The present invention relates to infant highchairs.
Some infant highchairs currently available on the market may have a seat and a tray that are removable from the highchair frame for use as a standalone infant booster seat. When the booster seat is removed from the highchair frame, there is no longer a usable seating surface on the highchair frame, which becomes useless.
Therefore, there is a need for an improved highchair for infants that can be more flexible in use and address at least the foregoing issues.
The present application describes an infant highchair having a seat rotatable to convert the infant highchair to multiple configurations of use. According to one aspect, the infant highchair includes a standing frame, a seat and a locking mechanism. The seat is pivotally connected with the standing frame and has a seating surface, the seat being rotatable between a first and a second position, and the locking mechanism being operable to lock the seat in the first and second position. The first position allows a child to sit in contact with the seating surface, and the second position is suitable to receive installation of a removable child seat over the seat while disabling seating of a child on the seating surface.
According to another aspect, the infant highchair includes a standing frame having a calf support portion, a seat pivotally connected with the standing frame and having a seating surface, and a locking mechanism. The seat is rotatable relative to the standing frame and the calf support portion between a first and a second position, and the locking mechanism is operable to lock the seat in the first and second position. The first position allows a child to sit in contact with the seating surface, and the second position is suitable to receive installation of a removable child seat over the seat while disabling seating of a child on the seating surface.
According to yet another aspect, the infant highchair includes a standing frame, a seat pivotally connected with the standing frame, and a locking mechanism. The seat includes a seating surface, and a backrest portion and a calf support portion disposed adjacent to each other that face two opposite directions, the seat being rotatable relative to the standing frame between a first and a second position, and the locking mechanism being operable to lock the seat in the first and second position. The first position allows a child to sit in contact with the seating surface, and the second position is suitable to receive installation of a removable child seat over the seat while disabling seating of a child on the seating surface, the backrest portion being configured to provide resting support for a child's back when the seat is in the first position, and the calf support portion being configured to provide support for the calves of a child when the seat is in the second position.
The standing frame 102 can include a front leg portion 106 and a rear leg portion 108. The front leg portion 106 can have two leg segments 106A, and a transversal segment 106B connected between the two leg segments 106A near the lower ends thereof. Likewise, the rear leg portion 108 can have two leg segments 108A, and a transversal segment 108B connected between the two leg segments 108A near the lower ends thereof. Moreover, a plurality of wheels 110 can be respectively provided on at least the front leg portion 106 to facilitate transport of the infant highchair 100A.
The front leg portion 106 can be pivotally connected with the rear leg portion 108 about a pivot axis P. For example, two coupling parts 112 can respectively connect pivotally the two leg segments 106A of the front leg portion 106 with the two leg segments 108A of the rear leg portion 108 about the pivot axis P. The two coupling parts 112 can be similar in construction and can be arranged at a left and right side of the standing frame 102. For example, each coupling part 112 can be slidably connected with one corresponding leg segment 106A of the front leg portion 106, and pivotally connected with one corresponding leg segment 108A of the rear leg portion 108. The coupling parts 112 can respectively slide along the leg segments 106A of the front leg portion 106 to adjust a height of the infant highchair 100A. Each leg segment 106A of the front leg portion 106 can respectively extend outside the corresponding coupling part 112 at two opposite sides thereof so that each leg segment 106A can have an upper portion 114 located above the coupling part 112 when the infant highchair 100A stands on a floor surface.
According to an example of construction, each coupling part 112 can include a latch (not shown) operable to lock the standing frame 102 in an unfolded state for use and unlock the standing frame 102 for folding of the infant highchair 100A. A release actuator 116 exposed outward for operation may be connected with the latch of the coupling part 112 via a cable (not shown), whereby the release actuator 116 is operable to cause the latch to unlock for rotation of the front leg portion 106 relative to the rear leg portion 108.
