Infant calming/sleep-aid device and method of use

Information

  • Patent Grant
  • 10827851
  • Patent Number
    10,827,851
  • Date Filed
    Tuesday, February 23, 2016
    8 years ago
  • Date Issued
    Tuesday, November 10, 2020
    4 years ago
Abstract
An infant calming/sleep-aid device includes a main moving platform that moves in a reciprocating manner and an actuator that drives the reciprocating movement of the main moving platform. The moving head platform is linked to the main moving platform and at least one of a motion sensing device and a sound sensing device are either at or proximate to a moving head platform that is pivotally linked to the main moving platform. A logic circuit links at least one of the motion and sound sensing devices of the infant calming/sleep aid-device to the main moving platform whereby signals detected modulate movement of the main moving platform. A sound generating device is linked to the logic circuit.
Description
BACKGROUND

Persistent crying and poor infant sleep are perennial and ubiquitous causes of parent frustration. During the first months of life, babies fuss/cry an average of about 2 hours/day and wake about 2 to 3 times a night. One in six infants are brought to a medical professional for evaluation for sleep/cry issues.


Infant crying and parental exhaustion are often demoralizing and lead to marital conflict, anger towards the baby and impaired job performance. In addition, they are primary triggers for a cascade of serious/fatal health sequelae, including postpartum depression (which affects about 15% of all mothers and about 25 to about 50% of their partners), breastfeeding failure, child abuse and neglect, suicide, SIDS/suffocation, maternal obesity, cigarette smoking, excessive doctor visits, overtreatment of infants with medication, automobile accidents, dysfunctional bonding, and perhaps infant obesity.


Traditional parenting practices have utilized swaddling, rhythmic motion and certain sounds to soothe fussing infants and promote sleep (by reducing sleep latency and increasing sleep efficiency). “Sleep latency” is defined as the length of time between going to bed and falling asleep. “Sleep efficiency” is defined as the ratio of time spent asleep (total sleep time) to the amount of time spent in bed. Swaddling, rhythmic motion and certain sounds imitate elements of a baby's in utero sensory milieu and activate a suite of brainstem reflexes, the calming reflex. Swaddling is a method of snug wrapping with the arms restrained at the baby's sides. This imitates the tight confinement babies experience in the womb. Swaddling also inhibits startling and flailing, which often interrupts sleep and starts/exacerbates crying.


Rhythmic motion replicates the movement fetuses experience when the mother is walking. The motion stimulates the vestibular apparatus in the semicircular canals of the inner ear. A specific, rumbling low-frequency noise imitates the sound created by the turbulence of the blood flowing through the uterine and umbilical arteries. In utero the sound level babies hear has been measured at between 72 and 92 dB. Each baby has a specific and distinctive unique mix of motion and sound that most efficiently activates his or her calming reflex. This preferred mix stays consistent through the first months of life (i.e. babies who respond best to swaddling plus motion continue to respond to those modalities over time and don't abruptly switch their preference to swaddling plus sound).


The calming reflex has several constant characteristics. It is triggered by a stereotypical sensory input; produces a stereotypical behavioral output; demonstrates a threshold phenomenon (i.e. stimuli that are too mild may not be sufficient to activate a response); has a threshold that varies between individuals (i.e. is higher or lower for any given child); the threshold varies by state (e.g. fussing and crying raise the level of stimulation required to exceed threshold and bring about reflex activation).


Since the nominal level of a stimulus needed to reach the triggering threshold of the calming reflex differs from one child to the next, failure to exceed a particular child's threshold level often results in a total absence of a calming response. For example, slow smooth motion may calm one upset infant, yet be too subdued to calm another. Likewise, moderately loud sound may reach the calming threshold for one child, but not another. Once triggered, the stereotypical output of the calming reflex is a reduction of motor output and state. The intensity of sound and motion needed to trigger any particular baby's calming reflex is much greater than the levels needed to keep the calming reflex activated. “State” describes an infant's level of attention to and interaction with the environment. Infants experience six states: quiet sleep, active sleep, drowsiness, quiet alert, fussing and crying.


However, despite the convenience and availability of swaddling, rhythmic motion and sound, these methods fail to calm and promote sleep in a large portion of the infant population because they are not being applied correctly. To reduce infant crying and promote sleep parents often bring the baby into their own bed. However, this is problematic because sharing a bed with a parent has been proven to raise an infant's risk of Sudden Infant Death Syndrome (SIDS) and accidental suffocation (which has been increasing by 14% per year for approximately twenty years). The hazard of bed sharing is further elevated if the parent is extremely fatigued. Like inebriation, exhaustion reduces adult judgment and responsiveness. Over 50% of new parents report sleeping fewer than 6 hours/night, the level demonstrated in adults to simulate a level of attention impairment comparable to inebriation. For this reason, sleeping with an exhausted parent further increases the SIDS risk associated with bed sharing and further increases the suffocation risk (e.g. from accidental overlaying of the parents body over the infant's head).


Other behaviors that exhausted parents engage in to calm crying and promote sleep also directly raise the risk of SIDS and suffocation (e.g. falling asleep with the baby on a couch, placing the baby on the stomach to sleep). Medical authorities recommend parents avoid bed sharing and place sleeping babies in cribs. However, cribs are problematic. Babies sleeping supine in cribs have a higher risk of plagiocephaly (flattening of the skull), which may require expensive and inconvenient medical treatment, and may result in a permanent deformity. In addition, a crib's flat, quiet, nonmoving surface is devoid of the swaddling, rhythmic motion and sound that reduce crying, reduce sleep latency and increase sleep efficiency.


In an attempt to improve infant sleep in cribs, parents have employed several methods (prone sleeping, swaddling, rocking motion, sound), however each is problematic. For example, the prone position is associated with a 3-4 fold increased risk of SIDS. Swaddled babies can roll to the stomach position (prone), which is associated with an 8-19 fold increased risk of SIDS. Rocking motion delivery systems (e.g. swings, cradles and hammocks) all present problems. When sitting in a swing, a baby's head can roll forward and create an airway obstruction. Cradles and hammocks require parents to be the motion-powering energy source, and thus can be done for only a limited part of the sleep period. Sound delivery devices (e.g. fans, air filters, hair driers, sound machines and white noise CDs) may be cumbersome and expensive and the volume, quality or frequency profile of the sound they produce may be excessive or too different from in utero sound to be effective.


Over the past twenty years, attempts have been made to engineer technological methods to create infant calming/sleep devices to deliver sound and motion more conveniently. One such device, a motorized cradle, was designed to rock sleeping babies in an arc along the head-foot axis. This product allowed the cradle to come to rest at an angle, in a partial swing position, which resulted in multiple infant deaths. Another device, designed to simulate a car traveling at about 55 miles per hour, is comprised of 2 parts: a vibrating motor that fixes to the underside of the crib and a speaker that fixes to the sidewall. Still another device has a motorized crib that moves back and forth (about 10 cm in each direction along the head-foot axis; each swing lasting about 1.8 seconds). A sensor activates the device's motor for a limited period of time when it detects the infant's cry. Still other devices have introduced sound machines or mats that vibrate for short periods of time to be placed under the baby to encourage sleeping.


These and other current infant calming/sleep devices deliver fixed and unchangeable motion and sound. This is a problem because each baby has a different mix of sound and motion that most efficiently calms the child and promotes sleep. For example, some babies respond best to swaddling plus motion, others swaddling plus sound. Another problem with fixed motion and sound infant calming/sleep devices is that each baby has a unique level of motion and sound that induces calming and sleep most efficiently. For example, slow rocking may reduce sleep latency for one infant, yet be too subdued to do so in another infant. And, quiet sound may be sufficient to increase sleep efficiency for one baby, but not another. Also, the intensity of sound and motion that a baby needs to trigger the calming reflex is much greater than the levels needed to keep the calming reflex activated.


Still another problem with fixed motion and sound infant calming/sleep devices is that the intensity of the stimuli needed to activate the calming reflex and induce calm and sleep varies substantially as a child's state changes. For example, most fussy babies require more vigorous, jiggly motion (with rapid acceleration-deceleration) and more vigorous sound inputs (as loud as a vacuum cleaner—75 to 80 dB). On the other hand, calm, sleepy babies need less vigorous inputs. Further, current infant calming/sleep devices do not continue all night long; do not deliver optimal sound and motion for triggering the calming reflex; do not increase and decrease their sensory input in a step-wise fashion to vary the sensory input intensity to give the baby the most effective level of stimulation; lack the ability to reduce the sensory input over time to wean a baby off the stimuli as he or she ages.


