The present invention relates to infectious DNA clones of Torque teno sus virus (TTsuV), also known as porcine Torque teno virus (PTTV), and diagnosis of Torque teno sus virus (TTsuV) infection, particularly diagnosis of species- or type-specific TTsuV infection, and simultaneous infection of multiple strains from different genotypes.
Anelloviruses are small, single-stranded, circular DNA viruses that infect a wide range of animal species from humans to domestic animals including pigs (Hino, S., and H. Miyata. 2007. Torque teno virus (TTV): current status. Rev Med Virol 17:45-57; Okamoto, H. 2009. TT viruses in animals. Curr Top Microbiol Immunol 331:35-52). Most recently, all human and other animal anelloviruses have been assigned into a newly established family Anelloviridae that includes nine genera (Biagini, P., et al. 2011. Anelloviridae, p. 331-341. In A. M. Q. King, et al (ed.), Virus Taxonomy, 9th Report of the ICTV. Elsevier Academic Press, London). Human anelloviruses include Torque teno virus (TTV), Torque teno mini virus (TTMV) and Torque teno midi virus (TTMDV) that belong to three different genera. Human TTV, TTMV and TTMDV are non-enveloped spherical viruses with DNA genomes of 3.6-3.9, 2.8-2.9 and 3.2 kb in length, respectively (Okamoto, H. 2009. History of discoveries and pathogenicity of TT viruses. Curr Top Microbiol Immunol 331:1-20.). These three groups of human anelloviruses show a high degree of genetic diversity, and infections of TTV, TTMV and TTMDV at a high prevalence in human populations have been documented worldwide (Ninomiya, M., et al. 2008. Development of PCR assays with nested primers specific for differential detection of three human anelloviruses and early acquisition of dual or triple infection during infancy. J Clin Microbiol 46:507-14.; Okamoto, H. 2009. Curr Top Microbiol Immunol 331:1-20). On the other hand, porcine anelloviruses or Torque teno sus viruses (TTSuV) is assigned into a new genus Iotatorquevirus comprising two species (TTSuV1 and TTSuV2), each also characterized by high genetic diversity with a genomic size of approximately 2.8 kb (Huang, Y. W., et al. 2010. Multiple infection of porcine Torque teno virus in a single pig and characterization of the full-length genomic sequences of four U.S. prototype PTTV strains: implication for genotyping of PTTV. Virology 396:287-97, Niel, C., et al. 2005. Rolling-circle amplification of Torque teno virus (TTV) complete genomes from human and swine sera and identification of a novel swine TTV genogroup. J Gen Virol 86:1343-7). TTSuV1 and TTSuV2 are highly prevalent in pig populations in many countries (Gallei, A., et al. 2010. Porcine Torque teno virus: determination of viral genomic loads by genogroup-specific multiplex rt-PCR, detection of frequent multiple infections with genogroups 1 or 2, and establishment of viral full-length sequences. Vet Microbiol 143:202-12; Kekarainen, T., et al. 2006. Prevalence of swine Torque teno virus in post-weaning multisystemic wasting syndrome (PMWS)-affected and non-PMWS-affected pigs in Spain. J Gen Virol 87:833-7; McKeown, N. E., et al. 2004. Molecular characterization of porcine TT virus, an orphan virus, in pigs from six different countries. Vet Microbiol 104:113-7).
Human and porcine anelloviruses share the same genomic structure, which consists of at least four presumed open reading frames (ORFs), ORF1, ORF2, ORF1/1 and ORF2/2, as well as a short stretch of high GC content in the untranslated region (UTR) (Huang, Y. W., et al. 2010. Virology 396:287-97; Okamoto, H., et al. 2002. Genomic characterization of TT viruses (TTVs) in pigs, cats and dogs and their relatedness with species-specific TTVs in primates and tupaias. J Gen Virol 83:1291-7; Qiu, J., et al. 2005. Human circovirus TT virus genotype 6 expresses six proteins following transfection of a full-length clone, J Virol 79:6505-10). The transcription pattern and related translational products of human TTV genogroup 1 have been experimentally determined by using two full-length TTV DNA clones (Mueller, B., et al. 2008. Gene expression of the human Torque Teno Virus isolate P/1C1. Virology 381:36-45; Qiu, J., et al. 2005. J Virol 79:6505-10). It was shown that the human TTV genome expresses three or more spliced mRNAs encoding at least six proteins, ORF1, ORF2, ORF1/1, ORF2/2, ORF1/2 and ORF2/3 (Mueller, B., et al. 2008. Virology 381:36-45). The transcriptional analysis and protein expression profile using cloned full-length genomic DNA have not been reported for TTSuV.
The ORF1 of TTSuV is believed to encode a viral capsid and replication-associated protein (Huang, Y. W., et al. 2010. Virology 396:287-97; Okamoto, H., et al. 2002. J Gen Virol 83:1291-7). IgG antibodies against the ORF1 of TTV and TTSuV have been detected in human and pig sera, respectively (Huang, Y. W., et al. 2011. Expression of the putative ORF1 capsid protein of Torque teno sus virus 2 (TTSuV2) and development of Western blot and ELISA serodiagnostic assays: correlation between TTSuV2 viral load and IgG antibody level in pigs. Virus Res 158:79-88; Kakkola, L., et al. 2008. Expression of all six human Torque teno virus (TTV) proteins in bacteria and in insect cells, and analysis of their IgG responses. Virology 382:182-9; Ott, C., et al. 2000. Use of a TT virus ORF1 recombinant protein to detect anti-TT virus antibodies in human sera. J Gen Virol 81:2949-58).
The pathogenic potential of anellovirus is still controversial. Currently, human TTV is not considered to be directly associated with a particular disease, although recent studies suggested TTV may serve as an immunological trigger of multiple sclerosis (Maggi, F., and M. Bendinelli. 2010. Human anelloviruses and the central nervous system. Rev Med Virol 20:392-407). Similarly, whether TTSuV is associated with a swine disease is still debatable. TTSuV1 was shown to partially contribute to the experimental induction of porcine dermatitis and nephropathy syndrome (PDNS) and postweaning multisystemic wasting syndrome (PMWS or porcine circovirus associated disease, PCVAD) in a gnotobiotic pig model (Ellis, J. A., et al. 2008. Effect of coinfection with genogroup 1 porcine torque teno virus on porcine circovirus type 2-associated postweaning multisystemic wasting syndrome in gnotobiotic pigs. Am J Vet Res 69:1608-14; Krakowka, S., et al. 2008. Evaluation of induction of porcine dermatitis and nephropathy syndrome in gnotobiotic pigs with negative results for porcine circovirus type 2. Am J Vet Res 69:1615-22). PMWS-affected pigs in Spain had a higher prevalence and viral loads of TTSuV2 than the PMWS-unaffected pigs (Aramouni, M., et al. 2011. Torque teno sus virus 1 and 2 viral loads in postweaning multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS) affected pigs. Vet Microbiol 153:377-81; Kekarainen, T., et al. 2006. J Gen Virol 87:833-7). Moreover, a significantly lower level of anti-TTSuV2 antibody was found in PCVAD-affected pigs than in PCVAD-unaffected pigs (Huang, Y. W., et al. 2011. Virus Res 158:79-88). However, results from other studies did not support a direct association of TTSuV1 or TTSuV2 with PCVAD or association of type 2 porcine circovirus (PCV2) and TTSuV with porcine reproductive failures (Gauger, P. C., et al. 2011. Postweaning multisystemic wasting syndrome produced in gnotobiotic pigs following exposure to various amounts of porcine circovirus type 2a or type 2b. Vet Microbiol 153:229-39; Huang, Y. W., et al. 2012. Serological profile of Torque teno sus virus species 1 (TTSuV1) in pigs and antigenic relationships between two TTSuV1 genotypes (1a and 1b), between two species (TTSuV1 and 2), and between porcine and human anelloviruses. J. Virol. Submitted Manuscript; Lee, S. S., et al. 2010. Quantitative detection of porcine Torque teno virus in Porcine circovirus-2-negative and Porcine circovirus-associated disease-affected pigs. J Vet Diagn Invest 22:261-4; Ritterbusch, G. A., et al. 2011. Natural co-infection of torque teno virus and porcine circovirus 2 in the reproductive apparatus of swine. Res Vet Sci. doi:10.1016/j.rvsc.2011.04.001).
Due to the lack of a cell culture system to propagate anelloviruses, little is known regarding the molecular biology and pathogenesis of anelloviruses. In order to definitively characterize diseases associated with anellovirus infection, an appropriate animal model is needed. Since multiple infections of different genotypes or subtypes of human TTV or TTSuV are common events (Gallei, A., et al. 2010. Vet Microbiol 143:202-12; Huang, Y. W., et al. 2010. Virology 396:287-97; Ninomiya, M., et al. 2008. J Clin Microbiol 46:507-14), a biologically pure and isolated form of a specific anellovirus generated from full-length infectious DNA clone is also required for a pathological study of a single phenotype. Although infectious DNA clones of human TTV in cultured cells have been reported (de Villiers, E. M., et al. 2011. The diversity of torque teno viruses: in vitro replication leads to the formation of additional replication-competent subviral molecules. J Virol 85:7284-95; Kakkola, L., et al. 2007. Construction and biological activity of a full-length molecular clone of human Torque teno virus (TTN) genotype. FEBS J 274:4719-30; Leppik, L., et al. 2007. In vivo and in vitro intragenomic rearrangement of TT viruses. J Virol 81:9346-56), it is important to construct an infectious TTSuV DNA clone so that TTSuV can be used as a useful model to study the replication and transcription mechanisms and to dissect the structural and functional relationships of anellovirus genes. More importantly, the availability of a TTSuV infectious DNA clone will afford us an opportunity to use the pig as a model system to study the replication and pathogenesis of TTSuV or even human TTV.
Multiple infections of human TTV with different genotypes in a single human individual or TTSuV with different genotypes or subtypes in a single pig have been documented (Ball, J. K., et al. 1999. TT virus sequence heterogeneity in vivo: evidence for co-infection with multiple genetic types. J Gen Virol 80 (Pt 7): 1759-68; Forns, X., et al. 1999. High prevalence of TT virus (TTV) infection in patients on maintenance hemodialysis: frequent mixed infections with different genotypes and lack of evidence of associated liver disease. J Med Virol 59:313-7; Gallei, A., et al. 2010. Vet Microbiol 143:202-12; Huang, Y. W., et al. 2010. Virology 396:289-97; Jelcic, I., et al. 2004. Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin's disease patient: genome reorganization and diversity in the hypervariable region. J Virol 78:7498-507; Niel, C., et al. 2000. Coinfection with multiple TT virus strains belonging to different genotypes is a common event in healthy Brazilian adults. J Clin Microbiol 38:1926-30; Ninomiya, M., et al. 2008. J Clin Microbiol 46:507-14). These findings raise the question whether the anti-ORF1 capsid antibodies recognized by the antigen from a particular TTV or TTSuV species/geno types also comprise anti-ORF1 antibodies against other distinct TTV or TTSuV species/genotypes and whether the anti-ORF1 antibodies from one TTV or TTSuV genotype can cross-protect against infection with another genotype. To our knowledge, for human TTV or TTSuV infection there is no information on this topic available to date. Furthermore, the antigenic diversity and relationship of anelloviruses have never been assessed (Maggi, F. and M. Bendinelli. 2009. Immunobiology of the Torque teno viruses and other anelloviruses. Curr Top Microbiol Immunol 331:65-90). It is reasonable to speculate that there is little, if any, antigenic cross-reactivity between different anellovirus species/genotypes, due to the fact that concurrent infections with multiple anelloviruses in a single individual or animal exist.
The inventors have previously developed and validated serum Western blot (WB) and indirect ELISA assays for detection of the IgG antibody against TTSuV2 in porcine sera using the purified recombinant TTSuV2-ORF1 protein expressed in E. coli (Huang, Y. W., et al. 2011. Virus Res 158:79-88). By using TTSuV2-specific real-time quantitative PCR (qPCR) and ELISA, The inventors further presented the combined virological and serological profile of TTSuV2 infection under natural or diseased conditions using 160 porcine sera collected from different sources (Huang, Y. W., et al. 2011. Id.). In the present invention, the inventors initially aimed to assess the serological profiles of the two TTSuV1 genotypes (TTSuV1a and TTSuV1b) in pigs, respectively. Subsequently, the inventors aimed to compare the virological and serological profiles of TTSuV1a and TTSuV1b with that of TTSuV2, and to determine the degree of correlation of IgG antibody levels between anti-TTSuV1a and -TTSuV1b and between anti-TTSuV1a or -1b and anti-TTSuV2. Finally, for the first time, the inventors assessed the antigenic relationships between two TTSuV1 genotypes (TTSuV1a and TTSuV1b), between two species (TTSuV1 and TTSuV2), and between porcine and human genogroup 1 anelloviruses using ELISA and immunofluorescence assay with antibody cross-reactions in PK-15 cells transfected with recombinant plasmids expressing the ORF1 s from TTSuV1a, TTSuV1b and TTSuV2, respectively.
The present invention provides an infectious nucleic acid molecule of porcine Torque teno virus (PTTV), also known as, and referred to herein interchangeably as, Torque teno sus virus (TTsuV) comprising a nucleic acid molecule encoding an infectious TTsuV which contains at least one copy of genomic sequence having at least 85% homology to a genomic sequence of TTsuV2.
The present invention provides an infectious nucleic acid molecule (“infectious DNA clone”) of porcine Torque teno virus (PTTV) comprising a nucleic acid molecule encoding an infectious PTTV which contains at least one copy of genomic sequence having at least 80% homology to a genomic sequence selected from the group consisting of genotypes of PTTV1a-VA, PTTV1b-VA, PTTV2b-VA, and PTTV2c-VA.
According to one aspect of the present invention, the infectious DNA clones of PTTV of set forth in claim 1, wherein the genomic sequence is selected from sequences set forth in SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, and SEQ ID NO:12.
The present invention provides a biologically functional plasmid or viral vector containing the infectious PTTV genomes.