Referring to
Moreover, the seat 104 may be rotated to a second position where the seating surface 118 faces downward, which is suitable to receive the installation of a removable child seat over the seat 104 while disabling seating of a child on the seating surface 118. The second position of the seat 104 is shown in
As better shown in
The seating surface 118 of the seat 104 can move around the support platform 124 when the seat 104 rotates relative to the standing frame 102. For example, the seating surface 118 can be located above the support platform 124 when the seat 104 is in the first position and below the support platform 124 when the seat 104 is in the second position. When the seat 104 is in the first position, the support platform 124 is upwardly covered by the seat 104, which disables mounting of a removable child seat on the support platform 124. When the seat 104 is in the second position, the seat 104 can uncover the support platform 124, which allows a removable child seat to be installed over the seat 104 at least partially supported by and in contact with the support platform 124. For example, the support platform 124 can have an upper surface 124A configured to restrictedly position and support the removable child seat. Structures that may be provided on the upper surface 124A of the support platform 124 for engagement of a removable child seat may include, without limitation, recesses, protrusions and the like.
According to an example of construction, the standing frame 102 can further include a calf support portion 126 fixedly connected with the support platform 124. The calf support portion 126 may be formed integrally with the support platform 124 as a unitary part, or may be fixedly attached to the support platform 124 via a fastener. During use, the seat 104 can rotate relative to the standing frame 102 and the calf support portion 126 between the first and second position, and the calf support portion 126 is adapted to provide support for the calves of a child in both the first and second configurations of use corresponding to the first and second positions of the seat 104. For example, the calf support portion 126 can extend downward from a front of the seating surface 118 of the seat 104 when the seat 104 is in the first position (as better shown in
In conjunction with
According to an example of construction, the latch 132 can be assembled with the seat 104. For example, the latch 132 can be disposed centrally in a cavity 136 of the seat 104, and can be pivotally connected with the seat 104 about a pivot axis Z. The pivot axis Z can extend substantially vertically when the infant highchair 100A stands on a floor surface and the seat 104 is in any of the first and second positions. The latch 132 can engage with the standing frame 102 to lock the seat 104 in the first and second position, and disengage from the standing frame 102 to unlock the seat 104 for rotation of the seat 104 between the first and second position. For example, the latch 132 can engage with and disengage from the bar segment 122 for locking and unlocking the seat 104. More specifically, the latch 132 may engage with a first side of the bar segment 122 of the standing frame 102 to lock the seat 104 in the first position, and may engage with a second side of the bar segment 122 opposite to the first side to lock the seat 104 in the second position. According to an example of construction, the bar segment 122 may have a bending portion 138 at a central location of the bar segment 122 that protrudes away from the pivot axis Y of the seat 104, and the latch 132 is rotatable relative to the seat 104 generally parallel to the bar segment 122 between a locking state engaged with the bending portion 138 for locking the seat 104 in the first or second position, and an unlocking state disengaged from the bending portion 138 for unlocking the seat 104. When the latch 132 is engaged with the bar segment 122, the bending portion 138 of the bar segment 122 may be restrictedly held between the latch 132 at one side and the seat 104 at an opposite side.
Referring to
According to an example of construction, the latch 132 may be exposed so that a caregiver can directly operate the latch 132 with a hand for unlocking the seat 104. According to another example of construction, the locking mechanism 130 may further include a release actuator 140 (better shown in
In case a caregiver releases the release actuator 140 or the latch 132 during adjustment of the seat 104 between the first and second position, the latch 132 may recover a position corresponding to the locking state owing to the biasing action of the spring 134. Referring to
The cam surface 144 may be disposed above the bending portion 138 of the bar segment 122, and may be able to contact and push the latch 132 in movement against the biasing action of the spring 134 as the seat 104 approaches the first position for facilitating continued rotation of the seat 104 to the first position. Once the seat 104 reaches the first position, the latch 132 can disengage from the cam surface 144 and can be urged by the spring 134 to engage with the bending portion 138 of the bar segment 122 for locking the seat 104 in position.
The cam surface 146 may be disposed below the bending portion 138 of the bar segment 122, and may be able to contact and push the latch 132 in movement against the biasing action of the spring 134 as the seat 104 approaches the second position for facilitating continued rotation of the seat 104 to the second position. Once the seat 104 reaches the second position, the latch 132 can disengage from the cam surface 146 and can be urged by the spring 134 to engage with the bending portion 138 of the bar segment 122 for locking the seat 104 in position.