Therefore, a need exists for an infant calming/sleep system that overcomes or minimizes the above-mentioned problems.


SUMMARY OF THE INVENTION

The invention generally is directed to a method for aiding calming and sleep of an infant.


In one embodiment, the invention is an infant calming/sleep-aid device that includes a main moving platform that moves in a reciprocating manner. An actuator drives the reciprocating movement of the main moving platform and a moving head platform linked to the main moving platform reciprocates in response to reciprocating movement of the main moving platform. In a preferred embodiment, at least one of a motion sensing device and a sound sensing device are, respectively, at or proximate to the moving head platform. A logic circuit links at least one of the motion sensing device and the sound sensing device to the main moving platform, whereby signals detected by at least one of the motion sensing device and the sound sensing device cause the logic circuit to modulate the movement of the main moving platform.


In another embodiment, the infant calming/sleep-aid device includes a rigid base and a main movement linkage or bearing extending from the base. The main moving platform is mounted on the main movement linkage or bearing, whereby the main moving platform is movable on the main movement linkage or bearing relative to the base. An actuation assembly that controls movement of the main moving platform about the main movement linkage or bearing relative to the rigid base includes an actuator mounted to the rigid base.


In another embodiment, the invention is a method for aiding the calming of a fussy infant or the sleep of an infant, comprising the step of moving the infant in a reciprocating manner about an axis that intersects the infant at a 90° angle to a major plane of the surface supporting the infant.


In another embodiment, the invention is an adaptive calming and sleep aid method, including the steps of moving an infant in a reciprocating manner about an axis that intersects the infant and is orthogonal to a major plane of the surface supporting the infant. At least one of a sound generated by a sound generating device and a reciprocating movement is modulated in an updating and adaptive matter by a logic circuit-controlled actuation in response to at least one of the sound of the infant and the motion of the platform.


The present invention has many advantages. For example, the system and method of the invention provides for modulation of reciprocating movement of an infant in an updating and adaptive manner. The rapidly accelerating and decelerating reciprocal motion of the device which induces the infant's head to accelerate and decelerate over a short distance in a safe and specifically controlled manner induces the infant's natural calming reflex. The device's specifically designed motion and sound, along with its adaptive control system reduce irritability during awake hours and improve infant sleep (specifically reducing irritability during periods of sleep, reducing sleep latency and increasing sleep efficiency) for babies up to about twelve months old.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of one embodiment of the infant calming/sleep-aid device of the invention, with a depiction of an infant asleep inside the device.



FIG. 2 is a perspective view of the infant calming/sleep-aid device of FIG. 1 with swaddle fastening straps and without an enclosure.



FIG. 3 is a perspective view of the infant calming/sleep-aid device of FIG. 2, showing apparatus beneath the main moving platform in broken lines.



FIG. 4 is a plan view of the apparatus supporting the main moving platform of the infant calming/sleep-aid device of FIG. 3, with the rigid base and main moving platform shown in outline.



FIG. 5 is a side view of the infant calming/sleep-aid device shown in FIG. 4, taken along line 5-5.



FIG. 6 is a side view of the infant calming/sleep-aid device shown in FIG. 4.



FIG. 7 is a perspective view of yet another embodiment of the calming/sleep-aid device of the invention, showing components of the device beneath the main moving platform in broken lines.



FIG. 8 is a plan view of the apparatus supporting the main moving platform of the calming/sleep-aid device of FIG. 7, with the rigid base and main moving platform shown in outline.



FIG. 9 is a side view of the embodiment of the device shown in FIG. 7.



FIG. 10 is a schematic representation of one embodiment of a software control system of the invention, along with inputs and outputs of the software control system.



FIG. 11 is a schematic representation of one embodiment of a crying detection module of the invention.



FIG. 12 is a schematic representation of one embodiment of a motion analysis module of the invention.



FIG. 13 is a schematic representation of one embodiment of a behavior state machine module of the invention.



FIG. 14 is a schematic representation of one embodiment of an audio generation module of the invention.



FIG. 15 is a schematic representation of a motion generation module of the invention.



FIG. 16 is a schematic representation of a motion generation module of the invention.





DETAILED DESCRIPTION OF THE INVENTION

In one embodiment of the invention, shown in FIGS. 1 through 6, infant calming/sleep-aid device 10 includes enclosure 12 about infant 14. Enclosure 12 surrounds main moving platform 16. As can be seen in FIG. 2, main moving platform 16 includes base 18, moving head platform 19, padding 20 and cloth covering 22. Swaddle fastening straps 24 extend from main moving platform 16 for securing infant 14 in suitable swaddling clothes 26. Head pad insert 28 supports the head of infant 14. Preferably, head pad insert 28 includes a gel in order to reduce the risk of plagiocephaly. Handles 30 extend laterally from main moving platform 16. Main moving platform 16 is supported and rotatable about a main support shaft (not shown) that is fixed to rigid base 32. Control panel 34, which includes speed control knobs 35, status lights 37 and controls 39 for microphone 38. Rigid base control electronics 36, include drive electronics of infant calming/sleep-aid device 10.


In another representative view of infant calming/sleep-aid device 10 of FIG. 2, shown in FIG. 3, main moving platform 16 is supported by main support shaft 40 at main rotation bearing 42. Moving head platform 19 supports head pad insert 28 and is rotatable about head rotation bearing 46 through arm 48 extending between head rotation bearing 46 and moving head platform 19. Motion sensing device 50, such as an accelerometer, at moving head platform 44 detects motion of moving head platform 19. Microphones 38 at moving head platform 19 detect sound emitted by the infant (not shown) when supported by infant aid sleep device 10. Speakers 52, supported by brackets 54 mounted on rigid base 18, are located directly beneath moving head platform 19. Springs 56 linking either side of moving head platform 19 to main moving platform 16 dampen motion of moving head platform 19 relative to main moving platform 16 during reciprocal motion of moving head platform 19 induced by reciprocating motion of main moving platform 16.


Reciprocating motion of main moving platform 16 about main support shaft 40 is about an axis that is orthogonal to a major plane of main moving platform 16. Reciprocating motion of main moving platform 16 is driven by actuator assembly 58.


In some embodiments, the body and the head of the infant can be out of phase. For example, at relatively slow speeds, the motion of the head of the infant can be in the same direction as that of the motion of the upper body of the infant. At relatively high speeds, the reciprocal motion of the head of the infant can be in the opposite direction as that of the upper body of the infant. In another embodiment of the invention (not shown), reciprocal motion of the head of the infant can be in some other direction, such as orthogonally relative to the plane of the main support platform.


Actuator assembly 58 includes drive motor 60 mounted to rigid base 32 and gear assembly 62 linked to drive motor 60 and also mounted to rigid base 32. Actuation of causes rotation gear assembly 62 to drive eccentric drive plate 64 about an axis normal to a major plane of rigid base 32. Eccentric drive plate 64 is linked to swing arm plate 66 of actuator assembly 58 that extends from eccentric drive plate 64 to rod end 68 of screw 70 and is pivotally mounted to rod end 68 of screw 70. Screw 70 is mounted to amplitude modulation assembly 72. Amplitude modulation assembly 72 includes amplitude modulation motor 74, nut 76, mounted on nut frame 78, which swivels on rotation bearing 80 mounted to rigid base 32. The axis of rotation of nut frame 78 on rotation bearing 80 is, like that of eccentric drive plate 64, normal to a major plane of rigid base 32. Actuation of amplitude modulation assembly 72 causes movement of screw 70 along its major longitudinal axis to thereby cause rod end 68 to become more proximate or less proximate to amplitude modulation assembly 72. Arm 82 extends from an end of screw 70 opposite to rod end 68 to elastic actuator catch bracket 84, which is mounted on base 18 of main moving platform 16. Arm 82 extends through an opening defined by elastic actuator catch bracket 84 and is linked to main moving platform 16 by springs 86, 88 held in place on either side of elastic actuator catch bracket 84 by nuts 90, 92 respectively.