The present invention provides a suitable host cell transfected with the infectious clone DNA plasmid or viral vector.
The present invention provides an infectious PTTV produced by cells transfected with the PTTV infectious DNA clones.
The present invention also provides a viral vaccine comprising a nontoxic, physiologically acceptable carrier and an immunogenic amount of a member selected from the group consisting of (a) a nucleic acid molecule containing at least one copy of genomic sequence having at least 80% homology to a genomic sequence selected from the group consisting of PTTV genotypes or subtypes PTTV1a-VA, PTTV1b-VA, PTT V2b-VA, and PTTV2c-VA, or its complementary strand, (b) a biologically functional plasmid or viral vector containing a nucleic acid molecule containing at least one copy of genomic sequence having at least 80% homology to a genomic sequence selected from the group consisting of PTTV genotypes or subtypes PTTV1a-VA, PTTV1b-VA, PTTV2b-VA, and PTTV2c-VA, or its complementary strand, and (c) an avirulent, infectious nonpathogenic PTTV which contains at least one copy of genomic sequence having at least 80% homology to a genomic sequence selected from the group consisting of PTTV genotypes or subtypes PTTV1a-VA, PTTV1b-VA, PTTV2b-VA, and PTTV2c-VA.
According to one aspect of the present invention, the vaccine contains live PTTV virus derived from the PTTV infectious clones. According to another aspect of the present invention, the vaccine contains killed PTTV virus derived from the PTTV infectious clones.
The present invention provides purified recombinant proteins expressed from the ORF1 capsid genes of PTTV genotypes or subtypes PTTV1a-VA, PTTV1b-VA, and PTTV2c-VA in bacterial expression system, and the use of these recombinant capsid proteins as subunit vaccines against PTTV infections. In one embodiment of the present invention, the recombinant capsid proteins for the use as subunit vaccines are expressed in baculovirus expression system and other expression vector systems.
According to a further aspect of the present invention, further contains an adjuvant.
The present invention further provides a method of immunizing a pig against PTTV viral infection, comprising administering to a pig an immunologically effective amount of the viral vaccine.
According to one aspect of the present invention, the method comprising administering the recombinant subunit capsid protein, the infectious nucleic acid molecule or live PTTV virus to the pig.
According to another aspect of the present invention, the method comprising administering the vaccine parenterally, intranasally, intradermally, or transdermally to the pig. According a further aspect of the present invention, the method comprising administering the vaccine intralymphoidly or intramuscularly to the pig.
The present invention also provides an isolated polynucleotide consisting of the sequence of the nucleotide sequence of PTTV1a-VA set forth in SEQ ID NO:9.
The present invention also provides an isolated polynucleotide consisting of the sequence of the nucleotide sequence of PTTV1b-VA set forth in SEQ ID NO:10
The present invention also provides an isolated polynucleotide consisting of the sequence of the nucleotide sequence of PTTV2b-VA set forth in SEQ ID NO:11.
The present invention also provides an isolated polynucleotide consisting of the sequence of the nucleotide sequence of PTTV2c-VA set forth in SEQ ID NO:12.
The present invention further provides a subunit vaccine comprising an immunogentic fragment of a polypeptide sequence or a complete protein translated according to a polynucleotide sequence selected from the group consisting of ORF1, ORF2, ORF1/1, and ORF2/2 of PTTV genotypes or subtypes PTTV1a-VA, PTTV1b-VA, PTTV2b-VA, and PTTV2c-VA, particularly the ORF1 encoding the capsid protein.
According to one aspect of the present invention, the polynucleotide sequence is selected from the group consisting of ORF1 of PTTV genotypes or subtypes PTTV1a-VA, PTTV1b-VA, PTTV2b-VA, and PTTV2c-VA.
According to another aspect of the present invention, the polynucleotide sequence is ORF1 of PTTV genotype PTTV1a-VA. According to a further aspect of the present invention, the polynucleotide sequence is ORF1 of PTTV genotype PTTV1b-VA. According to yet another aspect of the present invention, the polynucleotide sequence is ORF1 of PTTV subtype PTTV2c-VA.
According to one aspect of the present invention, the polypeptide sequence is selected from the group consisting of sequence set forth in SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, and SEQ ID NO:28.
According to another aspect of the present invention, the polypeptide sequence is set forth in SEQ ID NO:13. According to another aspect of the present invention, the polypeptide sequence is set forth in SEQ ID NO:14. According to a further aspect of the present invention, the polypeptide sequence is set forth in SEQ ID NO:16. In one specific embodiment of the present invention, the polypeptide sequence is C-terminal region (aa 310-625) of SEQ ID NO:16. According to yet another aspect of the present invention, the polypeptide sequence is set forth in SEQ ID NO:20.
According to an additional aspect of the present invention, the vaccine further contains an adjuvant.
The present invention further provides method of immunizing a pig against PTTV viral infection, comprising administering to a pig an immunologically effective amount of the vaccine comprising an immunogenic fragment of a polypeptide sequence or a complete protein translated according to a polynucleotide sequence selected from the group consisting of ORF1, ORF2, ORF1/1, and ORF2/2 of PTTV genotypes or subtypes PTTV1a-VA, PTTV1b-VA, PTTV2b-VA, and PTTV2c-VA.
According to one aspect of the present invention, the method comprises administering the immunogenic fragment or recombinant capsid protein to the pig.
According to another aspect of the present invention, the method comprises administering the vaccine parenterally, intranasally, intradermally, or transdermally to the pig. According to a further aspect of the present invention, the method comprises administering the vaccine intralymphoidly or intramuscularly to the pig.
The present invention additionally provides a method for diagnosing PTTV1 infection and quantification of PTTV1 load, comprising extracting DNA from a sample suspected of PTTV1 infection, performing polymerase chain reaction (PCR) using primers comprising the sequences set forth in SEQ ID NO:29 and SEQ ID NO:30, and detecting PTTV1 specific amplification. According to one aspect of the present invention, the polymerase chain reaction is a SYBR green real-time PCR.
The present invention further provides a method for diagnosing PTTV2 infection and quantification of PTTV2 load, comprising extracting DNA from a sample suspected of PTTV2 infection, performing polymerase chain reaction (PCR) using primers comprising the sequences set forth in SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31 and SEQ ID NO:32, and detecting PTTV2 specific amplification. According to one aspect of the present invention, the polymerase chain reaction is a SYBR green real-time PCR.
The present invention also provides a method for simultaneously detecting and diagnosing PTTV1 and PTTV2 infection, comprising extracting DNA from a sample suspected of PTTV infection, performing polymerase chain reaction (PCR) using primers comprising the sequences set forth in SEQ ID NO:31 and SEQ ID NO:32, and detecting PTTV1 and PTTV2 specific amplification. According to one aspect of the present invention, the polymerase chain reaction is a SYBR green real-time PCR.
The present invention, in addition, provides a method for simultaneously detecting and diagnosing PTTV1a and PTTV1b infection, comprising extracting DNA from a sample suspected of PTTV1 infection, performing a first polymerase chain reaction (PCR) using primers comprising the sequences set forth in SEQ ID NO:33 and SEQ ID NO:34, performing a second PCR using primers comprising the sequences set forth in SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, and SEQ ID NO:38, and detecting PTTV1a and PTTV1b specific amplification.
The present invention provides a method for diagnosing PTTV infection, comprising immobilizing an immunogenic fragment of a polypeptide sequence translated according to a polynucleotide sequence selected from the group consisting of ORF1, ORF2, ORF1/1, and ORF2/2 of PTTV genotypes or subtypes PTTV1a-VA, PTTV1b-VA, PTTV2b-VA, and PTTV2c-VA; contacting a serum sample from a pig suspected of PTTV infection with the immobilized immunogenic fragment, and detecting captured antibody specific to the immunogenic fragment.
According to one aspect of the present invention, the polynucleotide sequence is selected from the group consisting of ORF1 of PTTV genotypes or subtypes PTTV1a-VA, PTTV2b-VA, and PTTV2c-VA.
According to one embodiment of the present invention, the polynucleotide sequence is ORF1 of PTTV genotype PTTV1a-VA. According to another embodiment of the present invention, the polynucleotide sequence is ORF1 of PTTV genotype PTTV1b-VA. According to a further embodiment of the present invention, the polynucleotide sequence is ORF1 of PTTV subtype PTTV2c-VA
According to another aspect of the present invention, the polypeptide sequence is selected from the group consisting of sequence set forth in SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID No:20, SEQ ID No:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, and SEQ ID NO:28.
According to one embodiment of the present invention, the polypeptide sequence is set forth in SEQ ID NO:13. According to another aspect of the present invention, the polypeptide sequence is set forth in SEQ ID NO:14. According to another embodiment of the present invention, the polypeptide sequence is set forth in SEQ ID NO:16. According to a further embodiment of the present invention, the immunogenic fragment is C-terminal region (aa 310-625) of SEQ ID NO:16. According to yet another embodiment of the present invention, the polypeptide sequence is set forth in SEQ ID NO:20.
The present invention provides three standardized enzyme-linked immunosorbent assays (ELISA) to diagnose PTTV infections and detect antibodies in serum of pigs infected by PTTV genotypes PTTV1a-VA, PTTV1b-VA, and all known subtypes in PTTV species 2.
The ELISA diagnostic tests are based on the bacterial-expressed or baculovirus-expressed recombinant ORF1 capsid protein of PTTV genotypes PTTV1a-VA, PTTV1b-VA, and PTTV2c-VA.
According to another aspect of the present invention, the detecting captured antibody is via Western blot. According to yet another aspect of the present invention, the detecting captured antibody is via enzyme-linked immunosorbent assay (ELISA).
According to one embodiment, the at least one copy of genomic sequence has at least 95% homology to the genomic sequence of TTsuV2.
According to another embodiment, the genomic sequence of TTsuV2 is a genomic clone of PTTV2c-VA. In one specific example, the genomic sequence is selected from sequences set forth in SEQ ID NO: 12.
According to a further embodiment, the genomic sequence of TTsuV2 is of genomic clone of TTV2-#471942. In a specific example, the genomic sequence is selected from sequences set forth in SEQ ID NO: 62.
According to an additional embodiment, the genomic sequence of TTsuV2 comprising at least one genetic marker in intron 1. In a specific example, the genetic marker in intron 1 is an artificially introduced restriction site.
The present invention provides a biologically functional plasmid or viral vector containing an infectious nucleic acid molecule of Torque teno sus virus (TTsuV) comprising a nucleic acid molecule encoding an infectious TTsuV which contains at least one copy of genomic sequence having at least 85% homology to a genomic sequence of TTsuV2.
According to one embodiment, the biologically functional plasmid or viral vector contains more than one copy of the infectious nucleic acid molecule.
According to one embodiment, the biologically functional plasmid or viral vector contains tandem copies of genomic clone of PTTV2c-VA.
The present invention provides an infectious TTsuV produced by cells containing the infectious nucleic acid sequence of TTsuV2 is of genomic clone of PTTV2c-VA.
The present invention provides a method for diagnosing TTsuV infection, comprising immobilizing an immunogentic fragment or a complete protein of a polypeptide sequence of ORF1 protein of TTsuV 1 or 2, contacting a serum sample from a pig suspected of TTsuV infection with the immobilized immunogenic fragment or complete protein, and detecting captured antibody specific to the immunogenic fragment.
According to one embodiment, the polypeptide sequence is selected from the group consisting of ORF1 proteins of TTsuV genotypes or subtypes TTsuV1a \or TTsuV1b.
According to another embodiment, the polypeptide sequence is selected from the group consisting of N-terminal truncated ORF1 proteins of TTsuV genotypes or subtypes TTsuV1a, TTsuV1b or TTsuV2. In a specific example, the polypeptide sequence is amino acid No. 317-635 of ORF1 protein of TTsuV1a. In another example, the polypeptide sequence is amino acid No. 322-639 of ORF1 protein of TTsuV1b.
The above-mentioned features of the invention will become more clearly understood from the following detailed description of the invention read together with the drawings in which:
In accordance with the present invention, in one specific example, the aforementioned four novel porcine TTV subtypes are isolated from a single boar in Virginia.
In
One boar serum sample (SR#5) that was shown to be positive for both PTTV1 and PTTV2 in the first-round PCR, thus indicative of higher virus load, was used for subsequent full-length genomic cloning of PTTV. Surprisingly, initial attempts to utilize two primer sets (NG372/NG373 and NG384/NG385) of an inverse PCR (Okamoto et al., 2002, supra) designed for cloning of the first PTTV strain Sd-TTV31 to amplify the virus genomic DNA were not successful. No PCR product, was obtained after several trials. Based upon the initial sequence of the region A of PTTV1 and the region D of PTTV2, two new pairs of primers (TTV1-If (SEQ ID NO:1)/TTV1-2340R (SEQ ID NO:2) and TTV1-2311F (SEQ ID NO:3)/TTV1-IR (SEQ ID NO:4)) were subsequently designed to amplify regions B and C spanning the assumed PTTV1 genome, and two additional pairs of primers (TTV2-IF (SEQ ID NO:5)/TTV2-2316R (SEQ ID NO:6) and TTV2-GCF (SEQ ID NO:7)/TTV2-IR (SEQ ID NO:8)) to amplify regions E and F spanning the assumed PTTV2 genome, respectively (
Unexpectedly, two groups of sequence data from each construct were identified, indicating that there exist two types of PTTVs in genogroup 1 and genogroup 2 from the same pig. In order to differentiate and assemble the four PTTV strains, sequence comparisons were performed together with the three known PTTV strains, Sd-TTV31, TTV-1p and TTV-2p (
For PTTV1, the initiation codon ATG and the termination codon TGA of the putative ORF1 were located in fragments B and C, respectively (
Differentiation of the two PTTV2 strains was easier. A unique continuous “AG” nucleotides located in the overlapping region of two PCR fragments was shared by two groups of sequence data from fragments E and F, respectively (
The present invention provides four isolated porcine TTV virus genotypes or subtypes that are associated with viral infections in pigs. This invention includes, but is not limited to, porcine TTV virus genotypes or subtypes PTTV1a-VA, PTTV1b-VA, PTTV2b-VA, and PTTV2c-VA, the virus genotypes or subtypes which have nucleotide sequences set forth in SEQ ID NO:9 (PTTV1a-VA), SEQ ID NO:10 (PTTV1b-VA), SEQ ID NO:11 (PTTV2b-VA), and SEQ ID NO:12 (PTTV2c-VA), their functional equivalent or complementary strand. It will be understood that the specific nucleotide sequence derived from any porcine TTV will have slight variations that exist naturally between individual viruses. These variations in sequences may be seen in deletions, substitutions, insertions and the like.