Referring to
The impeding part 150 is configured to engage with the seat 104 for forcing the seat 104 to stop at an intermediate position during a rotation of the seat 104 from the first position toward the second position while allowing continuous rotation of the seat 104 from the second position past the intermediate position to the first position. For example, the impeding part 150 may have two bending portions 158 that protrude upward above the bar segment 122 and the support platform 124 and are radially offset from the pivot axis R of the impeding part 150, and the seat 104 can have two hooks 160 (better shown in
The spring 152 is shown with phantom lines in the enlarged view of
The release actuator 154 can be connected with the impeding part 150. For example, the release actuator 154 may be fixedly connected with the impeding part 150 at a middle location between the two bending portions 158. The release actuator 154 is operable to cause the impeding part 150 to rotate from the hindering position to the release position against the biasing force of the spring 152, which can disengage the bending portions 158 of the impeding part 150 from the hooks 160 of the seat 104.
Exemplary operation of the safety mechanism 148 is described hereinafter with reference to
When the seat 104 is to be adjusted from the second position to the first position, the release actuator 140 can be operated to unlock the seat 104 like described previously. Then the unlocked seat 104 can be rotated from the second position toward the first position. As the seat 104 rotates toward the second position and approaches the intermediate position, the hooks 160 of the seat 104 can have respective ramp surfaces 160A that contact and push against the bending portions 158 of the impeding part 150 so that the impeding part 150 is urged to rotate from the hindering position to the release position against the biasing force of the spring 152. Accordingly, the safety mechanism 148 allows continuous rotation of the seat 104 from the second position past the intermediate position to the first position without the need of operating the release actuator 154.
Like described previously, the seat 104 can be pivotally connected with the standing frame 102 about the bar segment 122, which can extend between the seating surface 118 and the mount surface 170 of the seat 104. The seat 104 of the infant highchair 100B is thereby rotatable between multiple positions corresponding to different configurations of use. For example, the seat 104 can be rotated to a first position (shown in
Referring to
According to an example of construction, the latch 132 may be exposed so that a caregiver can directly operate the latch 132 with a hand for unlocking the seat 104. According to another example of construction, the latch 132 may be connected with a release actuator (not shown) that is operable to cause the latch 132 to unlock the seat 104.
Exemplary operation of the infant highchair 100B will be described hereinafter with reference to
For installing a removable child seat on the infant highchair 100B, the latch 132 can be operated to disengage from the bar segment 122 and thereby unlock the seat 104, and the seat 104 then can be rotated about the pivot axis Y to the second position shown in
Advantages of the structures described herein include the ability to provide an infant highchair that has a seat rotatable between multiple positions corresponding to different configurations of use. The seat may be adjusted to a first position corresponding to a configuration of use where a child can directly sit on the seat, and a second position corresponding to another configuration of use where a removable child seat can be installed over the seat for seating a child on the removable child seat. Accordingly, the infant highchair described herein can provide a more flexible use and may be adapted to receive children of different ages.
Realizations of the infant highchair have been described in the context of particular embodiments. These embodiments are meant to be illustrative and not limiting. Many variations, modifications, additions, and improvements are possible. These and other variations, modifications, additions, and improvements may fall within the scope of the inventions as defined in the claims that follow.
This application respectively claims priority to U.S. provisional application No. 62/695,909 filed on Jul. 10, 2018, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2731072 | Post | Jan 1956 | A |
5238291 | Alionis | Aug 1993 | A |
6082814 | Celestina-Krevh et al. | Jul 2000 | A |
6938952 | Dauterive | Sep 2005 | B2 |
7461891 | Andersen | Dec 2008 | B1 |
9554658 | Horst | Jan 2017 | B2 |
10588425 | Jordan | Mar 2020 | B1 |
20060249994 | Drake | Nov 2006 | A1 |
20100096891 | Keegan | Apr 2010 | A1 |
20150359354 | Greger | Dec 2015 | A1 |
20170251826 | Sclare | Sep 2017 | A1 |
20170258244 | Waldman | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
3238576 | Nov 2017 | EP |
191303024 | Nov 1913 | GB |
605682 | Jul 1948 | GB |
Entry |
---|
Unite Kingdom Office Action for Application No. 1909685.8; dated Dec. 13, 2019; 8 total pages. |
Number | Date | Country | |
---|---|---|---|
20200015599 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62695909 | Jul 2018 | US |