Actuation of actuation assembly drive motor 60 causes rotation of eccentric drive plate 64 about an axis normal to a major plane of rigid base 32 which, in turn, causes reciprocal motion of swing arm plate 66 roughly along a major longitudinal axis of swing arm plate 66. Such reciprocal motion of swing arm plate 66 causes rod end 68 to move in a reciprocal motion from side-to-side of a major longitudinal axis of screw 70 which causes reciprocal rotation of nut frame 78 about an axis normal to major plane rigid base 18 and side-to-side motion of the opposite end of screw 70 opposite that of rod end 68 of screw 70. Such side-to-side movements of the opposite end of screw 70 causes reciprocal longitudinal movement of arm 82 extending through the opening defined by elastic actuator catch bracket 84. Resistance to such reciprocal motion of arm 82 causes alternating reciprocal compression and relaxation of springs 86, 88, which thereby causes reciprocal motion of main moving platform 16 about main support shaft 40 linking main moving platform 16 to rigid base 32.


The amplitude of reciprocal motion of main moving platform 16 about main support shaft 40 is controlled by the location of screw 70 relative to amplitude modulation assembly 72. For example, if actuation of amplitude modulation assembly 72 causes rod end 68 to become more proximate to amplitude modulation assembly 72, the side-to-side motion of the opposite end of screw 70 will become greater, thereby causing the amplification of reciprocal motion of main moving platform 16 about main support shaft 40 to increase. Conversely, actuation of amplitude modulation assembly 72 to cause rod end 68 of screw 70 to become more remote from amplitude modulation assembly 72 will diminish the side-to-side motion of opposite end of screw 70, thereby reducing the amplitude of reciprocal motion of main moving platform 16 about main support shaft 40.


Reciprocal motion of main moving platform 16 causes a delayed reciprocal motion of moving head platform 44 about head rotation bearing 46. The reciprocal motion of moving head platform 44, although delayed, has greater amplitude about main support shaft 40 because of the rotation of moving head platform 44 about head rotation bearing 46. However, the amplitude of reciprocal motion of moving head platform 44 about head rotation bearing 46 is dampened by springs 56. Nevertheless, the reciprocal motion of main moving platform 16 and moving head platform 44 about main support shaft 40 is measured by motion sensing device 50 at moving head platform 44. Measurements by motion sensing device 50 are relayed back to control panel 34 and rigid base control electronics 36 which, alone, or optionally, in combination with external computer software programming, modulate actuator assembly drive motor 60 and amplitude modulation motor 74. Motion detection by motion sensing device 50 can also, optionally, modulate computer programming to affect selection and volume of sounds emitted by speakers 52. Microphones 38, in addition, or optionally, receive acoustical signals that can be fed back through rigid base control electronics 36 or/and control panel 34 to software, either on-board or remote from infant calming/sleep-aid device 10, that further modulates actuator assembly drive motor 60, amplitude modulation motor 74 and/or sounds emitted from speakers 52. Algorithms associated with modulation of actuator assembly drive motor 60, amplitude modulation motor 74 and speakers 52 will be more fully discussed below.


In one embodiment, the device allows for a reciprocating motion at 0.5-1.5 cps of 2″ excursions, but if the baby is fussy the device responds by delivering a smaller excursion (e.g. <1″) at a faster rate (2-4.5 cps). This fast and small motion delivers the specific degree of acceleration-deceleration force to the semicircular canals in the vestibular mechanism of the inner ear that is required to activate the calming reflex.


Also, the reciprocating motion typically has a maximum amplitude of less than one inch during the rapid phase of motion (2-4.5 cps), further ensuring safety of the infant.


In another embodiment, shown in FIGS. 7 through 9 calming/sleep-aid device 100 includes actuator assembly 102, which substitutes for actuator assembly 58 of the embodiment shown in FIGS. 2 through 6. Specifically, as shown in FIGS. 7 through 9, drive motor 104 of calming/sleep-aid device 100 is linked to bearing 106, which is, in turn, leads to the eccentric drive plate 108. Eccentric drive plate 108 is connected to push/pull rod 110 that extends through an opening defined by elastic actuator catch bracket 112. Springs 114 about push/pull rod 110 link push/pull rod 110 to main moving platform 16 through elastic actuator catch bracket 112. Springs 114 are series elastic actuator push-springs; they transfer force from actuator assembly 102 to catch bracket 112. Balancing dampers 115 beneath push/pull rod 110 dampen the motion of moving platform 16. Springs 117 are pull-balancing springs; they pull on bracket 112 in parallel with balancing dampers 115 to create the desired smooth sinusoidal motion of moving platform 16 at low frequencies and the rapid accelerating motion at high frequencies.


Actuation of drive motor 104 causes reciprocal longitudinal movement of push/pull rod 110 through the opening defined by elastic actuator catch bracket 112 and translates that reciprocal movement into reciprocal motion of main moving platform 16 about main rotation bearing 42, as does reciprocal motion of arm 82 through elastic actuator catch bracket 84 of the embodiment shown in FIGS. 2 through 6. Other components of the embodiments shown in FIGS. 7 through 9 operate in the same manner as those of infant calming/sleep-aid device 10 represented in FIGS. 2 through 6.


As shown FIG. 10, software control system 120, processes inputs from microphones and generates outputs to speakers represented in FIGS. 2 through 9, also processes inputs from speed control knob 121, also shown in FIGS. 2 through 9, and from a three-axis USB accelerometer 123, represented as motion sensing device in FIGS. 2 through 9. In addition, software control system 120 generates an output signal to multichannel USB motor controller 122, which controls actuator assembly drive motor 60 (not shown) and amplitude modulation motor 74 (not shown) or, alternatively, as shown in FIGS. 7 through 9, drive motor 104 (not shown). Status lights, such as tricolor USB DEs 121, are represented as lights 37 in FIGS. 2 through 9. Modules of software control system 120 can be located on-board or remotely from the embodiments of infant calming/sleep-aid devices 10, 100 shown in FIGS. 2 through 9. The modules include a crying detection module 124 that receives data from microphones 125, represented at microphones 38 in FIGS. 2 through 9, and relays to a behavior state machine module 126 whether or not an infant on infant calming/sleep-aid device is crying or not crying. Depending upon the input received by behavior state machine module 126, output signals will control motion generation module 128 or audio generation module 130. Actuation of motion generation module 128 will modulate the actuator assemblies of the embodiments shown in FIGS. 2 through 9. Alternatively, or in addition, output signals from behavior state machine module 126 will modulate generation of audio data output from audio generation module 130 to speakers 131, represented as speakers 52 in FIGS. 2 through 9.


Data received from accelerometer 123 is processed by motion analysis module 132 to thereby modulate the actuator assembly through motion generation module 128 and/or audio generation module 130 to thereby control the actuators assemblies or speakers, respectively. In addition, motion analysis module 132 controls status light module 134 to alert, through the status lights, whether motions of the main moving platform and the head platform are nominal or not nominal, or alternatively, through feedback, soothing or not soothing to the infant. “Nominal”, as that term is defined herein, refers to any and all motion for which the filtered acceleration signal does not exceed a specified, or predetermined maximum motion threshold for a specific length of time. The process by which the motion analysis module classifies motion as nominal or not nominal is detailed in FIG. 12 and in the accompanying text below.


In one embodiment the rate of the reciprocating rotation is in a range of between about two and about four and one-half cycles per second and an amplitude of the reciprocating motion at a center of a head of the infant is in a range of between about 0.2 inches and about 1.0 inches. In anther embodiment, the rate of reciprocating motion is in a range of between about 0.5 and about 1.5 cycles per second and an amplitude of the reciprocating rotation at a center of the head of the infant is in a range of between about 0.5 inches and about 2.0 inches.


The software weans the infant off the device by incorporating the infant age as a variable used by the behavior state module control system, wherein modulation is further controlled by at least one of the weight of the infant, the age of the infant, and the duration of the detected sounds made by the infant.


