulated in an updating and adaptive matter by a logic circuit-controlled actuation in response to at least one of the sound of the infant and the motion of the platform.
The present invention has many advantages. For example, the system and method of the invention provides for modulation of reciprocating movement of an infant in an updating and adaptive manner. The rapidly accelerating and decelerating reciprocal motion of the device which induces the infant's head to accelerate and decelerate over a short distance in a safe and specifically controlled manner induces the infant's natural calming reflex. The device's specifically designed motion and sound, along with its adaptive control system reduce irritability during awake hours and improve infant sleep (specifically reducing irritability during periods of sleep, reducing sleep latency and increasing sleep efficiency) for babies up to about twelve months old.
In one embodiment of the invention, shown in
In another representative view of infant calming/sleep-aid device 10 of
Reciprocating motion of main moving platform 16 about main support shaft 36 is about an axis that is orthogonal to a major plane of main moving platform 16. Reciprocating motion of main moving platform 16 is driven by actuator assembly 58.
In some embodiments, the body and the head of the infant can be out of phase. For example, at relatively slow speeds, the motion of the head of the infant can be in the same direction as that of the motion of the upper body of the infant. At relatively high speeds, the reciprocal motion of the head of the infant can be in the opposite direction as that of the upper body of the infant. In another embodiment of the invention (not shown), reciprocal motion of the head of the infant can be in some other direction, such as orthogonally relative to the plane of the main support platform.
Actuator assembly 58 includes drive motor 60 mounted to rigid base 32 and gear assembly 62 linked to drive motor 60 and also mounted to rigid base 32. Actuation of drive motor 60 causes rotation gear assembly 62 to drive eccentric drive plate 64 about an axis normal to a major plane of rigid base 32. Eccentric drive plate 64 is linked to swing arm plate 66 of actuator assembly 58 that extends from eccentric drive plate 64 to rod end 68 of screw 70 and is pivotally mounted to rod end 68 of screw 70. Screw 70 is mounted to amplitude modulation assembly 72. Amplitude modulation assembly 72 includes amplitude modulation motor 74, nut 76, mounted on nut frame 78, which swivels on rotation bearing 80 mounted to rigid base 32. The axis of rotation of nut frame 78 on rotation bearing 80 is, like that of eccentric drive plate 64, normal to a major plane of rigid base 32. Actuation of amplitude modulation assembly 72 causes movement of screw 70 along its major longitudinal axis to thereby cause rod end 68 to become more proximate or less proximate to amplitude modulation assembly 72. Arm 82 extends from an end of screw 70 opposite to rod end 68 to elastic actuator catch bracket 84, which is mounted on base 18 of main moving platform 16. Arm 82 extends through an opening defined by elastic actuator catch bracket 84 and is linked to main moving platform 16 by springs 86, 88 held in place on either side of elastic actuator catch bracket 84 by nuts 90, 92, respectively.
Actuation of actuation assembly drive motor 60 causes rotation of eccentric drive plate 64 about an axis normal to a major plane of rigid base 32 which, in turn, causes reciprocal motion of swing arm plate 66 roughly along a major longitudinal axis of swing arm plate 66. Such reciprocal motion of swing arm plate 66 causes rod end 68 to move in a reciprocal motion from side-to-side of a major longitudinal axis of screw 70 which causes reciprocal rotation of nut frame 80 about an axis normal to major plane rigid base 18 and side-to-side motion of the opposite end of screw 70 opposite that of rod end 68 of screw 70. Such side-to-side movements of the opposite end of screw 70 causes reciprocal longitudinal movement of arm 82 extending through the opening defined by elastic actuator catch bracket 84. Resistance to such reciprocal motion of arm 82 causes alternating reciprocal compression and relaxation of springs 86, 88, which thereby causes reciprocal motion of main moving platform 16 about main support shaft 40 linking main moving platform 16 to rigid base 32.