The proposed genomic structure for each of the four PTTV strains was analyzed in detail and summarized in Table 2, together with the three known PTTV strains, Sd-TTV31, TTV-1p and TTV-2p. All the four U.S. strains of PTTV have a similar genomic size of 2,878 by (PTTV1a-VA SEQ ID NO:9), 2,875 by (PTTV1b-VA SEQ ID NO:10), 2,750 by (PTTV2b-VA SEQ ID NO:11), and 2,803 by (PTTV2c-VA SEQ ID NO:12), respectively. Both PTTV1a-VA (SEQ ID NO:9) and Sd-TTV31 have the same genomic length. The published sequences of the strains TTV-1p and TTV-2p all have many undetermined nucleotides in the GC-rich region of the UTR. After artificial filling of these nucleotides with the consensus sequences corresponding to PTTV1 and PTTV2, it was shown that the TTV-1p is more closely-related to PTTV1b-VA (SEQ ID NO:10), and that TTV-2p is more closely-related to PTTV2b-VA (SEQ ID NO:11) in, genomic length, respectively (data not shown).
The assembled genomic sequences of porcine TTV virus genotypes or subtypes PTTV1a-VA (SEQ ID NO:9), PTTV1b-VA (SEQ ID NO:10), PTTV2b-VA (SEQ ID NO:11), and PTTV2c-VA(SEQ ID NO:12) are submitted to Genbank® (Nucleic Acids Research, 2008 January: 36(Database issue):D25-30) with accession numbers GU456383, GU456384, GU456385, and GU456386, respectively.
Two recent studies have identified the transcribed viral mRNAs and the expression of at least six viral proteins during human TTV replication (Mueller et al., 2008, supra; Qiu et al., 2005, supra), which is more than the predicted number of ORFs encoded by human TTV (Okamoto, H., et al. (2000b). TT virus mRNAs detected in the bone marrow cells from an infected individual. Biochem Biophys Res Commun 279(2), 700-7), therefore we included the new human TTV genomic information for comparison with the PTTV sequences. The 5′-ends of the mRNA transcripts of human TTV strain P/1C1 were mapped to an “A” that is 25 nt downstream of the TATA-box (Mueller et al., 2008, supra). This starting point, its adjacent sequence (CGAATGGCTGAGTTTATGCCGC (SEQ ID NO:39); the starting point was underlined) and the distance to the upstream TATA-box (24 nt; Table 2) are very conserved in all seven PTTV strains, suggesting that PTTV and human TTV may utilize a common 5′-end of mRNA for translation.
Five additional completely-conserved regions were identified in the vicinity of the TATA-box among all seven PTTV strains. Two regions of 11 nt each (AGTCCTCATTT (SEQ ID NO:40) and AACCAATCAGA (SEQ ID NO:41)) are located in the upstream of the TATA-box, whereas the remaining three regions (CTGGGCGGGTGCCGGAG of 17 nt (SEQ ID NO:42); CGGAGTCAAGGGGC of 14 nt (SEQ ID NO:43); TATCGGGCAGG of 11 nt (SEQ ID NO:44)) are located between the proposed 5′-end of mRNA and the initiation codon of ORF2. These conserved PTTV-specific sequences may contain the common elements regulating the viral gene expression.
Previously, three ORFs (ORFs 1-3) were proposed in the genome of the three known PTTV strains, respectively (Niel et al., 2005, supra; Okamoto et al., 2002, supra). The four prototype U.S. strains of PTTV identified in this study possess this structure. The corresponding ORF3 in human TTV has been renamed as ORF2/2 since it initiates at the same ATG in ORF2 and remains in the same ORF (extending ORF2) after the splicing (
The ORF1 and ORF2 are encoded by a ˜2.8 kb viral mRNA whereas the ORF1/1 and ORF2/2 are encoded by a spliced viral mRNA with .about.1.2 kb in human TTV (Mueller et al., 2008, supra; Qiu et al., 2005, supra). Since these four ORFs were also deduced in PTTV genomes, and since the sequences and positions of the putative splice donor and acceptor sites in the seven PTTV strains are very conserved (Table 2), it is speculated that porcine TTV probably also encodes the two corresponding mRNAs.
Most of the human TTV strains share a genetic similarity with the CAV, encoding a TTV apoptosis-inducing protein (TAIP) in which its CAV counterpart was named apoptin (de Smit, M. H., and Noteborn, M. H. (2009). Apoptosis-inducing proteins in chicken anemia virus and TT virus. Curr Top Microbiol Immunol 331, 131-49). The ORF of TAIP is embedded within the ORF2. However, the corresponding TAIP does not exist in porcine TTV. A recent study showed that the expression of apoptin or TAIP was required for CAV replication in cultured cells (Prasetyo, A. A., et al. (2009). Replication of chicken anemia virus (CAV) requires apoptin and is complemented by VP3 of human torque teno virus (TTV). Virology 385(1), 85-92).
Pairwise sequence comparisons (PASC) is a useful method that plots the frequency distribution of pairwise nucleotide sequence identity percentages from all available genomic sequence of viruses in the same family (Bao, Y., Kapustin, Y., and Tatusova, T. (2008). Virus Classification by Pairwise Sequence Comparison (PASC). In “Encyclopedia of Virology, 5 vols.” (B. W. J. Mahy, and M. H. V. Van Regenmortel, Eds.), Vol. 5, pp. 342-8. Elsevier, Oxford). The different peaks generated by the PASC program usually represent groups of virus genera, species, types, subtypes and strains. In this study, we performed PASC analyses of TTV using 121 full-length genomic sequences of human and animal TTV-related strains available in GenBank database. Assuming that TTV members are classified into a separate family, Anelloviridae, the two major peaks, at 36-55% and 55-67% nucleotide sequence identities, represent groups of genera and species, respectively. Accordingly, a TTV type is defined as a group of TTV having 67-85% nucleotide sequence identity whereas a TTV subtype may be defined as a group of TTV sequences sharing 85-95% nucleotide sequence identity. TTV strains sharing more than 95% nucleotide sequence identity may be further classified into variants. A similar classification has been proposed using sequences of 103 TTV isolates by Jelcic et al (Jelcic, I., et al. (2004). Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin's disease patient: genome reorganization and diversity in the hypervariable region. J Virol 78(14), 7498-507).
This proposed criteria of TTV classification were applied to phylogenetic analyses of the genomic sequences of the 4 prototype U.S. strains of PTTV and the 3 other known PTTV strains. Pairwise comparison of full-length nucleotide sequences among these strains showed that the four PTTV1 strains have 54.0-56.4% nucleotide sequence identity compared to the three PTTV2 strains (Table 3). Therefore, the previously designated “genogroup” of PTTV in the literature will probably be more appropriate to designate as “species”, and PTTV1 and PTTV2 probably should represent porcine TTV species I and species 2, respectively. PTTV species 1 consists of two types of viruses designated as type 1a (including Sd-TTV31 and PTTV1a-VA (SEQ ID NO:9)) and type 1b (including TTV-1p and PTTV1b-VA (SEQ ID NO:10)), respectively, since the nucleotide sequence identity between these two types of viruses is between 69.8-70.7% (Table 3). Sd-TTV31 and TTV1a-VA (SEQ ID NO:9) are recognized as variant strains of the same species due to their higher sequence identity (95.1%). However, the two type 1b strains, TTV-1p and PTTV1b-VA (SEQ ID NO:10), may belong to two different subtypes (nucleotide sequence identity=86.4%). For PTTV species 2, three strains are likely to be classified into separate subtypes (TTV-2p for subtype 2a, PTTV2b-VA (SEQ ID NO:11) for subtype 2b, and PTTV2c-VA (SEQ ID NO:12) for subtype 2c, respectively) based upon their 86.5-90.9% nucleotide sequence identity. This proposed new classification system for PTTV was clearly evident in the phylogenetic tree. Phylogenetic trees constructed based upon the deduced amino acid sequences of ORF1, ORF1/1, ORF2 and ORF2/2 of PTTV were also consistent with this proposed classification.
Unique mutations and deletions and/or insertions are scattered throughout the genomes between PTTV species, types and subtypes. For example, the location of ORF1 initiation and termination codons and the ORF2 initiation codons between PTTV type 1a and 1b, which was shown in
Remarkably, both TTV-2p and PTTV2b-VA have a large 52-nt deletion, which is 39 nt upstream of the first 11-nt conserved sequence (AGTCCTCATTT (SEQ ID NO:40)) in the UTR, compared to PTTV2c-VA. Due to this deletion, the genomic size of PTTV2b-VA (probably TTV-2p as well) was significantly smaller than that of PTTV2c-VA (Table 2). A number of “subviral” human TTV clones have been isolated from serum samples that are considered as full-length TTV genomes since the ORFs in a majority of these subviral molecules usually remain intact (de Villiers et al., 2009; Leppik et al., 2007). They have variable lengths in the UTR that are completely or partially deleted. The situation of TTV-2p and PTTV2b-VA appears to resemble that of the human TTV subviral molecules, implying that subtypes PTTV2a and PTTV2b might be the subviral molecules derived from subtype PTTV2c. Of note, the 3′-terminal sequence of a nested-PCR primer TTV2-nF (Table 1) that is commonly used for detection of the PTTV2 from field samples by other groups (Ellis et al., 2008, supra; Kekarainen et al., 2007, supra; Kekarainen et al., 2006, supra; Krakowka et al., 2008, supra) is located at both sides of the deletion. Therefore, the current nested-PCR assay for PTTV2 detection is likely not sufficient to identify the genetically diverse strains of PTTV2c subtype.
The source of the isolated virus strain is serum, fecal, saliva, semen and tissue samples of pigs having the porcine TTV viral infection. However, it is contemplated that recombinant DNA technology can be used to duplicate and chemically synthesize the nucleotide sequence. Therefore, the scope of the present invention encompasses the isolated polynucleotide which comprises, but is not limited to, a nucleotide sequence set forth in SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, and SEQ ID NO:12, or its complementary strand; a polynucleotide which hybridizes to and which is at least 67% complementary to the nucleotide sequence set forth in SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, and SEQ ID NO:12, preferably 85% complementary, or more preferably 95% complementary; or an immunogenic fragment selected from the group consisting of an amino acid sequence of ORF1 protein set forth in SEQ ID NO:13 (PTTV1a-VA), SEQ ID NO:14 (PTTV1b-VA), SEQ ID NO:15 (PTTV2b-VA), SEQ ID NO:16 (PTTV2c-VA), an amino acid sequence of ORF2 protein set forth in SEQ ID NO:17 (PTTV1a-VA), SEQ ID NO:18 (PTTV1b-VA), SEQ ID NO:19 (PTTV2b-VA), SEQ ID NO:20 (PTTV2c-VA), an amino acid sequence of ORF1/1 protein set forth in SEQ ID NO:21 (PTTV1a-VA), SEQ ID NO:22 (PTTV1b-VA), SEQ ID NO:23 (PTTV2b-VA), SEQ ID NO:24 (PTTV2c-VA), an amino acid sequence of ORF2/2 protein set forth in SEQ ID NO:25 (PTTV1a-VA), SEQ ID NO:26 (PTTV1b-VA), SEQ ID NO:27 (PTTV2b-VA), SEQ ID NO:28 (PTTV2c-VA). The immunogenic or antigenic coding regions or fragments can be determined by techniques known in the art and then used to make monoclonal or polyclonal antibodies for immunoreactivity screening or other diagnostic purposes. The invention further encompasses the purified, immunogenic protein encoded by the isolated polynucleotides. Desirably, the protein may be an isolated or recombinant ORF1 protein or an ORF2 protein of at least one of the above isolated porcine TTV subtypes, more desirably ORF1 protein.
The ORF1 of porcine TTV is believed to encode a structural and replication-associated protein (Maggi, F. and Bendinelli, M. (2009). Immunobiology of the Torque teno viruses and other anelloviruses. Curr Top Microbiol Immunol 331, 65-90). The ORF1-encoding products of seven PTTV strains have 624-635 aa in length and possess a high number of arginine residues at the N-terminus that are thought to have the DNA-binding activity (
The ORF1 proteins of PTTV strains between species 1 and species 2 share very low aa sequence identity with only 22.4 to 25.8%, which makes it difficult to identify significantly conserved aa sequences between the two species (
The aa sequences of ORF2 differed considerably between the four PTTV1 (PTTV1a-VA SEQ ID NO:17; PTTV1b-VA SEQ ID NO:18) and three PTTV2 (PTTV2b-VA SEQ ID NO:19; PTTV2c-VA SEQ ID NO:20) strains (
In summary, the present invention has determined the full-length genomic sequences of four porcine TTV strains representing different genotypes or subtypes in a serum sample of a single boar in Virginia. The finding from this study clearly indicates that, similar to human TTV, multiple PTTV infections with distinct genotypes or subtypes exist and probably are common in pigs. We have also provided new information regarding the genomic organization, the degree of variability and the characteristics of conserved nucleotide and amino acid motifs of PTTV, which will improve the current PCR detection assay, aid in developing reagents for serological diagnostics and help initiate the structural and functional study of PTTV. A new classification of PTTV is also proposed in this study based upon the phylogenetic and genetic analyses of the genomic sequences of seven known PTTV strains.