Referring to FIG. 11, crying detection module 124 receives audio data from the microphones of infant calming/sleep-aid devices 10,100, which is processed through digital band-pass filter 136 to generate filtered audio data. Energy-based threshold 138 receives filtered audio data to determine whether the audio energy is over threshold or under threshold. Time-based filter 140 receives data from energy-based threshold 138 to provide an indication as to whether the infant is crying or not crying. The information, as discussed above with respect to software control system 120 (FIG. 10), is received from crying detection module 124 by behavior state machine module 126 that will then modulate either motion generation module 128 or audio generation module 130.


Motion analysis module 132, shown and represented in more detail in FIG. 12, receives a signal from the motion sensing device of infant calming/sleep-aid devices 10, 100, at digital filter bank 142. Digital filter bank 142 filters the signal to generate a filtered motion amplitude estimate that is used as input to motion generation module 128 (FIG. 10). In addition, the filtered motion amplitude estimate passes through a range check 144 to determine whether the motion is within a soothing or known soothing range. Time-based filter 146 receives data from range check 144 to provide an indication as to whether a motion is soothing or not soothing. Filtered motion sensor, or accelerometer, data from digital filter bank 142 also passes through threshold crossing-based motion frequency estimator 148. Outputted data from threshold-crossing-based motion frequency estimator 148 passes through range check 144 for indicating whether the motion is or is not soothing, and also provides input to motion generation module 128 (FIG. 10). Filtered accelerometer data from digital filter bank 142 also is processed to determine whether or not the acceleration exceeds a specific maximum motion threshold 150 and, depending on the result, processes that data through time-based filter 152 to provide an indication as to whether the motion is nominal or not nominal. This indication as to whether the motion is nominal or not nominal is used as input to motion generation module 128 (FIG. 10), and is additionally used to control status lights 37 (FIG. 2) via status light module 134 (FIG. 10).


As can be seen in FIG. 13, behavior state machine module 126 receives information from crying detection module 124 (FIG. 11) as to whether the infant is in a state of crying or not crying. This information is used by the state machine's state transition rules 156 to select an active state from a library of states 154, thereby outputting a desired motion state, a desired audio track and/or desired volume/equalizer settings to audio generation module 130 (FIG. 10).


Audio generation module 130, represented in FIG. 14, receives signals of a desired audio track and desired volume/equalizer settings from behavior state machine module 126 (FIG. 10) and signals of motion analysis, specifically, whether the motion is nominal or not nominal, from motion analysis module 132 (FIG. 10). Audio generation module 130 includes a library of “soothing” audio tracks 160, a digital equalizer/volume control 162 and alarm sound 164. Upon receipt of a new command from motion analysis module 132 (FIG. 10), audio generation module 130 will cross-fade to a desired audio track and volume, and crossfade to desired equalizer settings. If the motion is not nominal, then an alarm signal will be output to override the audio signal with an alarm. The audio signal from the audio generation module is output to the speakers of infant calming/sleep-aid device 10, 100.


At baseline, the audio generator will produce an output of a low-pitch, rumbling sound at about 65 dB to about 70 dB. Upon receipt of a new command from crying detection module 124 (FIG. 11), audio generation module 130 will cross-fade to a more high pitched audio track and louder volume, at about 75 dB to about 80 dB.


Two variations of motion generation module are represented in FIGS. 15 and 16. In the first embodiment, shown in FIG. 12, motion generation module 128 receives a desired motion state input from behavior state machine module 126 (FIG. 10), a motion frequency/amplitude signal from motion analysis module 132 (FIG. 10), a desired system speed signal from speed control knob 121 (FIG. 10), and a signal as to whether a motion is nominal or is not nominal. The “desired system speed” is the setting of speed control knob 121, whereby the operator can limit the motions allowed by infant calming/sleep-aid device 10, 100. The desired motion state signal goes to lookup within motion generation module 128, which outputs a reference motor command based on a desired motion state. If the currently-active motor commands are close to the reference motor commands, then the motor commands are actively adjusted within an allowable envelope via a gradient ascent based on observed motion frequency and amplitude. If the current motor commands are not close to the reference motor commands, then the motion generation module will set desired motor commands via path planning in a motor command space. “Path planning” transitions motor settings to desired motor settings by inserting intermediate motor settings as necessitated by nest dynamics to ensure that motion stays in a desirable range during transition. If the desired system speed is less than “full,” then a signal is sent to adjust the desired motor commands in proportion to the desired system speed. “Full” is the fully-on position of the knob, and means that infant calming/sleep-aid device 10, 100 is not being limited by this knob and is allowed to perform all of the motions it determines to be relevant. If speed control knob 121 is turned down from “full,” motions of infant calming/sleep-aid device 10, 100 start to become constrained, so speed control knob 121 acts as an operator to override the normal motion behavior of infant calming/sleep-aid device 10, 100. If not, then a comparison is made as to whether the observed motion is nominal. If it is not, then motor output is disabled. If it is nominal, then an output signal of desired motor commands is given to target motor positions and speeds of the actuator of the multichannel USB motor controller.


In an alternative embodiment of motion generation module 128, shown in FIG. 16, there is no receipt by the module of signals related to motion frequency and amplitude. Therefore, it is only necessary to set desired motor commands by interpolating from a current command based on a look up table of motor commands based on a desired motion state in response to receiving a signal with respect to the desired motion state. All of the components of motion generation are the same as represented in FIG. 15.


EXPERIMENTAL SECTION
Materials

Two versions of the infant calming/sleep-aid device as shown in FIGS. 2 through 9 of the invention were created, with microphones to detect infant crying, motion and sound actuators, a swaddling system to keep the baby in optimal position and a gel pad to reduce the pressure on the back of the skull that predisposes to plagiocephaly. The device also contained a logic board to accomplish two tasks; deliver staged interventions of specially engineered sound and to deliver motion created by two linked platforms attached to a motor and rod actuator (as well as a series of springs and dampeners to modulate the activity.) These platforms acted in a reciprocating manner about an axis that intersected the infant and was orthogonal to a major plane of the surface supporting the infant to provide a motion that varies from slow smooth rocking (0.5-1.5 cps) to keep babies calm and promote sleep . . . ramping up to a faster, smaller, “jiggly” motion (2-4.5 cps) with a more “spiked” waveform to deliver a sufficiently abrupt acceleration-deceleration action to stimulate the vestibular mechanism of the inner ear, trigger calming reflex and soothe the baby when she cried (head rocking back and forth in excursions of less than 1 inch). The sound in the device was also designed to respond to the baby's upset by starting a specially engineered loud, harsh and high pitched and then stepping down to quieter, lower pitched white noise over several minutes. The device was specifically designed to gradually reduce (“wean”) the intensity of the sound and motion over several months.


The device worked in the following way:


The baby was placed in a swaddling sack (with arms in or out) attached to the mattress of the device and securely laid on his/her back. The device produced a baseline level of low pitched, rumbling noise at approximately 65 dB and baseline motion of a smooth, side-to-side rocking (2 inch excursions to either side). When the baby cried for more than −10 seconds, the device responded by playing a specially engineered sound that was harsher, higher pitched, more multi-frequency (75-80 dB) to mimic the intensity of the sound that the baby heard inside the mother's uterus prenatally. (This sound can be measured in situ at up to 92 dB.) If the crying continued another −10 seconds (despite the sound), the motion accelerated to a faster, more jiggly action of the head (2-4.5 cps, but no more than 1 inch head excursions to either side). The combination of fast movements delivered with sufficient vigor, the harsh loud sound, and the secure swaddling sack all worked together to activate the calming reflex, in the majority of irritable babies and inducing either calmness or sleep. The device responded to the baby's cry in a step-wise fashion-gradually increasing sound and then motion-to a maximal level. Once the baby was calmed the motion and sound of the device was gradually reduced in a specific, step-wise fashion back to the baseline activity.


Subjects


The device was tested on over twenty babies (12 girls, 10 boys) were in the device. The babies ranged from 5 weeks to 6 months of age. Their weights ranged from 8 pounds to 18 pounds.