The amplitude of reciprocal motion of main moving platform 16 about main support shaft 40 is controlled by the location of screw 70 relative to amplitude modulation assembly 72. For example, if actuation of amplitude modulation assembly 70 causes rod end 68 to become more proximate to amplitude modulation assembly 70, the side-to-side motion of the opposite end of screw 70 will become greater, thereby causing the amplification of reciprocal motion of main moving platform 16 about main support shaft 40 to increase. Conversely, actuation of amplitude modulation assembly 72 to cause rod end 68 of screw 70 to become more remote from amplitude modulation assembly 72 will diminish the side-to-side motion of opposite end of screw 70, thereby reducing the amplitude of reciprocal motion of main moving platform 16 about main support shaft 40.
Reciprocal motion of main moving platform 16 causes a delayed reciprocal motion of moving head platform 44 about head rotation bearing 46. The reciprocal motion of moving head platform 44, although delayed, has greater amplitude about main support shaft 40 because of the rotation of moving head platform 44 about head rotation bearing 46. However, the amplitude of reciprocal motion of moving head platform 44 about head rotation bearing 46 is dampened by springs 56. Nevertheless, the reciprocal motion of main moving platform 16 and moving head platform 44 about main support shaft 40 is measured by motion sensing device 50 at moving head platform 44. Measurements by motion sensing device 50 are relayed back to control panel 34 and rigid base control electronics 36 which, alone, or optionally, in combination with external computer software programming, modulate actuator assembly drive motor 60 and amplitude modulation motor 74. Motion detection by motion sensing device 50 can also, optionally, modulate computer programming to affect selection and volume of sounds emitted by speakers 52. Microphones 38, in addition, or optionally, receive acoustical signals that can be fed back through rigid base control electronics 36 or/and control panel 34 to software, either on-board or remote from infant calming/sleep-aid device 10, that further modulates actuator assembly drive motor 60, amplitude modulation motor 74 and/or sounds emitted from speakers 52. Algorithms associated with modulation of actuator assembly drive motor 60, amplitude modulation motor 74 and speakers 52 will be more fully discussed below.
In one embodiment, the device allows for a reciprocating motion at 0.5-1.5 cps of ˜2″ excursions, but if the baby is fussy the device responds by delivering a smaller excursion (e.g. <1″) at a faster rate (˜2-4.5 cps). This fast and small motion delivers the specific degree of acceleration-deceleration force to the semicircular canals in the vestibular mechanism of the inner ear that is required to activate the calming reflex.
Also, the reciprocating motion typically has a maximum amplitude of less than one inch during the rapid phase of motion (˜2-4.5 cps), further ensuring safety of the infant.
In another embodiment, shown in
Actuation of drive motor 104 causes reciprocal longitudinal movement of push/pull rod 110 through the opening defined by elastic actuator catch bracket 112 and translates that reciprocal movement into reciprocal motion of main moving platform 16 about main rotation bearing 42, as does reciprocal motion of arm 82 through elastic actuator catch bracket 84 of the embodiment shown in
As shown
Data received from accelerometer 123 is processed by motion analysis module 132 to thereby modulate the actuator assembly through motion generation module 128 and/or audio generation module 130 to thereby control the actuators assemblies or speakers, respectively. In addition, motion analysis module 132 controls status light module 134 to alert, through the status lights, whether motions of the main moving platform and the head platform are nominal or not nominal, or alternatively, through feedback, soothing or not soothing to the infant. “Nominal”, as that term is defined herein, refers to any and all motion for which the filtered acceleration signal does not exceed a specified, or predetermined maximum motion threshold for a specific length of time. The process by which the motion analysis module classifies motion as nominal or not nominal is detailed in
In one embodiment the rate of the reciprocating rotation is in a range of between about two and about four and one-half cycles per second and an amplitude of the reciprocating motion at a center of a head of the infant is in a range of between about 0.2 inches and about 1.0 inches. In anther embodiment, the rate of reciprocating motion is in a range of between about 0.5 and about 1.5 cycles per second and an amplitude of the reciprocating rotation at a center of the head of the infant is in a range of between about 0.5 inches and about 2.0 inches.