The present invention also provides methods for diagnostics of porcine TTV infection by detecting viral DNA in samples of porcine TTV infected pigs or other mammals. One preferred embodiment of the present invention involves methods for detecting porcine TTV nucleic acid sequences in a porcine or other mammalian species using oligonucleotide primers for polymerase chain reaction (PCR) to further aid in the diagnosis of viral infection or disease. The diagnostic tests, which are useful in detecting the presence or absence of the porcine TTV viral nucleic acid sequence in the porcine or other mammalian species, comprise isolating viral DNA from samples of porcine TTV infected pigs, or pigs suspected of infection of TTV, and performing SYBR green real-time quantitative PCR using PTTV1-specific (SEQ ID NO:29/SEQ ID NO:30) or PTTV2-specific (SEQ ID NO:31/SEQ ID NO:32) primers.
In another embodiment of the present invention, the diagnostic method may be adapted to simultaneously detect PTTV1 and PTTV2 by using PTTV1/PTTV2 duplex real-time PCR. More specifically, the method comprises isolating viral DNA from samples of porcine TTV infected pigs or pigs suspected of infection of TTV, performing real-time PCR using both PTTV1-specific (SEQ ID NO:29/SEQ ID NO:30) or PVVT2-specific (SEQ ID NO:31/SEQ ID NO:32) primers in the same real-time PCR reaction. Since the T.sub.m value between PTTV1 and PTTV2 can be distinguished by MCA, the presence of PTTV1 and PTTV2 DNA can be simultaneously detected.
In a further embodiment of the present invention, the diagnostic method may employ duplex nested PCR. The method comprises isolating viral DNA from samples of porcine TTV infected pigs or pigs suspected of infection of TTV, performing a first round of PCR using one pair of primers Plab-mF (SEQ ID NO:33)/P1ab-mR (SEQ ID NO:34), and performing a second round of PCR using a mixture of two pairs of primers, P1a-nF (SEQ ID NO:35)/P1a-nR (SEQ ID NO:36) for detection of PTTV1a, and P1b-nF (SEQ ID NO:37)/P1b-nR (SEQ ID NO:38) for detection of PTTV1b, and visualizing the PCR products.
The above diagnostics methods maybe optimized by one skilled in the art according to well known methods in the art.
Accordingly, an embodiment of the present invention develops two novel singleplex SYBR green real-time PCR assays to quantify the viral loads of two porcine TTV species, respectively. PTTV1- and PTTV2-specific primers were designed to target the extremely conserved regions across six PTTV1 and four PTTV2 full-length genomes available to date, respectively. Another embodiment of the present invention combines the two singleplex assays into a duplex real-time PCR assay followed by MCA of the viral amplicons that can be identified by their distinct melting temperatures for simultaneous detection of the two porcine TTV species, PTTV1a and PTTV1b. In a third embodiment, a duplex nested PCR assay for simultaneous amplification of the viral DNAs from two types of PTTV1 in the first round PCR and differential detection of types 1a and 1b in the second round PCR was developed for the identification of two types of porcine TTV species, PTTV1a and PTTV1b, in a single sample. These assays represent simple and practical tools for diagnoses of species- or type-specific porcine TTVs.
Potential primers sequences were identified by multiple sequence alignments of 10 available porcine TTV full-length genomes. PTTV1-specific primers TTV1F (SEQ ID NO:29) and TTV1R (SEQ ID NO:30) were designed based upon two conserved genomic regions immediately before the putative ORF2 across six PTTV1 genomes, whereas PTTV2-specific primers TTV2F4 (SEQ ID NO:31) and TTV2R4 (SEQ ID NO:32) were designed based upon two conserved genomic regions immediately after the putative ORF2/2 across four PTTV2 genomes (Table 4). Primers showed no potentials for self- and cross-dimerization. The expected amplicon sizes were a 118-bp fragment from the PTTV1 primers corresponding to the PTTV1b-VA genome and a 200-bp fragment from the PTTV2 primers corresponding to the PTTV2c-VA genome, respectively.
According to one specific embodiment of the present invention, SYBR green simplex real-time PCR using PTTV1- and PTTV2-specific primers can be used specifically to detect porcine TTV1 and TTV2 DNA, respectively. For PTTV1, a standard curve was established over a range of target DNA concentrations per 25 μl. The linear range was shown to span 4.4×101 to 4.4×108 copies. The minimum detection limit (44 copies) corresponded to a threshold cycle (Ct) of 37.57. For PTTV2, standard curve was also generated and used to detect DNA concentration ranging from 8.6×100 to 8.6×108 copies per 25 μl reaction. The corresponding Ct of minimum detection limit (8.6 copies) was 36.53.
According to another specific embodiment of the present invention, SYBR green duplex real-time PCR is utilized for the simultaneous detection of porcine TTV1 and TTV2 DNA. The 7-degree difference of Tm value between PTTV1 (87.0° C.) and PTTV2 (80.0° C.) made it feasible to distinguish them from one another by the MCA. Therefore, two singleplex assays can be coupled into a duplex real-time PCR assay for the simultaneous detection of PTTV1 and PTTV2. A positive sample was one that had a symmetrical melt peak within the known Tn, for that product. This new assay was first validated by using a 10-fold dilution of PTTV1 and PTTV2 standards mixture. The non-template negative control using sterile water as the template showed a non-specific amplification caused by cross-dimerization between the PTTV1 and PTTV2 primers not seen in the singleplex assays. This produced a distinct melt peak between 72.0° C. and 76.0° C.
The inventors of the present invention demonstrated the existence of two distinct genotypes, tentatively named PTTV1a and PTTV1b, in porcine TTV species 1. To further determine whether the co-infection of PTTV1a and PTTV1b is common in pigs, a novel duplex nested PCR assay to quickly distinguish between the two was developed. Alignment of porcine TTV genomic DNA sequences identified a conserved genomic region located at the N-terminal part of the putative ORF1 encoding the viral capsid protein (
In one example, the 20 serum samples from adult boars that were subjected to the duplex nested PCR assay were all found to be positive for both PTTV1a and PTTV1b, as determined by visualizing two bands of the expected sizes and subsequent sequencing confirmation of PCR products (data not shown). No PCR products were amplified in the 19 semen samples, which was consistent with the results of PTTV1 conventional nested PCR and real-time PCR assays described above.
Infection of pigs with the two species of porcine TTV has been found back to 1985 in Spanish pig farms according to a retrospective investigation (Segales et al., 2009, supra). However, whether porcine TTVs are associated with any particular pig diseases remains elusive. Since both of porcine TTV species have a high prevalence in domestic pigs, determination of TTV viral loads is presumably more important than assessing the presence of TTV DNA. The level of viral loads in serum and semen samples has been indicated as an important marker for PCVAD in PCV2 infection (Opriessnig et al., 2007, supra). Therefore, establishment of quantitative PTTV-specific real-time PCR assays would help identify potential disease conditions associated with porcine TTVs.
Two TaqMan probe-based real-time PCR assays have recently been described. The singleplex assay developed by a Canadian group was not species-specific and was only designed to quantify the total viral loads of two PTTV species (Brassard et al., 2009, supra). The duplex assay established by a Germany group allowed the specific and simultaneous detection of both species (Gallei et al., 2009, supra). The target sequences of primers used in those two assays were determined by alignment of the three porcine TTV genomic sequences (Sd-TTV31, TTV-1p and TTV-2p) and were located in the UTR. In the present study, with 7 additional complete PTTV genomic sequences available (4 PTTV1 and 3 PTTV2 sequences), we analyzed and re-determined the conserved regions across the 10 full-length PTTV genomes. Based upon the updated alignment result from this study, two species-specific singleplex SYBR green-based real-time PCR assays were developed to quantify the viral loads of PTTV1 and PTTV2, respectively. The primers used in our assays were designed to bind to conserved genomic regions distinct from the previous studies, which may increase the accuracy of quantification. Our assays showed a considerable species-specificity and sensitivity of detection with 44 genomic copies for PTTV1 and 8.8 genomic copies for PTTV2 per 25-.mu.l reaction, whereas the detection limit of 10 genomic copies per reaction was reported in the TaqMan probe-based duplex real-time PCR (Gallei et al., 2009, supra). In addition, the SYBR green-based real-time PCR assay is a flexible and inexpensive approach that can be directly carried out without the need to use fluorescently labeled probes. Finally, considering porcine TTVs exhibit a high degree of genetic diversity, the results from SYBR green-based assays are unlikely affected by the different genetic background of porcine TTV variants that likely contain mutations in the probe-binding sequences in the TaqMan probe-based assays.
In spite of the presence of TTV DNA, all serum samples from healthy pigs tested in this study had low amounts of PTTV1 and PTTV2 that were less than 2×106 copies/ml. Moreover, only an extremely low titer of PTTV2 DNA was detected in three semen samples. Most of the tested serum samples were also positive for PCV2 DNA as determined by conventional nested PCR (data not shown). Many PCV2-positive pigs with low viral load do not develop clinical PCVAD. A proposed threshold for developing PCVAD is 107 or greater PCV2 genomic copies/ml of serum (Opriessnig et al., 2007, supra). In addition, semen PCV2 DNA-positivity is also a notable marker of diseased status (Opriessnig et al., 2007, supra; Pal, N., et al. 2008. Development and validation of a duplex real-time PCR assay for the simultaneous detection and quantification of porcine circovirus type 2 and an internal control on porcine semen samples. J Virol Methods 149, 217-25). The situation of species-specific PTTV may be analogous to that of PCV2 and a high PTTV titer greater than 107 copies/ml may be required for the induction of porcine diseases. The species-specific real-time PCR assays developed in this study will offer simple and practical tools for future investigations of PTTV association with diseases using a large number of clinical samples from various disease conditions.
Furthermore, by coupling the two species-specific singleplex assays, we developed and validated a quick, inexpensive and reliable screening for the simultaneous detection and differentiation of the two porcine TTV species, PTTV1 and PTTV2, in a MCA-based duplex real-time PCR assay. Although this assay is not intended for accurate quantification of both PTTV species, it is a more convenient approach that could replace the conventional nested PCR for detection purpose. In comparison with real-time PCR, the conventional nested PCR assay for porcine TTVs detection is time-consuming (requiring total 4 rounds of PCR), laborious and prone to sample contamination occurring during multiple rounds of PCR processing. Due to the difference of T.sub.m value between PTTV1 and PTTV2 species, an MCA following duplex PCR amplification is able to ensure distinct reaction specificity. Another advantage of this duplex real-time assay is that inclusion of PTTV1 and PTTV2 standards is dispensable when performing the described protocol, which makes it easier for much wider use in any diagnostic labs equipped with an automated real-time PCR instrument.
Multiple infection of porcine TTVs with distinct genotypes or subtypes of the same species has been demonstrated (Gallei et al., 2009, supra). In particular, our previous study showed that porcine TTV species 1 consists of two distinct types, PTTV1a (including strains Sd-TTV31 and PTTV1a-VA) and PTTV1b (including strains TTV-1p and PTTV1b-VA). The two newly published PTTV1 isolates with full-length genomes, swSTHY-TT27 (GQ120664) from Canada and FTV1 #471819 (GU188045) from Germany, were both classified into type 1b based upon the phylogenetic analysis (data not shown). The duplex nested PCR described in this study confirmed that dual infection of two PTTV1 genotypes frequently occurred in pigs. This novel assay is the first diagnostic PCR approach developed to distinguish between PTTV1a and 1b so far. Since it is currently not known whether one or both of PTTV1a and PTTV1b infection represents a relevant factor associated with diseases, our differential PCR assay should be of great value for future potential disease associations of these two PTTV types.
According to another aspect of the invention, porcine TTV ORF proteins were expressed and used in immunodetection assays to detect the presence of porcine TTV specific antibodies. In one embodiment of the present invention, three truncated and Histidine-tagged ORF1 proteins of PTTV1a, PTTV1b and PTTV2, were expressed and purified in Escherichia coli (E. coli), respectively. Furthermore, both serum Western blot and ELISA assays based on these recombinant antigens were developed and validated using porcine serum samples from different sources. In particular, serological testing using the PTTV1a-, PTTV1b- and PTTV2-specific ELISA provides an accurate and simple tool for revealing the association of porcine TTV infection with diseases.
According to a further aspect of the invention, porcine TTV ORF proteins were expressed and purified as recombinant ORF1 capsid protein in an E. coli expression system. Three truncated and His-tagged ORF1 capsid proteins of PTTV1a, PTTV1b and PTTV2, were expressed and purified in Escherichia coli (E. coli), respectively, and served as recombinant capsid subunit vaccines against PTTV infection.
Four porcine TTV2 strains, TTV-2p, TTV2#472142, PTTV2b-VA and PTTV2c-VA, had available complete genomic sequences to date. Although they are phylogenetically classified into three putative subtypes, a comparative analysis of hydrophilicity profiles of the ORF1 encoding amino acids from four PTTV2 showed that they shared three hydrophilic regions, an arginine-rich region from aa 1-49 at the N-terminal and two particular domains (I and II) located at the middle and C-terminal part, respectively. The C-terminal region used for truncated PTTV2c-VA ORF1 expression and the corresponding regions shared in other three PTTV2 strains were indicated by a dashed box. Alignments of amino acid sequences demonstrated high levels of sequence conservation of domains I (aa 322-349) and II (aa 536-625) across the four PTTV2 strains.
Since hydrophilic domains are believed to be important for the antigenicity of many proteins, the C-terminal region (aa 310-625) of the PTTV2c-VA ORF1 SEQ ID NO:16 containing the two domains was chosen for protein expression, which would be used as antigen for PTTV2-specific antibody detection in porcine serum. According to one aspect of the invention, expression of the truncated PTTV2c ORF1 was sufficient for detection of all PTTV2 subtypes (2a, 2b and 2c).
According to one embodiment of the present invention, the C-terminal part of the PTTV2c ORF1 gene fused with 8×His-tags was constructed and expressed in E. coli. The recombinant protein was insoluble and expressed within the bacterial inclusion bodies. SDS-PAGE of unpurified 2c-ORF1 products, purified 2c-ORF1 products and Western blot analysis of purified 2c-ORF1 products using an anti-His-tagged mAb was undertaken. The ORF1 protein with the expected size and its truncated product and the putative dimers of the expected and truncated proteins were observed. A band of ˜40 KDa was consistent with the expected size of 2c-ORF1 whereas the ˜30 KDa polypeptide was probably an N-terminally truncated product from the former. After purification with a nickel-affinity column, four polypeptides including the two described significant bands were showed in SDS-PAGE. They were also detected by western blot using an anti-His-tagged mAb. Two high-molecular-mass bands were the homodimers formed by the two polypeptides of ˜40 KDa and ˜30 KDa, respectively, based on the predicted sizes ˜80 KDa and ˜60 KDa). The results demonstrated that the purified C-terminal PTTV2c-ORF1 was successfully produced and could be used for porcine TTV2 antibody detection in porcine sera.