Methods and Procedures


The subjects were tested to record their resting and sleeping in the device. The tests usually began when the baby was hungry and tired (immediately before their usual naptime). The parents were introduced to the device and given a brief demonstration of how it worked. We recorded when the baby last fed and napped and then put the baby in the swaddling sack and placed the infant in the device. We observed and videotaped the session. In addition, we collected data from 3 accelerometers and a device-mounted camera to detect the vigor of activity and measure the exact excursions of the baby's head. We started each test with the device set at its lowest level for sound and motion. We observed as the device responded to the baby's cries. We allowed the device to quickly advance through each of its stages as the cries escalated. Once the baby was calmed, the device's motion would slow, in a stepwise fashion, and the loudness and pitch of the sound would decrease, in a stepwise fashion. We repeated this format 2-4 times during our sessions with each of the subjects. The first set of studies was done using a prototype with a dual motion actuator and the second set of studies was done with a prototype with a single motion actuator.


Results


As shown in the attached table, during twenty-one tests, 19 babies were either significantly calmed or put to sleep by our device (absence of calming was due to hunger). Most calming and sleep occurred within 2 minutes of placing the baby in the device.


We hypothesized that a device could be built that responded to the baby's needs, such that an infant's upsets would be soothed by vigorous stimulation to activate the calming reflex, followed by a diminution of those stimuli to help keep the calming reflex turned on and sustain the baby in a calm state and/or promote sleep, i.e., reducing sleep latency and increasing sleep efficiency. “Sleep latency” is defined as the length of time between going to bed and falling asleep. “Sleep efficiency” is defined as the ratio of time spent asleep—total sleep time to the amount of time spent in bed.)























No. of









times baby









wakes
Time
Time since
Calmed or


Patient/Baby
Test
Baby's
Baby's
during the
since last
last
put to


Name
Date
Age
Weight
night
nap
feeding
sleep
























Candace/Dennielle


 13 weeks
14.11 lbs
1-2
times


Calmed


Amanda/James








Calmed


Jenn/MacKienze



 13.5 lbs
2
times


Calmed


Sarah/Sloane
Oct. 12,
2011
  5 weeks

5-6
times


Sleep


Sheela/Julia



 9.5 lbs
3-4
times


Calmed


Sally/Elise
Mar. 5,
2012
  7 weeks
 8.1 lbs
2-3
times
2.0 hours
 10 minutes
Sleep


Emily/Reese
Mar. 5,
2012
  7 weeks
 8.3 lbs
3-4
times
1.5 hours
 30 minutes
Sleep


Jackie/Drew
Mar. 6,
2012
5.5 months
 12.0 lbs.
3-4
times
2.0 hours
1.0 hours
Calmed


Jackie/Tessa
Mar. 6,
2012
5.5 months
 11.0 lbs
3-4
times
2.0 hours
1.0 hours
Calmed


Jessica/Noah
Mar. 13,
2012
4.5 months
 14.4 lbs
4-6
times

1.0 hours
Sleep


Charisse/Rhett
Mar. 8,
2012
4.0 months
 14.0 lbs
3-4
times
 10 minutes
2.0 hours
Sleep


Dolge/Ashee
Mar. 12,
2012
4.0 months
 14.0 lbs
5-7
times
3.0 hours
1.5 hours
Sleep


Laura/Charlotte
Mar. 13,
2012
  4 weeks
 10.0 lbs
3-5
times
1.0 hours
 10 minutes
Sleep


Laura/John
Mar. 15,
2012
  6 weeks
 10.5 lbs
1-3
times
2.0 hours
1.0 hours
Sleep


Amelia/Arthur
Mar. 15,
2012
6.0 months
 15.9 lbs
3-4
times
 10 minutes
1.0 hours
No


Iris/Charlie
Apr. 23,
2012
  4 weeks
 10.0 lbs
4-6
times
1.0 hours
1.0 hours
Calmed


Elyse/Christian
Apr. 23,
2012
  5 months
 13.5 lbs
3-4
times
1.0 hours
1.0 hours
Sleep


Margaret/Halina
Apr. 28,
2012
4.5 months
 16.2 lbs
3-4
times
1.0 hours
 30 minutes
Sleep


Laine/Lucas
May 7,
2012
  4 weeks
 9.5 lbs
4-6
times
2.0 hours
 30 minutes
Sleep


Rachel/Cade
May 7,
2012
  5 months
 18.0 lbs
3-4
times
1.0 hours
2.0 hours
Sleep


Rose/Elsie
May 8,
2012
  4 weeks
 10.0 lbs
4-6
times
 10 minutes
2.0 hours
No









CONCLUSION

It was possible to promote infant calming and sleep through the use of swaddling plus very specific sound and motion stimuli to activate the calming reflex.


EQUIVALENTS

While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.


The relevant teachings of all references cited herein are incorporated by reference in their entirety.

Claims
  • 1. An infant calming/sleep-aid device, comprising: a rigid base;a movement linkage or bearing extending from the rigid base;a platform mounted on the movement linkage or bearing; andan actuation assembly that controls movement of the platform about the movement linkage or bearing relative to the rigid base to rotate the platform in an reciprocating manner, the actuation assembly including a drive motor, wherein the reciprocating rotation is on an axis of rotation that intersects the platform and extends orthogonal to a major plane of the platform, anda control system operable to control operations of the actuation assembly,wherein the control system is configured to receive data signals from one or more sensors comprising at least a sound sensing device configured to detect sounds of an infant supported on the platform, wherein, if the control system determines that the infant is in a first crying state, utilizing one or more first data signals comprising at least sound data detected by the sound sensing device, the control system is configured to initiate a calming reflex operational mode in which the control system causes the actuation assembly to move the platform in a reciprocating rotation within a frequency range of between 2 and 4.5 cycles per second and an amplitude range corresponding to a circumferential distance of between 0.2 inches and 1.0 inches taken at a radial distance from the axis of rotation configured to correspond to a center of a head of the infant.
  • 2. The infant calming/sleep-aid device of claim 1, further comprising: a second platform comprising a moving head platform; anda second movement linkage comprising a head movement linkage or bearing mounted to the platform linking the moving platform to the second platform.
  • 3. The infant calming/sleep-aid device of claim 1, further comprising a sound generating device that includes a speaker for generating sound directed to the infant, wherein, in the calming reflex operational mode, the control system further causes the sound generating device to direct sound to the infant.
  • 4. The infant calming/sleep-aid device of claim 1, wherein the sound sensing device comprises at least one microphone.
  • 5. The infant calming/sleep-aid device of claim 1, further comprising a head rest positioned above the platform, wherein the head rest includes a gel.
  • 6. The infant calming/sleep-aid device of claim 1, further comprising a secure swaddling sack within which to swaddle an infant, and wherein the secure swaddling sack is securable to the platform to secure a position of the infant when swaddled within the secure swaddling sack with respect to the platform.
  • 7. The infant calming/sleep-aid device of claim 1, wherein the one or more sensors further comprise a motion sensing device that detects motion of the infant when supported on the platform, and wherein the first data signals further comprise motion corresponding to perturbations of the platform detected by the motion sensing device caused by the infant during a reciprocating rotation of the platform prior to initiation of the calming reflex operational mode.
  • 8. The infant calming/sleep aid device of claim 1, wherein the control system is configured to reduce the reciprocating rotation in a stepwise fashion if the control system determines, utilizing data signals received from the one or more sensors, that the infant is being soothed by the reciprocating rotation of the platform.
  • 9. The infant calming/sleep-aid device of claim 1, wherein the control system is further configured to control the reciprocating rotation of the platform utilizing age of the infant as variable, and wherein at a predetermined age of the infant, the control system is configured to reduce intensity of the reciprocating rotation to wean the infant off the reciprocating rotation of the device.
  • 10. The infant calming/sleep-aid device of claim 1, wherein the control system controls the reciprocating rotation utilizing at least one variable selected from weight of the infant, age of the infant, a duration of detected sound made by the infant, and a duration of detected motion of the infant.
  • 11. The infant calming/sleep-aid device of claim 1, wherein the actuation assembly is configured to reciprocally rotate the platform on the axis of rotation that is configured to be positioned to intersect an infant when supported on the platform.
  • 12. The infant calming/sleep-aid device of claim 1, wherein in a soothing operational mode, the control system controls the frequency of reciprocating rotation within a range of between 0.5 and 1.5 cycles per second with a corresponding amplitude of the reciprocating rotation at a location corresponding to the center of the head of the infant when positioned on the platform that is in a range of between 0.5 inches and 1.5 inches.
  • 13. The infant calming/sleep-aid device of claim 12, further comprising a sound generation device comprising a speaker to generate sound directed to the infant, wherein, in the soothing mode, the control system is further configured to cause the sound generation device to output a low pitch rumbling sound directed to the infant.
  • 14. The infant calming/sleep aid device of claim 13, wherein the control system is configured to reduce the volume of the generated sound in a stepwise fashion if the control system detects that an infant is being soothed.
  • 15. The infant calming/sleep-aid device of claim 13, wherein the low pitched rumbling sound is output within a range between 65 dB and 75 dB.
  • 16. The infant calming/sleep-aid device of claim 13, wherein if the control system determines, utilizing second data signals received from the one or more sensors, that the infant is not being soothed by the sound directed to the infant and reciprocating rotation of the soothing mode, the control system is configured to initiate an enhanced soothing mode comprising causing the sound generation device to direct a higher pitched sound with greater volume to the infant.
  • 17. The infant calming/sleep-aid device of claim 16, wherein the higher pitched sound has a volume between 75 dB and 80 dB.
  • 18. The infant calming/sleep-aid device of claim 16, wherein the second data signals comprise sound detected by the sound sensing device from which the control system determines that the infant is in a second crying state.
  • 19. The infant calming/sleep-aid device of claim 17, wherein the one or more sensors further comprise a motion sensing device that detects motion of the infant when supported on the platform, wherein the second data signals further comprise data signals corresponding to perturbations of the platform detected by the motion sensing device caused by the infant during a reciprocating rotation of the platform in the soothing operational mode.
  • 20. The infant calming/sleep-aid device of claim 18, wherein the control system is configured to initiate the calming reflex operational mode to transition the device from the enhanced soothing operational mode to the calming reflex operational mode if the control system receives the first data signals from which it determines that the infant is in the first crying state.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/353,258, filed Apr. 21, 2014, which is a 371 of PCT/US2012/061069, filed Oct. 19, 2012, which claims the benefit of U.S. Provisional Application No. 61/549,627, filed on Oct. 20, 2011. Each of the above applications is incorporated by reference in its entirety.