The software weans the infant off the device by incorporating the infant age as a variable used by the behavior state module control system, wherein modulation is further controlled by at least one of the weight of the infant, the age of the infant, and the duration of the detected sounds made by the infant.
Referring to
Motion analysis module 132, shown and represented in more detail in
As can be seen in
Audio generation module 130, represented in
At baseline, the audio generator will produce an output of a low-pitch, rumbling sound at about 65 dB to about 70 dB. Upon receipt of a new command from crying detection module 124 (
Two variations of motion generation module are represented in
In an alternative embodiment of motion generation module 128, shown in
Two versions of the infant calming/sleep-aid device as shown in
The device worked in the following way:
The baby was placed in a swaddling sack (with arms in or out) attached to the mattress of the device and securely laid on his/her back. The device produced a baseline level of low pitched, rumbling noise at approximately 65 dB and baseline motion of a smooth, side-to-side rocking (2 inch excursions to either side). When the baby cried for more than ˜10 seconds, the device responded by playing a specially engineered sound that was harsher, higher pitched, more multi-frequency (75-80 dB) to mimic the intensity of the sound that the baby heard inside the mother's uterus prenatally. (This sound can be measured in situ at up to 92 dB.) If the crying continued another ˜10 seconds (despite the sound), the motion accelerated to a faster, more jiggly action of the head (2-4.5 cps, but no more than 1 inch head excursions to either side). The combination of fast movements delivered with sufficient vigor, the harsh loud sound, and the secure swaddling sack all worked together to activate the calming reflex, in the majority of irritable babies and inducing either calmness or sleep. The device responded to the baby's cry in a step-wise fashion-gradually increasing sound and then motion-to a maximal level. Once the baby was calmed the motion and sound of the device was gradually reduced in a specific, step-wise fashion back to the baseline activity.
The device was tested on over twenty babies (12 girls, 10 boys) were in the device. The babies ranged from 5 weeks to 6 months of age. Their weights ranged from 8 pounds to 18 pounds.
The subjects were tested to record their resting and sleeping in the device. The tests usually began when the baby was hungry and tired (immediately before their usual naptime). The parents were introduced to the device and given a brief demonstration of how it worked. We recorded when the baby last fed and napped and then put the baby in the swaddling sack and placed the infant in the device. We observed and videotaped the session. In addition, we collected data from 3 accelerometers and a device-mounted camera to detect the vigor of activity and measure the exact excursions of the baby's head. We started each test with the device set at its lowest level for sound and motion. We observed as the device responded to the baby's cries. We allowed the device to quickly advance through each of its stages as the cries escalated. Once the baby was calmed, the device's motion would slow, in a stepwise fashion, and the loudness and pitch of the sound would decrease, in a stepwise fashion. We repeated this format 2-4 times during our sessions with each of the subjects. The first set of studies was done using a prototype with a dual motion actuator and the second set of studies was done with a prototype with a single motion actuator.
As shown on the attached table, during twenty-one tests, 19 babies were either significantly calmed or put to sleep by our device (absence of calming was due to hunger). Most calming and sleep occurred within 2 minutes of placing the baby in the device.
We hypothesized that a device could be built that responded to the baby's needs,
such that an infant's upsets would be soothed by vigorous stimulation to activate the calming reflex, followed by a diminution of those stimuli to help keep the calming reflex turned on and sustain the baby in a calm state and/or promote sleep (i.e. reducing sleep latency and increasing sleep efficiency.
(“Sleep latency” is defined as the length of time between going to bed and falling asleep. “Sleep efficiency” is defined as the ratio of time spent asleep−total sleep time−to the amount of time spent in bed.)
It was possible to promote infant calming and sleep through the use of swaddling plus very specific sound and motion stimuli to activate the calming reflex.
While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
The relevant teachings of all references cited herein are incorporated by reference in their entirety.
This application claims the benefit of U.S. Provisional Application No. 61/549,627, filed on Oct. 20, 2011. The entire teachings of the above application are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/061069 | 10/19/2012 | WO | 00 | 4/21/2014 |
Number | Date | Country | |
---|---|---|---|
61549627 | Oct 2011 | US |