According to another aspect of the present invention, porcine TTV2 antibodies in various porcine serum samples can be detected by Western blot using purified C-terminal PTTV2c-ORF1. A total of more than 200 serum samples of conventional pigs (healthy or diseased), CD/CD pig's and gnotobiotic pigs from different sources were collected. Samples were randomly selected for detection of anti-PTTV2c-ORF1 IgG antibodies using the purified C-terminal PTTV2c-ORF1 as antigen. Western blot analyses of selected porcine serum samples of conventional pigs, CD/CD pigs, and gnotobiotic pigs was undertaken. Purified PTTV2c-ORF1 products were used as the antigens. The two marked ˜40 KDa and ˜30 KDa bands were detected in most samples of the conventional pigs and CD/CD pigs, indicating widely PTTV2 infection in these pigs. However, all the gnotobiotic pigs from two different sources (Blacksburg, Va. and Ames, Iowa) had no detectable PTTV2 antibody. Additional low-molecular-mass bands were also observed. They were likely from non-specific reactivity in the Western blot.
According to yet another aspect of the present invention, PTTV2-specific ELISA can be used as a porcine TTV2 serological test. Seronegative results were also shown in a few samples from conventional pigs of a Wisconsin farm. These negative samples were pooled and used as a negative reference in development of a PTTV2-specific ELISA. The remaining samples from this source were positive. In addition, porcine sera from a commercial company used in cell culture (supposed to be OIE diseases-free) also displayed strong anti-PTTV2-ORF2 positivity, which was used as a positive control for ELISA. The concentrations of purified 2c-ORF1 antigen, porcine sera and IgG conjugate were determined by checkboard titration to present low background signal and give the highest difference of OD405 value between the positive and negative controls. The optimal antigen amount was 69 ng per well, and the optimal ELISA results were obtained by use of a 1:100 dilution of serum samples and a 1:4000 dilution of IgG conjugates. The ELISA cutoff values ranged from 0.25 to 0.5 in each trial.
138 conventional pig sera samples from 3 herds were chosen to analyze the correlation between PTTV2 viral load by real-time PCR and anti-PTTV2 IgG antibody level by ELISA. The results showed that pigs with undetectable or higher PTTV2 viral load (108 copies/ml) were more likely to have a lower serum PTTV2 antibody titer than pigs with middle values of PTTV2 viral load.
In particular, sera from 10 pigs in the same herd were also analyzed by comparing the PTTV2 viral loads and anti-PTTV2 antibody levels of their sera from their arrival in the new facility to two months after arrival. Nine of the 10 pigs had decreased viral loads (three had no detectable virus) after 2 months whilst the anti-PTTV2 antibody titers increased in nine of 10 pigs. The results suggested that the 10 pigs acquired PTTV2 infection at early stage, which induced humoral response and produced anti-ORF1 capsid IgG antibody progressively. The PTTV2-ORF1 IgG antibody was able to neutralize or even clear the virus, indicating the ORF1 indeed encode a viral capsid protein and may contain neutralizing epitopes against PTTV2.
According to one embodiment of the present invention, the C-terminal PTTV1a- and PTTV1b-ORF1 proteins were expressed and purified in E. coli system, respectively. SDS-PAGE and western blot analysis using an anti His-tagged mAb showed that both 1a- and 1b-ORF products had two polypeptides, one with expected size ˜40 KDa) and another as the putative homodimer ˜80 KDa). Compared to 2c-ORF1 expression, no truncated polypeptide was observed. As a comparative control, expression of a C-terminal-truncated 1 b-ORF1 region (1 b-ORF1ctruc) resulted in a lower-molecular-mass polypeptide compared to its C-terminal-non-truncated counterpart 1b-ORF1.
According one embodiment of the present invention, the purified C-terminal PTTV1a- and PTTV1b-ORF1 proteins were used to develop genotype-specific serum Western blots and ELISA as described for PTTV2 above.
Additionally, the present invention provides a useful diagnostic reagent for detecting the porcine TTV infection which comprise a monoclonal or polyclonal antibody purified from a natural host such as, for example, by inoculating a pig with the porcine TTV or the immunogenic composition of the invention in an effective immunogenic quantity to produce a viral infection and recovering the antibody from the serum of the infected pig. Alternatively, the antibodies can be raised in experimental animals against the natural or synthetic polypeptides derived or expressed from the amino acid sequences or immunogenic fragments encoded by the nucleotide sequence of the isolated porcine TTV. For example, monoclonal antibodies can be produced from hybridoma cells which are obtained from mice such as, for example, Balb/c, immunized with a polypeptide antigen derived from the nucleotide sequence of the isolated porcine TTV. Selection of the hybridoma cells is made by growth in hyproxanthine, thymidine and aminopterin in a standard cell culture medium like Dulbecco's modified Eagle's medium (DMEM) or minimal essential medium. The hybridoma cells which produce antibodies can be cloned according to procedures known in the art. Then, the discrete colonies which are formed can be transferred into separate wells of culture plates for cultivation in a suitable culture medium. Identification of antibody secreting cells is done by conventional screening methods with the appropriate antigen or immunogen. Cultivating the hybridoma cells in vitro or in vivo by obtaining ascites fluid in mice after injecting the hybridoma produces the desired monoclonal antibody via well-known techniques.
For another alternative method, porcine TTV capsid protein can be expressed in a baculovirus expression system or E. coli expression system according to procedures known in the art. The expressed recombinant porcine TTV capsid protein can be used as the antigen for diagnosis in an enzyme-linked immunoabsorbent Assay (ELISA). The ELISA assay based on the porcine recombinant capsid antigen, for example, can be used to detect antibodies to porcine TTV in porcine and mammalian species. Although the ELISA assay is preferred, other known diagnostic tests can be employed such as immunofluorescence assay (IFA), immunoperoxidase assay (IPA), etc.
Desirably, a commercial ELISA diagnostic assay in accordance with the present invention can be used to diagnose porcine TTV infection in pigs. The examples illustrate using purified ORF1 and ORF2 proteins of porcine TTV to develop an ELISA assay to detect anti-TTV antibodies in pigs. Sera collected from pigs infected with porcine TTV, and negative sera from control pigs are used to validate the assay. PTTV2 specific, PTTV1a specific, and PTTV1b specific antibodies were demonstrated to specifically recognize PTTV ORF proteins. Further standardization of the test by techniques known to those skilled in the art may optimize the commercialization of a diagnostic assay for porcine TTV.
Another aspect of the present invention is the unique immunogenic composition comprising the isolated porcine TTV or an antigenic protein encoded by an isolated polynucleotide described hereinabove and its use for raising or producing antibodies. The composition contains a nontoxic, physiologically acceptable carrier and, optionally, one or more adjuvants. Suitable carriers, such as, for example, water, saline, ethanol, ethylene glycol, glycerol, etc., are easily selected from conventional excipients and co-formulants may be added. Routine tests can be performed to ensure physical compatibility and stability of the final composition.
In accordance with the present invention, there are further provided infectious molecular and nucleic acid molecules of porcine Torque teno (TTV), live viruses produced from the nucleic acid molecule and veterinary vaccines to protect pigs from porcine TTV viral infection or disease caused by porcine TTV co-infection with other viruses. The invention further provides immunogenic polypeptide expression products that may be used as vaccines.
The novel infectious DNA molecule of porcine TTV comprises a nucleic acid molecule encoding at least a portion of an infectious PTTV1a-VA (SEQ ID NO:9), PTTV1b-VA (SEQ ID NO:10), PTTV2c-VA (SEQ ID NO:11), or PTTV2c-VA (SEQ ID NO:12) genome. The infectious PTTV DNA clone preferably contains at least one of ORF1, ORF2, ORF1/1, and ORF2/2 gene of the PTTV1 or PTTV2. Multiple copies of the PTTV1a-VA (SEQ ID NO:9), PTTV1b-VA (SEQ ID NO:10), PTTV2c-VA (SEQ ID NO:11), or PTTV2c-VA (SEQ ID NO:12) genome may be inserted into a single DNA molecule to construct tandem infectious PTTV clones.
The cloned genomic DNA of PTTV, particularly PTTV1a-VA, PTTV1b-VA, PTTV2c-VA, and tandem PTTV2b-RR, PTTV2c-RR, described herein is shown to be in vitro or in vivo infectious when transfected into PK-15 cells and given to pigs. This new, readily reproducible pathogenic agent lends itself to the development of a suitable vaccination program to prevent PTTV infection in pigs.
According to a further embodiment of the present invention, three one-genome-copy PTTV DNA clones were derived from the prototype US isolates PTTV1a-VA, PTTV1b-VA and PTTV2c-VA by fusion PCR, respectively. Each of the full-length genomic DNA was inserted into a cloning vector pSC-B-amp/kan by blunt-end ligation. The restriction site BamH1 is the unique site on the three PTTV genomes, which was engineered at both ends of the three genomes to facilitate the generation of concatemers and thus mimic the TTV circular genome. BamH1 single digestions of the selected plasmid DNA of each clone clearly resulted in two different fragments of 4.3-Kb and 2.8-Kb in size. The 4.3-Kb fragments represented the backbone vector whereas the 2.8-Kb fragments represented the inserted PTTV genomic DNA. The empty vector pSC-B-amp/kan digested with the same enzyme only showed a 4.3-Kb band. The resulting PTTV clones were designated pSC-PTTV1a, pSC-PTTV1b and pSC-PTTV2c, respectively (
Furthermore, two copies of the full-length PTTV2c-VA genome derived from the clone pSC-PTTV2c were ligated in tandem into the pSC-B-amp/kan vector to generate the clone pSC-2PTTV2c-RR (
The replication competencies of the constructed PTTV infectious clones were tested by in vitro transfection of PK-15 cells. IFA using the commercially generated rabbit polyclonal antibodies against PTTV2c ORF1 confirmed that both the concatemers of clones TTV2-#471942-full and pSC-PTTV2c were replication competent, respectively. Passaging of the transfected cells did not eliminate or reduce the fluorescent signals, suggesting that the expression of ORF1 proteins was resulted from the PTTV2 concatemers that mimicked the natural PTTV2b or PTTV2c circular molecules. No fluorescent signals was observed in mock-transfected cells or DNA-transfected cells using pre-immune rabbit serum as the antibody for IFA detection (data not shown). The concatemers of the clone pSC-PTTV1a also showed to be replication-competent using an anti-PTTV1a ORF1 antibody. The positive fluorescent signals were located in the nucleus of transfected or passaged cells, indicating that porcine TTVs likely replicate in the cell nucleus. It is not unexpected because porcine circovirus (PCV) has a similar expression pattern in vitro.
Direct transfection of the tandem-dimerized clone pSC-2PTTV2b-RR or pSC-2PTTV2c-RR in PK-15 cells results in viral replication and produces the ORF1 capsid antigen. IFA using antibodies against PTTV2 ORF1 confirmed that both clones were also replication-competent and the positive ORF1 antigens were localized in the nuclei.
According to one embodiment of the present invention, infectious clones of porcine TTV can be used to inoculate pigs, which will then elicit an immune response of the host animal and stimulate production of neutralizing antibodies. In one particular embodiment of the present invention, the two tandem-dimerized PTTV2 clones were infectious when injected into the lymph nodes and muscles of conventional pigs.
To test the in vivo infectivity of PTTV2 molecular clones, conventional pigs were inoculated with the clone pSC-2TTV2b-RR or pSC-2TTV2c-RR. Serum samples were collected from animals at 0, 7, 14, 21 and 28 days post-inoculation (DPI). PTTV2 DNA was detected in pSC-2TTV2c-RR-inoculated pigs beginning at 7 DPI (#92), 14 DPI (#188 and #191) and 21 DPI (#180), respectively (
All inoculated pigs were negative for PTTV2 ORF1 antibodies at 0 and 7 DPI. At 14 DPI, all the four pSC-2TTV2b-RR-inoculated pigs seroconverted to anti-PTTV2 ORF1 IgG, whereas pigs in pSC-2TTV2c-RR-inoculated group seroconverted at 14 (#92 and #180), 21 (#191) and 28 (#188) DPI, respectively (
In the present invention, the inventors describe the construction and initial characterization of full-length DNA clones of TTSuV2 in vitro and in vivo. The inventors provide, for the first time, definite evidence of splicing of TTSuV2 mRNA and expression of the putative ORF1 capsid protein by transfection of the TTSuV2 full-length DNA clones in cultured cells. Furthermore, rescue of TTSuV2 containing the introduced genetic markers in pigs was confirmed by sequencing of viral DNA obtained from pigs experimentally inoculated with the circular TTSuV2 genomic DNA. Anellovirus is a group of single-stranded circular DNA viruses infecting human and various other animal species. Animal models combined with reverse genetics systems of anellovirus have not been developed. The inventors report here the construction and initial characterization of full-length DNA clones of a porcine anellovirus, Torque teno sus virus 2 (TTSuV2), in vitro and in vivo. The inventors first demonstrated that five cell lines including PK-15 are free of TTSuV1 or TTSuV2 contamination, as determined by real-time PCR and immunofluorescence assay (IFA) using rabbit anti-TTSuV ORF1 sera. Recombinant plasmids harboring monomeric or tandem-dimerized TTSuV2 genomic DNA that originated from the United States and Germany were constructed. Circular TTSuV2 genomic DNA with or without introduced genetic markers and tandem-dimerized TTSuV2 plasmids were transfected into the PK-15 cells, respectively. Splicing of viral mRNAs was identified in transfected cells. Expression of TTSuV2-specific ORF1 in cell nuclei, especially in nucleoli, was detected by IFA. However, evidence of productive TTSuV2 infection was not observed in 12 different cell lines including the 293TT cell line transfected with the TTSuV2 DNA clones. Transfection with circular DNA from a TTSuV2 deletion mutant did not produce ORF1 proteins, suggesting that the observed ORF1 expression in this study is driven by TTSuV2 DNA replication in cells. Pigs inoculated with either the tandem-dimerized plasmids or circular DNA derived from the U.S. strain of TTSuV2 containing genetic markers developed viremia, and the introduced genetic markers were retained in viral DNA extracted from the sera of infected pigs. The availability of an infectious DNA clone of TTSuV2 will facilitate future study of porcine anellovirus pathogenesis and biology.