US Referenced Citations (256)
Number Name Date Kind
1332400 Johnson Mar 1920 A
1897258 Jenne Feb 1933 A
D90696 Caldwell Sep 1933 S
D128488 Buckner Jul 1941 S
D158030 Wagner Apr 1950 S
2508110 Hansen May 1950 A
2523422 Dunn Sep 1950 A
2808828 Rubin Oct 1957 A
2873458 Adamson Feb 1959 A
2974325 Mango Mar 1961 A
2992440 Revolt Jul 1961 A
3146736 Robert Sep 1964 A
3536067 Sternagel Oct 1970 A
D224822 Lee, Jr. Sep 1972 S
3789439 Berg Feb 1974 A
D232279 White Aug 1974 S
3886607 Dunn Jun 1975 A
D244890 Adams Jul 1977 S
4553485 Lee Nov 1985 A
4611353 Als et al. Sep 1986 A
4619270 Margolis Oct 1986 A
4750223 D'Arcy Jun 1988 A
4934997 Skakas Jun 1990 A
D316339 Taylor Apr 1991 S
5037375 Gatts Aug 1991 A
D320316 Arnold Oct 1991 S
5129406 Magnusen et al. Jul 1992 A
5183457 Gatts et al. Feb 1993 A
5228155 Shultz Jul 1993 A
5295490 Dodakian Mar 1994 A
5311622 Allen May 1994 A
5381569 Church Jan 1995 A
5384922 Jobe Jan 1995 A
5385153 Jamieson et al. Jan 1995 A
5398353 Sachathamakul Mar 1995 A
D367979 Lewis Mar 1996 S
5577450 Huang Nov 1996 A
5668780 Hsieh Sep 1997 A
5684460 Scanlon Nov 1997 A
5706533 Opheim Jan 1998 A
5711045 Caster et al. Jan 1998 A
5806113 McMahan et al. Sep 1998 A
D401454 De Blaay Nov 1998 S
5845350 Beemiller et al. Dec 1998 A
5852827 Lear et al. Dec 1998 A
5855031 Swift Jan 1999 A
5881408 Bashista et al. Mar 1999 A
5931534 Hutter Aug 1999 A
D413454 Kasem Sep 1999 S
D417090 Reynolds Nov 1999 S
D418440 Dallaire Jan 2000 S
6009576 Grammet et al. Jan 2000 A
6011477 Teodorescu et al. Jan 2000 A
6068566 Kim May 2000 A
6146332 Pinsonneault Nov 2000 A
6148455 Kassem Nov 2000 A
6155976 Sackner Dec 2000 A
6343994 Clarke Feb 2002 B1
6386986 Sonner May 2002 B1
6393612 Thach et al. May 2002 B1
6415442 Smith et al. Jul 2002 B1
6498652 Varshneya et al. Dec 2002 B1
6588033 Welsh Jul 2003 B1
6594834 Fenty Jul 2003 B2
6652469 Pinsonnault Nov 2003 B2
6662390 Berger et al. Dec 2003 B1
6839924 Sims et al. Jan 2005 B2
6868566 Gatten et al. Mar 2005 B2
6907626 Welsh Jun 2005 B1
6916249 Meade Jul 2005 B2
6928674 Blackburn Aug 2005 B2
6966082 Bloemer et al. Nov 2005 B2
D512466 White Dec 2005 S
6978479 Thach et al. Dec 2005 B2
D518942 Dandrea Apr 2006 S
7043783 Gatten et al. May 2006 B2
7076819 Trani et al. Jul 2006 B2
D526133 Song Aug 2006 S
7100724 Haigh et al. Sep 2006 B2
7123758 Mostafavi et al. Oct 2006 B2
D536191 Kasem Feb 2007 S
D536550 Kasem Feb 2007 S
7181789 Gatten et al. Feb 2007 B2
7203981 Cowgill et al. Apr 2007 B1
7246392 Schmid et al. Jul 2007 B2
D561978 Sioleau Feb 2008 S
7337482 Byrne et al. Mar 2008 B2
7347806 Nakano et al. Mar 2008 B2
7406725 Martin et al. Aug 2008 B2
7427921 Van Sep 2008 B2
7485086 Dickie et al. Feb 2009 B2
7587769 McDermott et al. Sep 2009 B1
7587772 Ward et al. Sep 2009 B2
D605870 Bergkvist Dec 2009 S
D606282 Chen Dec 2009 S
7685657 Hernandez et al. Mar 2010 B1
D613091 Taylor Apr 2010 S
7722118 Bapst et al. May 2010 B2
D616665 Dumais Jun 2010 S
7743442 Maloney et al. Jun 2010 B2
7774875 Zeidman et al. Aug 2010 B1
7785257 Mack et al. Aug 2010 B2
7857677 Kamm Dec 2010 B2
7918505 King et al. Apr 2011 B2
7954187 Earnest et al. Jun 2011 B1
D644413 Keall Sep 2011 S
8011037 Earnest et al. Sep 2011 B1
8032958 Pieta et al. Oct 2011 B2
D650153 Chopak et al. Dec 2011 S
8083601 Speedie et al. Dec 2011 B2
8096960 Loree et al. Jan 2012 B2
8112835 Eirich et al. Feb 2012 B2
8141186 Jackson et al. Mar 2012 B2
8191188 Kaplan et al. Jun 2012 B2
8197005 Daley et al. Jun 2012 B2
8239984 Hopke et al. Aug 2012 B2
8269625 Hoy et al. Sep 2012 B2
D669659 Barski Oct 2012 S
8302225 Earnest et al. Nov 2012 B1
8321980 Maloney et al. Dec 2012 B2
D674614 Morand Jan 2013 S
8347432 Schmid et al. Jan 2013 B2
8365325 Schneider et al. Feb 2013 B2
8375486 Earnest et al. Feb 2013 B2
D678693 Bergkvist Mar 2013 S
8395510 Kirk Mar 2013 B1
8398538 Dothie et al. Mar 2013 B2
8429771 Long et al. Apr 2013 B2
8522375 Conrad et al. Sep 2013 B2
8539620 Wynh et al. Sep 2013 B1
D692209 Dragu Oct 2013 S
8555414 Davis et al. Oct 2013 B2
8561227 Jenkins et al. Oct 2013 B2
D696486 Barski Dec 2013 S
8607364 Barski et al. Dec 2013 B2
8607366 Austin Dec 2013 B2
8661582 Sclare et al. Mar 2014 B2
8667631 Coates et al. Mar 2014 B2
8695133 Christensen et al. Apr 2014 B2
8726437 Hardesty et al. May 2014 B2
8745794 McDermott Jun 2014 B1
8756731 Huttner et al. Jun 2014 B1
8769737 Duggins et al. Jul 2014 B1
8776265 Neveu et al. Jul 2014 B2
8777311 Laurel et al. Jul 2014 B1
8782831 Houston et al. Jul 2014 B2
8784227 Speedie et al. Jul 2014 B2
8827366 Daley et al. Sep 2014 B2
8832880 Sheard et al. Sep 2014 B2
8845440 Haut et al. Sep 2014 B2
D715027 Daugherty Oct 2014 S
8863329 Sofia-McIntire et al. Oct 2014 B2
D718017 Barski Nov 2014 S
8898833 Coates et al. Dec 2014 B2
8904580 Christensen et al. Dec 2014 B1
8910332 Buckson Dec 2014 B2
8942783 Cervantes et al. Jan 2015 B2
8943625 Gotel et al. Feb 2015 B2
9003564 Wynh Apr 2015 B2
9020622 Shoham et al. Apr 2015 B2
D728198 Barski May 2015 S
D728199 Barski May 2015 S
9032963 Grissom May 2015 B2
9060549 Buckson Jun 2015 B2
D734592 Castillo et al. Jul 2015 S
9119423 Gotel et al. Sep 2015 B2
9131734 Daugherty et al. Sep 2015 B2
D741046 Pelekanou Oct 2015 S
9155403 Mountz et al. Oct 2015 B2
D742097 Dunn Nov 2015 S
9179711 Krawchuk Nov 2015 B2
D751847 Brown Mar 2016 S
9392881 Schmelzle Jul 2016 B1
D780472 Behar Mar 2017 S
9962012 Schmid et al. May 2018 B1
20020016991 Brown Feb 2002 A1
20020100116 Richards et al. Aug 2002 A1
20040070254 Conlon et al. Apr 2004 A1
