1. Field of the Invention
The present invention relates to a support member and patient lifting device for displacing persons between various positions and locations. More specifically, the present invention relates to an infection control lifting strap and system for lifting and positioning patients using a non-porous, sealed strap to provide improved infection control.
2. Description of Related Art
Patient lifting devices allow persons to be displaced between various positions and locations. The devices are typically used to life and move patients that may not be otherwise moved without injury or substantial effort by either the patient or the caregiver. The patient needing intervention from a lifting device is usually overweight, dystrophied, unconscious, or injured.
A traditional patient lifting device uses manual labor to displace the patient. Manual patient lifting devices may use hydraulic pumps or other fluid- or air-powered pumps to assist the caregiver moving the patient. The pump is attached to a lever that the caretaker may raise and lower to displace the patient into various positions and locations. Depending on the strength and experience of the caretaker, as well as the type of pump used, this type of device may be difficult or even dangerous to use for both the patient and the caretaker. However, it is still readily available due to its lower cost.
More recent patient lifting devices are electrically operated. Electric patient lifting devices utilize a motor system to raise and lower the patient. Once the patient is secured to the device, the caretaker simply uses a button or switch to cause the motor to displace the patient. Electric patient lifting devices have become the preferred devices due to their ease of use and minimal human involvement, limiting the risk of misuse and accident, or injury to the patient and caregiver. Furthermore, electric patient lifting devices do not require an exterior lever, and as such, may be more compact and can more easily be wall- or ceiling-mounted, leaving floor space unoccupied.
Both ceiling- and floor-mounted electrical lifting devices have a motor and winch assembly attached to a fabric lifting strap. The fabric lifting strap is attached to a sling in which the patient sits or lays to be moved from one position into another. In order to load the patient into the sling, and in regular daily use, caregivers, patients, maintenance personnel, and housekeeping staff may touch or grab the fabric lifting strap multiple times. Unfortunately, fabric lifting straps are exceedingly difficult to properly disinfect.
Although some lifting devices are positioned in family homes, most are used in group settings, such as assisted living facilities, nursing homes, doctor's offices, and hospitals. These group locations may use a single lifting device to transport multiple patients throughout the day. The patients may have different diseases or conditions that can be spread through multiple uses of the same device. Such a spread of potentially dangerous pathogens is undesirable, especially in group locations where widespread sickness could occur.
Therefore, there is a need for a lifting device that minimizes the risk of cross-contamination between patients, as well as between patients and caregivers. The present invention answers that need by providing for a non-porous, completely sealed, plastic lifting strap that can be easily and quickly wiped down with any standard hard surface disinfectant. In addition, the infection control lifting strap of the present invention has a sturdy metal core that is more durable and reliable than a conventional fabric strap.
A support member for use in a patient lifting device is described. The support member includes an improved lift strap having an inner core and an outer plastic layer that can be easily and effectively cleaned with standard disinfectant. The lift strap is secured to a patient lifting device with a spool assembly that guides the lift strap and a belt clamp assembly that compresses the lift strap and holds it in place.
In one embodiment, the support member is used in an electric ceiling- or floor-mounted patient lifting device. The lifting device includes a track component attached to a winch assembly. The winch assembly has an electric motor that raises and lowers the lift strap by means of a spool assembly and belt clamp assembly. The belt clamp assembly attaches to a sling that supports the patient while he or she is displaced.
Still other aspects, features and advantages of the present invention are readily apparent from the following detailed description, simply by illustrating a number of exemplary embodiments and implementations, including the best mode contemplated for carrying out the present invention. The present invention also is capable of other and different embodiments, and its several details can be modified in various respects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and descriptions are to be regarded as illustrative in nature, and not as restrictive.
The present invention will be understood more fully from the detailed description given below and from the accompanying drawings of various embodiments of the invention, which, however, should not be taken to limit the invention to the specific embodiments, but are for explanation and understanding only.
A support member, including an improved lift strap, for use in a patient lifting device is described. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the exemplary embodiments. It is apparent to one skilled in the art, however, that the present invention can be practiced without these specific details or with an equivalent arrangement.
The present invention provides a support member for use in a patient lifting device. The support member includes a lift strap having an inner core and an outer non-porous plastic layer and means for securing the lift strap to the patient lifting device. The means for securing the lift strap to the patient lifting device include a cylindrical spool operably connected to a first end of the lift strap, where the spool has at least one strap guard positioned at a distal end of the spool. The means for securing the lift strap to the patient lifting device further include one or more cylindrical thickness rollers having an exterior guiding channel configured to support the lift strap and a belt clamp assembly operably connected to a second end of the lift strap.
Likewise, the present invention provides a patient lifting device for displacing persons between various positions or areas. A patient lifting device in accordance with the present invention includes a track component, an electric motor connected to the track component, a lift strap having an inner core and an outer non-porous plastic layer, means for securing the lift strap to the track component, a belt clamp assembly operably connected to a second end of the lift strap, a lifting frame operably connected to the belt clamp assembly, and a sling. The means for securing the lift strap to the track component include a cylindrical spool operably connected to a first end of the lift strap, where the spool has at least one strap guard positioned at a distal end of the spool. The means for securing the lift strap to the track component also includes one or more cylindrical thickness rollers having an exterior guiding channel configured to support the lift strap and a belt clamp assembly operably connected to a second end of the lift strap.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views,
Spool 370 may have a cylindrical or other rounded edge shape that allows for smooth winding and dewinding of lift strap 360 at a relatively constant speed. Spool 370 has a diameter that maintains a constant shear stress on lift strap 360. Spool 370 is of sufficient diameter that lift strap 360 does not become damaged or destroyed in use by tangling, overlapping, or otherwise winding upon itself. Strap guard 380 may be made of a conductive material, such as aluminum, to prevent the friction of lift strap 360 from generating high temperatures as lift strap 360 passes over guard 380. The aluminum or other conductive material may be used to radiate heat from lift strap 360. By conducting heat from like strap 360, lift strap 360 will not deform or change in cross-section area, which may affect performance. Lift strap 360 is wound onto spool 370 and is threaded through one or more thickness rollers 390. Lift strap 360 then extends gravitationally downwards to attach, for example, to lifting frame 130.
The present invention has been described in relation to particular examples, which are intended in all respects to be illustrative rather than restrictive. Moreover, other implementations of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. Various aspects and/or components of the described embodiments may be used singly or in any combination. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
This application claims the benefit of U.S. Provisional Patent Application No. 61/095,970, which was filed on Sep. 11, 2008. The content of the U.S. Provisional Patent Application are incorporated below by reference.
Number | Date | Country | |
---|---|---|---|
61095970 | Sep 2008 | US |