Neither the viral DNA nor the expression of the putative ORF1 capsid protein of TTSuV1 or TTSuV2 was endogenously present in five representative cell lines tested in this study. The present study first aimed to identify potential permissive cell lines supporting the TTSuV propagation. The inventors selected five commonly-used cell lines including three that are of pig origin: PCV1-free PK-15, 3D4/31 and IPEC-J2, and two other cell lines including BHK-21 and MARC-145. These cell lines are known to be permissive for a wide variety of animal virus infections. In order to rule out the possibility of endogenous contamination of TTSuV1 or TTSuV2 in cultured cell lines, both viral DNA and ORF1 protein expression were subjected to TTSuV1 or TTSuV2 real-time qPCR and IFA detections, respectively. An OIE diseases-free porcine serum, which had been shown to have a high level of anti-TTSuV2 ORF1 antibody, was also included as a control (Huang, Y. W., et al. 2011. Virus Res 158:79-88). The results obtained with the qPCR analysis showed that none of the five cell lines tested in the study were positive for TTSuV1 or TTSuV2 DNA, as determined by the analyses of fluorescence curves, melting curves and agarose gel electrophoresis, since their fluorescence curves were below the minimum detection limit, their melting curves did not overlap with that of the standards, and there were no detectable specific bands corresponding to the expected PCR products (
Neither the viral DNA nor the expression of the putative ORF1 capsid protein of TTSuV1 or TTSuV2 was endogenously present in five representative cell lines tested in this study. The present study first aimed to identify potential permissive cell lines supporting the TTSuV propagation. The inventors selected five commonly-used cell lines including three that are of pig origin: PCV1-free PK-15, 3D4/31 and IPEC-J2, and two other cell lines including BHK-21 and MARC-145. These cell lines are known to be permissive for a wide variety of animal virus infections. In order to rule out the possibility of endogenous contamination of TTSuV1 or TTSuV2 in cultured cell lines, both viral DNA and ORF1 protein expression were subjected to TTSuV1 or TTSuV2 real-time qPCR and IFA detections, respectively. An OIE diseases-free porcine serum, which had been shown to have a high level of anti-TTSuV2 ORF1 antibody, was also included as a control (Huang, Y. W., et al. 2011. Virus Res 158:79-88). The results obtained with the qPCR analysis showed that none of the five cell lines tested in the study were positive for TTSuV1 or TTSuV2 DNA, as determined by the analyses of fluorescence curves, melting curves and agarose gel electrophoresis, since their fluorescence curves were below the minimum detection limit, their melting curves did not overlap with that of the standards, and there were no detectable specific bands corresponding to the expected PCR products (
To develop cell-based serological methods such as IFA or immunoperoxidase monolayer assay (IPMA) for TTSuV detection, the inventors raised three specific antisera against the putative ORF1 capsid protein of TTSuV1a, TTSuV1b (Huang, Y. W., et al. 2012. Serological profile of Torque teno sus virus species 1 (TTSuV1) in pigs and antigenic relationships between two TTSuV1 genotypes (1a and 1b), between two species (TTSuV1 and 2), and between porcine and human anelloviruses. J. Virol. Submitted Manuscript) or TTSuV2 in rabbits. When the five cell lines were stained with each of the three virus-specific antisera, respectively, no positive fluorescence signals were detected, indicating the absence of endogenous TTSuV1 or TTSuV2 ORF1 expression (data not shown). The IFA results were consistent with the qPCR detection, which demonstrated that the five selected cell lines were not contaminated with TTSuV1 or TTSuV2 and thus can be used for testing the susceptibility of TTSuV infection or replication by transfection with TTSuV2 DNA clones.
Construction and characterization of full-length TTSuV2 DNA clones in porcine kidney PK-15 cells. The inventors were particularly interested in characterizing the infectivity of TTSuV2 full-length DNA clone since TTSuV2 has been reported to be associated with PMWS or PCVAD at a high prevalence rate of viral DNA (Kekarainen, T., et al. 2006. J Gen Virol 87:833-7), a high viral load (Aramouni, M., et al. 2011. Vet Microbiol 153:377-81) and a low antibody level in disease-affected pigs with an unknown mechanism (Huang, Y. W., et al. 2011. Virus Res 158:79-88). The inventors first generated two monomeric full-length TTSuV2 DNA clones, pSC-PTTV2c and pSC-TTV2-#471942, derived from a prototype U.S. isolate PTTV2c-VA and a German isolate TTV2-#471942, respectively (
Subsequently, two copies of the full-length PTTV2c-VA genome from the clone pSC-PTTV2c were ligated in tandem into the pSC-B-amp/kan vector to generate the clone pSC-2PTTV2c-RR (
Circular TTSuV2 DNA was generated by tandem ligation of the purified linear TTSuV2 genomic DNA excised from the clone pSC-PTTV2c or pSC-TTV2-#471942. Typical monomer, dimer and high-copy-molecules of concatemerized TTSuV2 DNA were observed in the ligation products (
The inventors next tested whether direct transfection of plasmid DNA of the tandem-dimerized clone pSC-2PTTV2c-RR or pSC-2PTTV2b-RR into PK-15 cells resulted in the synthesis of TTSuV2 ORF1. The tandem-dimerized double-stranded DNA does not represent genomic anellovirus DNA but might represent an infectious replicative intermediate. IFA at 5 days post-transfection using the same anti-TTSuV2 ORF1 antiserum confirmed that both DNA clones also expressed ORF1 in transfected PK-15 cells (
Experimental identification of two introns in the TTSuV2 genome. Although the transcriptional profile using cloned TTSuV full-length genomic DNA has not been reported, we previously speculated that TTSuV likely expresses two essential viral mRNA transcripts, mRNA1 and mRNA2, to produce the four known ORF counterparts of human TTV (
To verify whether the splicing of the putative intron 1 in TTSuV2 occurred, total RNA was extracted in PK-15 cells transfected with circular PTTV2c-VA DNA followed by DNase I treatment and RT-PCR analysis. Two PCR product bands of approximately 500 bp and 600 bp in sizes were visualized by agarose gel electrophoresis. Sequencing of the cloned PCR fragments resulted in the identification of two sequences. As expected, the large cDNA fragment of 583 bp was exactly the intron 1-spliced product (
Nevertheless, transfection of PK-15 cells with circularized TTSuV2 genomic DNA resulted in the synthesis of viral mRNA transcripts and the expression of ORF1 protein, indicating that the TTSuV2 concatemers mimicked the transcription and protein expression from the natural circular genome of TTSuV2.
A tandem-dimerized TTSuV2 clone, pSC-2PTTV2c-RR, is infectious when inoculated in the CD pigs. To test the infectivity of TTSuV2 DNA clones in pigs, the inventors first performed a pilot study with three groups of CD pigs with two pigs per group. The pigs were inoculated with PBS buffer (pig nos. 1 and 2) in group 1, the tandem-dimerized clone pSC-2TTV2c-RR (pig nos. 3 and 4) in group 2, and pSC-2TTV2b-RR (pig nos. 5 and 6) in group 3, respectively. Serum samples were collected from animals at 0, 7, 14, 21, 28, 35 and 42 days post-inoculation (DPI). Pig no. 2 died of septicemia due to an unidentified bacterial infection shortly after inoculation.
TTSuV2 DNA was detected in two pigs inoculated with pSC-2TTV2c-RR beginning at 28 DPI by real-time qPCR. The viral loads, although very low, increased weekly until 42 DPI before necropsy at 44 DPI in both pigs. The viral loads in serum of pig no. 3 increased from 1.93×103 at DPI 28 to 5.59×103 at DPI 35 and 4.36×104 at DPI 42 whereas the serum viral loads in pig no. 4 elevated from 5.07×103 at DPI 28 to 4.49×104 at DPI 35 and 8.87×104 at DPI 42. Moderate microscopic lesions in brain (lymphoplasmacytic encephalitis mainly perivascular), liver (lymphohistiocytic hepatitis) and kidney (lymphoplasmacytic interstitial nephritis) were observed in pig no. 3 but not in no. 4. The remaining three pigs including pigs inoculated with the clone pSC-2TTV2b-RR did not develop viremia throughout the study. However, pig no. 5 had mild lymphohistiocytic multifocal hepatitis. The results from this pilot pig experiment indicated that the clone pSC-2PTTV2c-RR originated from a U.S. strain of TTSuV2 is infectious.
Characterization of two TTSuV2 full-length DNA clones with engineered genetic markers and a derived mutant clone in vitro. To further rule out the possible contamination of other indigenous TTSuV2 infections in the pilot animal study, it is critical to introduce tractable genetic markers in the TTSuV2 genome so that the cloned virus and the potential indigenous contaminating virus in pigs can be discriminated in inoculated animals. The inventors introduced a unique HpaI restriction site and two unique restriction sites, PstI and MfeI, into two TTSuV2 monomeric DNA clones pSC-TTV2-#471942 and pSC-PTTV2c to produce two new clones pSC-TTV2-EU and pSC-TTV2-US, respectively (
A mutant clone pSC-TTV2-AAA with a 104-bp deletion (nt positions 332-437) from the putative TATA box (nt positions 283-289;
Expression of the TTSuV2 ORF1 protein in various cell lines transfected with the circularized TTSuV2 DNA from the clone pSC-TTV2-US. From the in vitro transfection experiments described above, it appeared that, although the TTSuV2 putative ORF1 capsid protein is expressed, the PK-15 cells do not support the cell-to-cell spread of TTSuV2 recovered from the introduced TTSuV2 DNA clones. Alternatively, it is possible that the assembly of TTSuV2 virions in the transfected PK-15 cells may be deficient. To search for another cell line that may be permissive for TTSuV2 infection, the inventors subsequently transfected eleven other different cell lines with the circularized TTSuV2 DNA from the clone pSC-TTV2-US, respectively. These cell lines included the four cell lines (3D4131, IPEC-J2, BHK-21 and MARC-145) that were tested negative for TTSuV1 or TTSuV2 at both the DNA and protein levels. The plain cells of the other seven cell lines (ST, Vero, and 293TT, HeLa, Huh-7, HepG2 and CHO-K1) were also negative for TTSuV2 ORF1 as determined by IFA (data not shown).
After transfection, all the eleven cell lines expressed the ORF1 protein at 3 days post-transfection (
To test if some of these IFA-positive cells were susceptible to TTSuV2 infection, supernatants collected from cell lysates of PK-15, ST and 293TT cells transfected with circularized TTSuV2 DNA were inoculated into all cell lines with high level positive rates and some with middle level positive rates including the 293TT cell line, respectively. The inoculated cells were cultured for 3 to 5 days and examined by IFA. No fluorescent signal was detected in these cells (data not shown), indicating that none of the tested cell lines are susceptible to productive TTSuV2 infection.
Rescue of TTSuV2 from concatamerized TTSuV2 DNA of the clone pSC-TTV-US in CD/CD pigs. With the introduced genetic markers in the full-length DNA clones that can be used to distinguish between infections caused by the cloned virus and potential indigenous contaminating virus, the inventors performed an additional study in CD/CD pigs to further verify the in vivo infectivity of the TTSuV2 genomic DNA clones. Twelve CD/CD pigs were assigned into three groups with four pigs each. Pigs in each group were inoculated with PBS buffer, concatamerized “TTV2-EU DNA”, and “TTV2-US DNA”, respectively. Pre-inoculation serum samples for all pigs (collected at 30 days prior to inoculation) were tested negative for TTSuV1 or TTSuV2 DNA by real-time qPCR. Serum samples were collected from all animals at 0, 7, 14, 21, 28 and 35 DPI.
TTSuV2 DNA was detected in all eight inoculated pigs, but unfortunately, it was also detected in two negative control pigs, indicating contamination by other indigenous strains of TTSuV2 in the research facility or the source pigs, which is not uncommon. One pig (no. 133) inoculated with the concatamerized “TTV2-US DNA” had a detectable viremia even at 0 DPI, whereas the other pigs developed viremia at 14 or 21 DPI. Except for pig no. 133, the seven TTSuV2 DNA-inoculated pigs and the two TTSuV2-positive pigs in negative control group had an increased viral load until necropsy, indicating active virus infection. The inventors speculated that the source of the TTSuV2 contamination was likely due to the 1-month waiting period between the date of pre-inoculation serum sample testing (for which all animals were all negative) and 0 DPI.
However, thanks to the introduced genetic markers in the TTSuV2 DNA clones used in this study, the inventors were still able to determine if the TTSuV2 DNA clones were infectious in pigs, which was the main objective of our study. Since the inventors have previously demonstrated that a single pig can be infected by multiple strains of TTSuV2 and TTSuV1 (9, 17), then prior infection or concurrent infection of an indigenous TTSuV2 strain should not interfere with the infection of pigs by the TTSuV2 DNA clones the inventors intended to test in this study. To determine if the genetic markers of TTV2-EU or TTV2-US were present in viruses recovered from the sera of infected pigs under the mixed TTSuV2 infection status, the inventors amplified and sequenced a 620-bp region containing the engineered genetic markers from selected samples at 35 DPI from both inoculated and negative control pigs. The results showed that only the serum samples from pigs experimentally inoculated with the concatamerized “TTV2-US DNA” were found to have identical TTSuV2 sequences to the introduced genetic markers PstI and MfeI, whereas serum samples from the negative control group and from pigs inoculated with concatamerized “TTV2-EU DNA” did not contain any introduced genetic markers (data not shown). Therefore, this pig study further confirmed the initial pilot pig study that the TTSuV2-US full-length DNA clone is infectious in pigs. The results also experimentally verified, for the first time, that pigs can be co-infected by different strains of TTSuV2.