20040078895 Elling et al. Apr 2004 A1
20050022284 Thach Feb 2005 A1
20050091743 Bloemer et al. May 2005 A1
20050120459 McConnell et al. Jun 2005 A1
20050210592 Littlehorn et al. Sep 2005 A1
20050283908 Wong et al. Dec 2005 A1
20060025226 Nakano et al. Feb 2006 A1
20060042013 Madsen Mar 2006 A1
20060084514 Speedie et al. Apr 2006 A1
20060096031 Foster May 2006 A1
20060225206 Kasem Oct 2006 A1
20070056109 Forshpan et al. Mar 2007 A1
20070060015 Glatt et al. Mar 2007 A1
20070061968 Fader Mar 2007 A1
20070085695 Nerurkar et al. Apr 2007 A1
20070111809 Bellows May 2007 A1
20070267904 Clapper et al. Nov 2007 A1
20080077020 Young et al. Mar 2008 A1
20080136236 Kincaid Jun 2008 A1
20080141457 Forshpan et al. Jun 2008 A1
20080196164 Calilung Aug 2008 A1
20080217150 Chen Sep 2008 A1
20080314665 Sanders et al. Dec 2008 A1
20090062622 Lin et al. Mar 2009 A1
20090064390 Beiring et al. Mar 2009 A1
20090131185 Speedie May 2009 A1
20090206642 Raphael Aug 2009 A1
20100044164 Thorne Feb 2010 A1
20100201171 Velderman et al. Aug 2010 A1
20100218299 Damir Sep 2010 A1
20100228315 Nielsen Sep 2010 A1
20100231421 Rawls-Meehan Sep 2010 A1
20100257654 Waters et al. Oct 2010 A1
20100275373 Kaplan Nov 2010 A1
20100298742 Perlman Nov 2010 A1
20100328075 Rahamim et al. Dec 2010 A1
20110025915 Daban et al. Feb 2011 A1
20110032103 Bhat et al. Feb 2011 A1
20110078855 Buckson et al. Apr 2011 A1
20110099719 Hardesty et al. May 2011 A1
20110116549 Riddiford et al. May 2011 A1
20110179546 Millette et al. Jul 2011 A1
20110277210 Hardesty et al. Nov 2011 A1
20110308011 Cheng Dec 2011 A1
20120025992 Tallent et al. Feb 2012 A1
20120083670 Rotondo Apr 2012 A1
20120125347 Soileau et al. May 2012 A1
20120216349 Kaplan et al. Aug 2012 A1
20120297518 Aiken et al. Nov 2012 A1
20120311762 Aiken et al. Dec 2012 A1
20130123654 Rahamim et al. May 2013 A1
20130139290 Barski et al. Jun 2013 A1
20130165809 Abir Jun 2013 A1
20130185867 Long et al. Jul 2013 A1
20140059762 Bonczek Mar 2014 A1
20140068834 Skinner Mar 2014 A1
20140130254 Jeong May 2014 A1
20140173822 Doering et al. Jun 2014 A1
20140249382 Bhat et al. Sep 2014 A1
20140250558 Russo Sep 2014 A1
20140250592 Karp et al. Sep 2014 A1
20140265480 Perrin et al. Sep 2014 A1
20140339867 Daley et al. Nov 2014 A1
20140345042 Morand Nov 2014 A1
20150026886 Gangan Jan 2015 A1
20150045608 Karp et al. Feb 2015 A1
20150059089 Falkiner Mar 2015 A1
20150126819 Cervantes May 2015 A1
20150196137 Zhao Jul 2015 A1
20150250330 Mountz et al. Sep 2015 A1
20150250419 Cooper et al. Sep 2015 A1
20160128392 Krawchuk May 2016 A1
20160165961 Karp Jun 2016 A1
20160174619 Waters Jun 2016 A1
20160174728 Karp et al. Jun 2016 A1
20160310067 Heinrich et al. Oct 2016 A1
20170043117 Karp et al. Feb 2017 A1
20170043118 Karp et al. Feb 2017 A1
Foreign Referenced Citations (47)
Number Date Country
2459037 Aug 2005 CA
2760609 Nov 2010 CA
2848529 Mar 2013 CA
2918029 Apr 2016 CA
1759897 Apr 2006 CN
101036556 Sep 2007 CN
2018085348 Jul 2008 CN
201718870 Jan 2011 CN
617907 Jun 1997 EP
1435810 Jul 2004 EP
1748711 Feb 2007 EP
1748711 Jan 2008 EP
2617329 Jul 2013 EP
2197322 Feb 2014 EP
2292124 Jul 2014 EP
2768345 Aug 2014 EP
2915459 Sep 2015 EP
2929812 Oct 2015 EP
2756136 Aug 2016 EP
2669201 May 1992 FR
2312374 Oct 1997 GB
07275091 Oct 1995 JP
07289394 Nov 1995 JP
2000510022 Aug 2000 JP
1020040097883 Nov 2004 KR
1020040097883 Nov 2004 KR
20060019024 Mar 2006 KR
1020060079587 Jul 2006 KR
20090121797 Nov 2009 KR
199817150 Apr 1998 WO
20090121797 Dec 2004 WO
2007062499 Jun 2007 WO
2010098702 Sep 2010 WO
2013038248 Mar 2013 WO
2013059625 Apr 2013 WO
2013087955 Jun 2013 WO
2013135975 Sep 2013 WO
2013188810 Dec 2013 WO
2014078442 May 2014 WO
2015017709 Feb 2015 WO
2015017709 Feb 2015 WO
2015078937 Jun 2015 WO
2015143430 Sep 2015 WO
2016055946 Apr 2016 WO
2016096518 Jun 2016 WO
2016123619 Aug 2016 WO
2016138441 Sep 2016 WO
Non-Patent Literature Citations (43)
Entry
Oval Crib, Fine Woodworking, http://www.finewoodworking.com/ readerproject/2009/11/11/oval-crib (sited visited Apr. 4, 2018), Nov. 11, 2009.
SNOO Bassinet, Can this High-Tech Bassinet Keep Sleep-Deprived Parents Sane?, The Wall Street Journal, http://www.wsj.com/articles/can-this-high-tech-bassinet-keep-sleep-deprived-parents-sane, Oct. 18, 2018.
Putting Baby in SNOO Sack, https://www.youtube.com/watch?v=NvTIOzWxG80, Oct. 28, 2016.
Office Action dated Aug. 22, 2016 in Australian Application No. 2012325947.
Extended European search report dated Feb. 24, 2017 in European patent application No. 14831425.5.
“Safety Standard for Bassinets and Cradles; Correction”, Federal Register, vol. 78, No. 247, https://www.federalregister.gov/documents/2013/12/24/2013-30527/safety-standard-for-bassinets-and-cradles-correction (accessed Nov. 10, 2016), Consumer Product Safety Commission, Dec. 24, 2013, 1 page.
Edge Banding, Kreg Newsletter, Nov. 2014, site visited Jun. 15, 2017, availabe online <URL:http://www.kregtool.com/files/newsletters/kregplus/november14.html>.
Iron-on Edge Banding, Popular Woodworking Magazine, Sep. 19, 2008,site visited Jun. 15, 2017, available online <URL:http://www.popularwoodworking.com/projects/iron-on-edge-banding>.
“About SUID and SIDS”, Centers for Disease Control and Prevention, http://www.cdc.gov/sids/aboutsuidandsids.htm (accessed Nov. 3, 2016), Last update: Oct. 3, 2016, 2 pages.
“Infant Sleep Forum Posting”, http://www.sleepnet.com/infant/messages/501.html, (accessed Mar. 16, 2015), 2 pages.