Little is known about the etiology and molecular biology of anelloviruses due to the lack of a cell culture system to propagate human TTV or TTSuV and the lack of a suitable animal model combined with reverse genetics systems for anellovirus studies. Reports of TTSuV DNA sequences detected in commercial porcine vaccine products, porcine-derived human drugs and in porcine-derived trypsin by nested PCR suggested a widespread contamination of TTSuV (Kekearainen, T., L. et al. 2009. Swine torque teno virus detection in pig commercial vaccines, enzymes for laboratory use and human drugs containing components of porcine origin. J Gen Virol 90:648-53; Krakowka, S., et al. 2008. Evaluation of Mycoplasma hyopneumoniae bacterins for porcine torque teno virus DNAs. Am J Vet Res 69:1601-7). Cell cultures may be one of the major sources for TTSuV contamination in biological products of pig origin. Therefore, the present study was first aimed at examining whether five selected cell lines harbor endogenous DNA and protein antigen of TTSuV1 or TTSuV2, and to further identify TTSuV-negative cell lines that are potentially permissive for TTSuV propagation.
Surprisingly, none of the five cell lines tested in the study were found to be positive for TTSuV1 or TTSuV2 DNA or ORF1 antigen (
Subsequently, the inventors demonstrated that all of these TTSuV-free cell lines supported TTSuV2 ORF1 expression by transfection with the circular TTSuV2 genomic DNA or the tandem-dimerized TTSuV2 plasmids (
In addition, in this study TTSuV2-specific roRNA splicing events were detected intransfected PK-15 cells by RT-PCR, indicating the synthesis of viral mRNA transcripts in the transfected cells. While the inventors experimentally demonstrated the existence of two viral mRNAs transcripts (mRNA2 and mRNA3) (
The synthesis of viral mRNA transcripts and the subsequent expression of the ORF1 or ORF1-related viral proteins in transfected cells were driven by the endogenous TTSuV2 promoter. The processes were also regulated by the unidentified cis-acting elements, as we showed in this study that deletion of a 104-bp sequence downstream of the TATA box completely eliminated ORF1 expression (
It appeared that both PTTV2c-VA and TTV2-#471942 DNA concatemers were replication-competent when transfected into cells since they mimicked the natural TTSuV2 circular genome. However, the rescue of PTTV2c-VA (“TTV2-US”), but not TTV2-#471942 (“TTV2-EU”), was only demonstrated in two in vivo animal experiments. The major sequence difference between these two TTSuV2 strains was in the GC-rich region. It has been proposed that the GC-rich region in anelloviruses forms unique stem-loop structures, which may play a significant role in viral replication (Miyata, H., et al. 1999. Identification of a novel GC-rich 113-nucleotide region to complete the circular, single-stranded DNA genome of TT virus, the first human circovirus. J Virol 73:3582-6; Okamoto, H., et al. 1999. The entire nucleotide sequence of a TT virus isolate from the United States (TUS01): comparison with reported isolates and phylogenetic analysis. Virology 259:437-48). Further in-depth mutagenesis analysis, which was not the scope of the present study, is required to explain this discrepancy between the two clones.
The inventors also showed that, although the three cell lines (PK-15, ST and 293TT) tested in the study supported a limited level of TTSuV2 replication, the infection of these cells by TTSuV2, if any, was non-productive since the supernatants of the transfected cells did not induce a second-round infection. Most recently, the 293TT cell line was shown to be susceptible for human TTV propagation due to its expression of SV40 large T antigen at a high level (5). The authors proposed that the human TTV genome contains a conserved octanucleotide in the UTR forming a stem-loop as the putative origin of replication. Five 4-bp motifs (CGGG and GGGC) were found adjacent to the stem-loop, which may act as the recognition sites for the SV40 large T antigen to facilitate TTV replication (de Villiers, E. M., et al. 2011. J Virol 85:7284-95). However, when the inventors performed a sequence alignment analysis of the corresponding sequences among human TTV, TTSuV, Torque teno canis virus (dog anellovirus) and Torque teno felis virus (cat anellovirus), neither the conserved octanucleotide nor the 4-bp motif was identified in the latter three anelloviruses (data not shown). Therefore, the SV40 large T protein expressed in 293TT cells likely does not provide the proposed helper effect on TTSuV replication. Further study is needed to screen whether additional cell lines are permissive to TTSuV2 infection.
Previous studies from our group and others have demonstrated that, even under strictly controlled experimental conditions in research facilities, TTSuV-negative pigs can easily acquire TTSuV infection due to the ubiquitous nature of this virus in pigs and environments (Gauger, P. C., et al. 2011. Vet Microbiol 153:229-39; Huang, Y. W., et al. 2011. Virus Res 158:79-88). Although our second in vivo experiment in the present study unfortunately “validated” these previous reports, our results did demonstrate the successful rescue of TTSuV2 in pigs inoculated with either the tandem-dimerized plasmids or circular TTSuV2 DNA with the introduced genetic markers. Unfortunately, due to the presence of indigenous TTSuV2 in the CD/CD pigs from the second animal study, the inventors could not analyze or correlate any pathological lesions in the inoculated pigs to TTSuV infection. Therefore, a future study using the germ-free gnotobiotic pig and the infectious DNA clone is warranted to characterize the pathological lesions solely attributable to TTSuV2 infection. The availability of the pig model combined with the reverse genetics system of anellovirus described in this study will facilitate future studies of porcine and even human anellovirus biology and pathogenesis.
The family Anelloviridae includes human and animal Torque teno viruses (TTV) with extensive genetic diversity. The antigenic diversity among anelloviruses has never been assessed. Using Torque teno sus virus (TTSuV) as a model, the inventors describe here the first investigation on antigenic relationships among different anelloviruses. Using the TTSuV1a or TTSuV1b ELISA based on the respective recombinant ORF1 antigen and TTSuV1-specific real-time PCR, the combined serological and virological profile of TTSuV1 infection in pigs was determined and compared with that of TTSuV2. TTSuV1 is likely not associated with porcine circovirus associated disease since both the viral loads and antibody levels were not different between affected and unaffected pigs and since there was no synergistic effect of concurrent PCV2/TTSuV1 infections. The inventors did observe a higher correlation of IgG antibody levels between anti-TTSuV1a and -TTSuV1b than between anti-TTSuV1a or -1b and anti-TTSuV2 in these serum samples, implying potential antigenic cross-reactivity. To confirm this, rabbit antisera against the putative ORF1 capsid proteins of TTSuV1a, TTSuV1b or TTSuV2 were raised and the antigenic relationships and diversity among these TTSuVs were analyzed by ELISA. Additionally, antibody cross-reactivity was analyzed using PK-15 cells transfected with one of the three TTSuV ORF1 constructs. The results demonstrate antigenic cross-reactivity between the two genotypes, TTSuV1a and TTSuV1b, but not between the two species, TTSuV1a or 1b and TTSuV2. In addition, an anti-genogroup 1 human TTV serum did not react with any of the three TTSuV antigens. The results add to the knowledge base on diversity among anelloviruses and have important implications for diagnosis, classification and vaccine development of TTSuVs.
Expression and purification of the N-terminally truncated TTSuV1a and TTSuV1b ORF1 proteins. Previously the inventors had successfully expressed a truncated TTSuV2 ORF1 protein in E. coli (Huang, Y. W., et al. 2011. Virus Res. 158:79-88). Using a similar strategy, the C-terminal region of the TTSuV1a-ORF1 or TTSuV1b-ORF1 gene with a C-terminally engineered 8×His-tag was inserted into the triple expression vector pTriEx1.1-Neo, resulting in two recombinant constructs, pTri-1aORF1 and pTri-1bORF1. The inventors also constructed an ORF1 C-terminally truncated version of 1b-ORF1 as a control, termed pTri-1bORF1-ctruc, which is 71-aa shorter than 1b-ORF1, to compare the size with that of pTri-1bORF1 in SDS-PAGE and WB analysis.
The three recombinant proteins, 1a-ORF1, 1b-ORF1 and 1bORF1-ctruc were found to be insoluble and expressed within the bacteria as inclusion bodies. Purification of the crude lysates from 1a-ORF1 products with a nickel-affinity column resulted in visualization of two bands of ˜40 KDa (white arrowheads) and ˜70 KDa (black arrowheads), as analyzed by Coomassie blue staining (
Development of TTSuV1a- and TTSuV1b-based serum WB and indirect ELISAs. In order to identify reference positive and negative sera as controls, a total of 100 serum samples from different sources including those from the gnotobiotic pigs were collected. Samples were screened for anti-TTSuV1a or anti-TTSuV1b IgG seropositivity by serum WB analysis using the purified 1a-ORF1 or 1b-ORF1 as the antigens, respectively. A TTSuV2-seropositive and TTSuV1/TTSuV2-DNA positive porcine serum (Huang, Y. W., et al. 2012. Rescue of a porcine anellovirus (Torque teno sus virus 2) from cloned genomic DNA in pigs. J Virol. Submitted Manuscript) showed reactivity with the 1a-ORF1 and the 1b-ORF1 antigen, as the ˜40 KDa band was presented in the WB analysis (
With the available positive and negative control reference sera, TTSuV1a- and TTSuV1b-based ELISAs were subsequently developed and standardized, respectively. The concentrations of the purified 1a-ORF1 or 1b-ORF1 antigen, porcine sera and IgG conjugate were determined by a checkerboard titration assay to ensure low background signal and to give the highest difference of OD450 values between the positive and negative controls. WB-negative gnotobiotic porcine sera showed very low OD values (<0.1) compared to the negative control reference serum (
Association of TTSuV1 viral DNA loads and anti-TTSuV1a and anti-TTSuV1b IgG antibody levels. A total of 160 serum samples were collected and evaluated for the prevalence and viral DNA load of TTSuV1 by real-time qPCR and for seroprevalence and antibody levels (represented by S/N values) of anti-TTSuV1a and anti-TTSuV1b IgG by the ELISAs. Among the 160 samples, 138 sera in groups A to C were collected from three herds under field conditions whereas the remaining 22 sera in groups D (gnotobiotic pigs) and E were collected from pigs raised and housed under strictly controlled experimental conditions in research facilities.
None of the 12 TTSuV1a/TTSuV1b-seronegative gnotobiotic pigs in group D had a detectable viremia. In group E pigs, only one pig was viremic whereas six were seropositive for TTSuV1a and among them, one pig was also seropositive for TTSuV1b.
In groups A and C, 44 of 138 pigs were viremic (31.9%) whereas 128 were TTSuV1a-seropositive (92.8%) and 121 were TTSuV1b-seropositive (87.7%) (
All three markers of TTSuV1 infection, TTSuV1 DNA and TTSuV1a/1b antibodies, were found in 40 serum samples. Notably, the number of pigs that were TTSuV1a/TTSuV1b-dually seropositive but viral DNA-negative (77 samples) was higher than that of pigs with TTSuV1a- or TTSuV1b-seropositivity only (
The inventors had previously demonstrated that, over a two-month period, the 10 group-A pigs had decreasing TTSuV2 viral loads that were associated with elevated anti-TTSuV2 ORF1 IgG antibody levels (Huang, Y. W., et al. 2011. Virus Res 158:79-88). Whether an analogous situation for TTSuV1 in these ten pigs existed was subsequently analyzed in this study, by comparing the TTSuV1 viral DNA loads and the anti-TTSuV1a or anti-TTSuV1b antibody levels in sera from the time of their arrival until two months later. Five of ten pigs were TTSuV1 DNA negative during the two months, and in four pigs (ID#4314, 4316, 4319 and 4321) the viral DNA loads decreased after two months, including in 3 pigs (ID#4314, 4319 and 4321) with no detectable TTSuV1 DNA (
TTSuV1 is likely not associated with PCVAD. The inventors had previously found that PCVAD-affected pigs had a significantly lower level of TTSuV2 antibody than PCVAD-unaffected pigs in group B (Huang, Y. W., et al. 2011. Virus Res 158:79-88). However, determination of the levels of anti-TTSuV1a and anti-TTSuV1b IgG antibodies in these serum samples did not reveal a difference between the PCVAD-affected and -unaffected pigs (
The inventors further analyzed whether there existed a PCV2 and TTSuV1 synergistic effect associated with PCVAD. Serum viral DNA prevalence rates (viremia) of PCVAD-affected pigs were as follows: 50% (16/32) for PCV2 and TTSuV1, 56% (14/25) for PCV2 only, 0% (0/1) for TTSuV1 only, and 0% (0/2) for no detectable virus. These proportions were not significantly different (p=0.4339). The above results suggested that TTSuV1 is likely not associated with PCVAD.