“Safety Standard for Bassinets and Cradles; Correction”, Federal Register, vol. 78, No. 205, https://www.federalregister.gov/documents/2013/10/23/2013-24203/safety-standard-for-bassinets-and-cradles, (accessed Nov. 10, 2016), Consumer Product Safety Commission, Oct. 23, 2013, 18 pages.
“Safety Standard for Bedside Sleepers”, Federal Register, vol. 79, No. 10, https://www.federalregister.gov/documents/2014/01/15/2014-00597/safety-standard-for-bedside-sleepers, (accessed Nov. 10, 2016), Consumer Product Safety Commission, Jan. 15, 2014, 9 pages.
“SIDS and Other Sleep-Related Infant Deaths: Expansion of Recommendations for a Safe Infant Sleeping Environment”, Task Force on Sudden Infant Death Syndrome, Pediatrics, vol. 128, No. 5, Nov. 2011, pp. e1341 (29 pages).
12781007.5, “European Application Serial No. 12781007.5, Examination Notification Art 94(3) dated May 5, 2015”, Unacuna, LLC, 3 Pages.
AAP Task Force on SIDS, “The Changing Concept of Sudden Infant Death Syndrome: Diagnostic Coding Shifts, Controversies Regarding the Sleeping Environment, and New Variables to Consider in Reducing Risk”, Peds, vol. 116, 2005, pp. 1245-1255.
Ariagno, et al., “Fewer spontaneous arousals during prone sleep in preterm infants at 1 and 3 months corrected age”, Journal of Perinatology, vol. 26, 2006, pp. 306-312.
Carpenter, et al., “Sudden unexplained infant death in 20 regions in Europe: case control study”, The Lancet, vol. 363, No. 9404, 2004, pp. 185-191.
Colvin, et al., “Sleep Environment Risks for Younger and Older Infants”, Pediatrics, vol. 134, Jul. 2014, pp. e406-e412.
Galland, et al., “Prone versus supine sleep position: a review of the physiological studies in SIDS research”, J Paediatr Child Health. vol. 38, No. 4, Aug. 2002, pp. 332-338.
Groswasser, et al., “Reduced arousals following obstructive apneas in infants sleeping prone”, Pediatric Research, vol. 49, No. 3, 2001, pp. 402-406.
Horne, et al., “Effects of body position on sleep and arousal characteristics in infants”, Early Human Development, vol. 69, iss. 1-2, Oct. 2002, pp. 25-33.
Horne, et al., “The prone sleeping position impairs arousability in term infants”, The Journal of Pediatrics, vol. 138, No. 6, 2001, pp. 811-816.
Kato, et al., “Spontaneous Arousability in Prone and Supine Position in Healthy Infants”, Sleep, vol. 29, No. 6, 2006, pp. 785-790.
L'Hoir, et al., “Risk and preventive factors for cot death in The Netherlands, a low-incidence country”, Eur J Pediatr, vol. 157, 1998, pp. 681-688.
Li, et al., “Infant Sleeping Position and the Risk of Sudden Infant Death Syndrome in California, 1997-2000”, Am J Epidemiol, vol. 157, No. 5, 2003, pp. 446-455.
McDonnell, et al., “Infant Deaths and Injuries Associated with Wearable Blankets, Swaddle Wraps, and Swaddling”, J Pediatr., vol. 164, No. 5, May 2014, pp. 1152-1156.
Mitchell, et al., “Changing Infants' Sleep Position Increases Risk of Sudden Infant Death Syndrome”, Arch Ped Adol Med., vol. 153, 1999, pp. 1136-1141.
Øyen, et al., “Combined effects of sleeping position and prenatal risk factors in sudden infant death syndrome: the Nordic Epidemiologi-cal SIDS Study”, Pediatrics, vol. 100, No. 4, 1997, pp. 613-621.
PCT/US2012/061069, “International Application Serial No. PCT/US2012/061069, International Preliminary Report on Patentability With Written Opinion dated May 1, 2014”, Unacuna, LLC, 4 Pages.
PCT/US2012/061069, “International Search Report and Written Opinion for International Application Serial No. PCT/US2012/061069 dated Mar. 11, 2012”, 8 pages.
PCT/US2014/049253, “International Application Serial No. PCT/US2014/049253 International Preliminary Report on Patentability dated Feb. 11, 2016”, The Happiest Baby, Inc., 10 pages.
PCT/US2014/049253, “International Application Serial No. PCT/US2014/049253, International Search Report and Written Opinion dated Nov. 24, 2014”, Unacuna, LLC, 13 pages.
PCT/US2016/019878, “International Application Serial No. PCT/US2016/019878, International Search Report and Written Opinion dated May 6, 2016”, Happiest Baby, Inc., 7 pages.
Pease, et al., “Swaddling and the Risk of Sudden Infant Death Syndrome: A Meta-analysis”, Pediatrics, vol. 137, No. 6, Jun. 2016, pp. e20153275 (11 pages).
Ponsonby, et al., “Factors potentiating the risk of Sudden Infant Death Syndrome associated with the Prone Position”, NEJM, vol. 329, 1993, pp. 377-382.
Shapiro-Mendoza, et al., “Trends in Infant Bedding Use: National Infant Sleep Position Study, 1993-2010”, Pediatrics, vol. 135, 2015, pp. 10-17.
Tuladhar, et al., “Effects of sleep position, sleep state and age on heart rate responses following provoked arousal in term infants”, Early human development, vol. 71, iss. 2, Apr. 2003, pp. 157-169.
Vennemann, et al., “Sleep Environment Risk Factors for Sudden Infant Death Syndrome: The German Sudden Infant Death Syndrome Study”, Pediatrics, vol. 123, No. 4, Apr. 2009, pp. 1162-1170.
Office Action dated Mar. 24, 2017 from related Mexican Patent Application No. MX/a/2014/004648.
U.S. Appl. No. 15/055,105, filed Feb. 26, 2016, Pending.
International Search Report and Written Opinion for PCT/US2017/057055, dated Feb. 1, 2018.
Naver blog, URL: https://blog.naver.com/redtony02/30103163614.
International Search Report and Written Opinion for PCT/US19/191010, dated May 24, 2019.
Related Publications (1)
Number Date Country
20160166081 A1 Jun 2016 US
Provisional Applications (1)
Number Date Country
61549627 Oct 2011 US
Continuations (1)
Number Date Country
Parent 14353258 US
Child 15051308 US