Comparison and correlations of seroprevalence and antibody levels among anti-TTSuV1a, anti-TTSuV1b and anti-TTSuV2. Mixed infections of TTSuV1 and TTSuV2 are common in pigs, as determined by the presence of viral DNA of both TTSuV1 and TTSuV2 in the same pig using PCR (Gallei, A., et al. 2010. Vet Microbiol 143:202-12; Huang, Y. W., et al. 2010. Development of SYBR green-based real-time PCR and duplex nested PCR assays for quantitation and differential detection of species- or type-specific porcine Torque teno viruses. J Virol Methods 170:140-6; Huang, Y. W., et al. 2011. Virus Res 158:79-88; Huang, Y. W., et al. 2010. Virology 396:289-97). In this study, the inventors provided the serological evidence to support this conclusion by analyzing the seroprevalence distribution of anti-TTSuV1a, -TTSuV1b and -TTSuV2 IgG in the 138 serum samples in groups A-C. As shown in
The distribution of dual seropositive samples was significantly different. A total of 117 (82+30+5) porcine sera were dually-seropositive for both anti-TTSuV1a and anti-TTSuV1b, which was consistent with the number calculated in
Furthermore, correlations of antibody levels between anti-TTSuV1a and anti-TTSuV1b, between anti-TTSuV1a and anti-TTSuV2, and between anti-TTSuV1b and anti-TTSuV2 were assessed in the 138 serum samples by using Spearman's correlation coefficient. A good linear relationship was observed between the anti-TTSuV1a and anti-TTSuV1b (
Analysis of antigenic relationships among TTSuV1a, TTSuV1b and TTSuV2 by ELISA. Three antisera against the truncated recombinant ORF1 s of TTSuV1a, TTSuV1b or TTSuV2 were raised by immunization of rabbits with the respective purified recombinant antigen. Cross-immunoreativity studies were initially performed to assess whether one of these antigens could cross-react with antisera against the other two antigens in an ELISA format. The pre-bleed rabbit serum was used as the negative control. As expected, each of three TTSuV antigens reacted with its corresponding homologous antiserum but not with the pre-bleed negative control serum (OD values<0.1) that were serially diluted from 1:200 to 1:1600 (
The TTSuV2 antigen did not appear to cross-react with TTSuV1a or TTSuV1b antiserum even at 1:200 dilution since the OD value was relatively low (
Demonstration of antigenic relationships among TTSuV1a, TTSuV1b and TTSuV2, and between TTSuVs and a genogroup 1 human TTV by IFA. In order to definitely analyze the antigenic cross-reactivity among these viruses, an antibody cross-reactivity experiment was performed by using IFA staining. PK-15 cells were transfected with three plasmid constructs, pTri-1aORF1, pTri-1bORF1 and pTri-2cORF1, which harbor the truncated ORF1 capsid genes from TTSuV1a, TTSuV1b and TTSuV2, respectively. Three days post-transfection, cells were stained with anti-TTSuV1a, anti-TTSuV1b, anti-TTSuV2 and pre-bleed serum, respectively. As shown in
Identification of two putative antigenic sites on the ORF1 shared by TTSuV1a and TTSuV1b by sequence analyses. The full-length ORF1 proteins between TTSuV1 and TTSuV2 shared only 22.4-25.8% amino acid (aa) sequence identity with no significantly conserved regions identified (14). The ORF1 proteins of the two TTSuV species share only 19.1-21.0% aa sequence identity with that of the human genogroup 1 TTV isolate P/1C1 (GenBank accession no. AF298585). The high ORF1 sequence divergences between TTSuV1 and TTSuV2 and between porcine and human anelloviruses likely account for the absence of antigenic cross-reactivity observed in this study.
However, the aa sequence identity of ORF1 between the two TTSuV1a and TTSuV1b genotypes (six isolates available in GenBank) ranged between 49.4-52.4%. The inventors have previously found that conserved sites exist in the ORF1 of different TTSuV1 stains except for the four proposed variable regions (30.0-37.5% aa identity) (Huang, Y. W., et al. 2010. Virology 396:289-97). In order to identify the common antigenic sites on the ORF1 between the genotypes TTSuV1a and TTSuV1b, the inventors performed a comparative analysis of hydrophilicity profiles of the ORF1 aa sequences between PTTV1a-VA and PTTV1b-VA. Two conserved hydrophilic regions located at the middle and C-terminal regions were identified (
The immunology of anellovirus is poorly understood. Detection of specific adaptive immune responses can provide insights into anellovirus epidemiology. By analogy to the chicken anemia virus (CAV), another single-stranded circular DNA virus, the ORF1 product of anelloviruses is believed to function as the putative capsid protein and thus represents the major viral antigen (Crowther, R. A., et al. 2003. Comparison of the structures of three circoviruses: chicken anemia virus, porcine circovirus type 2, and beak and feather disease virus. J Virol 77:13036-41; Maggi, F. and M. Bendinelli. 2009. Curr Top Microbiol Immunol 331:65-90).
Detection of human TTV IgG antibodies in human populations based on the human TTV ORF1 as the antigen has been reported (Maggi, F. and M. Bendinelli. Id.). Handa et al reported a 38% prevalence of human TTV antibody among 100 American blood donors when using the N-terminal part (aa 1-411) containing the arginine-rich region of ORF1 of a human genotype 1b TTV isolate as the antigen (Handa, A., et al. 2000. Prevalence of the newly described human circovirus, TTV, in United States blood donors. Transfusion 40:245-51). In contrast, antibody reactivity in humans to the N-terminus of ORF1 (ORF1-N) of a human TTV genotype 6 was not detected by a Finish group. After removal of the arginine-rich region (aa 1-62), the arginine-deleted constructs (ORF1AArg and ORF1-NAArg) as well as the C-terminal portion (ORF1-C; aa 344-737) were expressed, 48% human TTV IgG prevalence was detected in sera of 21 healthy Finnish adults using the three products as the antigens (Kakkola, L., et al. 2008. Virology 382:182-9). Two other groups also utilized similar strategies targeting the C-terminal region to successfully express human TTV ORF1. Muller et al demonstrated that an ORF1-specific antiserum against the C-terminal part of ORF1 (aa 402-733) of the human TTV isolate P/1C1 generated in a rabbit was able to detect ORF1 expression in cell culture (21), whereas a French group reported the detection of anti-human TTV ORF1 IgG antibodies in 69 of 70 French subjects including 30 blood donors, 30 cryptogenic hepatitis patients and 10 healthy children using an ORF1 C-terminus-based WB analysis (Ott, C., et al. 2000. J Gen Virol 81:2949-58). Most recently, our group successfully used the C-terminal fragment of the ORF1 protein of a U.S. strain of TTSuV2 as the antigen to detect TTSuV2-specific IgG antibodies in pig sera by ELISA. Together with the present study for serological detections of the two porcine TTV species-1 genotypes TTSuV1a and TTSuV1b, the obtained data suggest that the C-terminal portion of ORF1 of anelloviruses is an appropriate target for the development of serodiagnostic assays.
Indeed, based on the CAV virion structure determined by cryo-electron microscopic images, the C-terminal half portion of the ORF1 is proposed to form the outer part of the capsid that is exposed to the virion surface whereas the basic N-terminal part of the CAV ORF1 is proposed to be inside the capsid to bind the viral DNA, and the middle part of the ORF1 is proposed to form the inner shell of the capsid (Crowther, R. A., et al. 2003. Comparison of the structures of three circoviruses: chicken anemia virus, porcine circovirus type 2, and beak and feather disease virus. J Virol 77:13036-41). The ORF1 polypeptide of anellovirus has been suggested to be organized in the same way as that of CAV (Crowther, R. A., 2003. Id.). This proposed structure is consistent with the computer analysis of the ORF1 hydrophilicity profiles of TTSuV1 (
Reliability and specificity of the established ELISAs for differential TTSuVs antibody detections were guaranteed by screening of the positive and negative reference sera through a serum WB. It was further demonstrated by triple seronegativity of TTSuV1a, TTSuV1b and TTSuV2 in gnotobiotic pigs of group D (
In this study, the inventors demonstrated by investigating four different aspects that indeed there exists antigenic cross-reactivity between the two TTSuV1a and TTSuV1b genotypes but not between the two TTSuV species (TTSuV1a or 1b and TTSuV2). First, when compared to the serum samples with single TTSuV1a- or TTSuV1b-seropositivity, the numbers of serum samples with TTSuV1a/1b-dual seropositivity was much higher (
In addition, in this study the inventors also demonstrated the absence of antigenic cross-reactivity between TTSuVs and a human genogroup 1 TTV by IFA. Taken together, the results from this study have important implications in predicting the antigenic cross-reactivity among different anelloviruses based on the ORF1 aa sequence homology. Currently, anelloviruses are classified into nine genera according to the infected host species (human/ape, tamarin, douroucouli, tupaia, pig, dog and cat), nucleotide sequence identity and the genome size of primate anelloviruses (TTV, TTMV and TTMDV) (Biagini, P., et al. 2011. Anelloviridae, p. 331-341. In A. M. Q. King, M. J. Adams, E. B. Carstens, and E. J. Lefkowitz (ed.), Virus Taxonomy, 9th Report of the ICTV. Elsevier Academic Press, London). The ORF1 of the TTSuV (Genus Iotatorquevirus) share 15.6-22.3% aa sequence identity with the other eight genera based on multiple sequence alignment (data not shown), which is similar to that between TTSuVs and the human genogroup 1 TTV (19.1-21.0%). Therefore, it is reasonable to deduce that porcine anellovirus is not antigenically cross-reactive with other anelloviruses in other animal species. The ORF1 aa sequence homologues among the nine genera range from 15.0% to 27.3% (data not shown), thus implying that antigenic diversity between different genera does exist.
The two TTSuV species (TTSuV1 and TTSuV2) do not share antigenicity in the ORF1 antigen since they only had 22.4-25.8% aa sequence identity, whereas the two TTSuV1 genotypes (TTSuV1a and 1b) were antigenically related and cross-reactive due to their higher aa sequence homology (49.4-52.4%). It is possible that the antigenic relationship of different anelloviruses in the same genus may depend on a threshold or a range of aa sequence homology. The available data using TTSuV as a model will provide insights into similar research of antigenic diversity on human anelloviruses (TTV, TTMV and TTMDV) in the future.
The present study on TTSuV1 together with our previous study on TTSuV2 (Huang, Y. W., et al. 2011. Virus Res 158:79-88) also revealed a broader picture of the nature of mixed TTSuVs infections under natural or clinically disease conditions by assessing the serological and virological profiles. It is not surprising to see in this study that several features of TTSuV1 infection were consistent with that of TTSuV2 (
Vaccines of the infectious viral and infectious molecular DNA clones, and methods of using them, are also included within the scope of the present invention. Inoculated pigs are protected from viral infection and associated diseases caused by TTV2 infection or co-infection. The novel method protects pigs in need of protection against viral infection by administering to the pig an immunologically effective amount of a vaccine according to the invention, such as, for example, a vaccine comprising an immunogenic amount of the infectious TTsuV DNA, a plasmid or viral vector containing the infectious DNA clone of TTsuV, the recombinant TTsuV DNA, the polypeptide expression products, the bacteria-expressed or baculovirus-expressed purified recombinant ORF1 capsid protein, etc. Other antigens such as PRRSV, PPV, other infectious swine agents and immune stimulants may be given concurrently to the pig to provide a broad spectrum of protection against viral infections.
The vaccines comprise, for example, the infectious viral and molecular DNA clones, the cloned TTsuV infectious DNA genome in suitable plasmids or vectors such as, for example, the pSC-B vector, an avirulent, live virus, an inactivated virus, expressed recombinant capsid subunit vaccine, etc. in combination with a nontoxic, physiologically acceptable carrier and, optionally, one or more adjuvants. The vaccine may also comprise the infectious TTsuV2 molecular DNA clone described herein. The infectious TTsuV DNA, the plasmid DNA containing the infectious viral genome and the live virus are preferred with the live virus being most preferred. The avirulent, live viral vaccine of the present invention provides an advantage over traditional viral vaccines that use either attenuated, live viruses which run the risk of reverting back to the virulent state or killed cell culture propagated whole virus which may not induce sufficient antibody immune response for protection against the viral disease.
Vaccines and methods of using them are also included within the scope of the present invention. Inoculated mammalian species are protected from serious viral infection, may also provide protection for disease related to co-infection of TTsuV, such as porcine dermatitis and nephropathy syndrome (PDNS), postweaning multisystemic wasting syndrome (PMWS), and other related illness. The vaccines comprise, for example, an inactivated or attenuated TTsuV virus, a nontoxic, physiologically acceptable carrier and, optionally, one or more adjuvants.
The adjuvant, which may be administered in conjunction with the vaccine of the present invention, is a substance that increases the immunological response of the pig to the vaccine. The adjuvant may be administered at the same time and at the same site as the vaccine, or at a different time, for example, as a booster. Adjuvants also may advantageously be administered to the pig in a manner or at a site different from the manner or site in which the vaccine is administered. Suitable adjuvants include, but are not limited to, aluminum hydroxide (alum), immunostimulating complexes (ISCOMS), non-ionic block polymers or copolymers, cytokines (like IL-1, IL-2, IL-7, IFN-α, IFN-β, IFN-γ, etc.), saponins, monophosphoryl lipid A (MLA), muramyl dipeptides (MDP) and the like. Other suitable adjuvants include, for example, aluminum potassium sulfate, heat-labile or heat-stable enterotoxin isolated from Escherichia coli, cholera toxin or the B subunit thereof, diphtheria toxin, tetanus toxin, pertussis toxin, Freund's incomplete or complete adjuvant, etc. Toxin-based adjuvants, such as diphtheria toxin, tetanus toxin and pertussis toxin may be inactivated prior to use, for example, by treatment with formaldehyde.
The vaccines may further contain additional antigens to promote the immunological activity of the infectious TTsuV DNA clones such as, for example, porcine reproductive and respiratory syndrome virus (PRRSV), porcine parvovirus (PPV), other infectious swine agents and immune stimulants.
The new vaccines of this invention are not restricted to any particular type or method of preparation. The cloned viral vaccines include, but are not limited to, infectious DNA vaccines (i.e., using plasmids, vectors or other conventional carriers to directly inject DNA into pigs), live vaccines, modified live vaccines, inactivated vaccines, subunit vaccines, attenuated vaccines, genetically engineered vaccines, etc. These vaccines are prepared by standard methods known in the art.
As a further benefit, the preferred live virus of the present invention provides a genetically stable vaccine that is easier to make, store and deliver than other types of attenuated vaccines.
Another preferred vaccine of the present invention utilizes suitable plasmids for delivering the nonpathogenic DNA clone to pigs. In contrast to the traditional vaccine that uses live or killed cell culture propagated whole virus, this invention provides for the direct inoculation of pigs with the plasmid DNA containing the infectious viral genome.
Additional genetically engineered vaccines, which are desirable in the present invention, are produced by techniques known in the art. Such techniques involve, but are not limited to, further manipulation of recombinant DNA, modification of or substitutions to the amino acid sequences of the recombinant proteins and the like.
Genetically engineered vaccines based on recombinant DNA technology are made, for instance, by identifying alternative portions of the viral gene encoding proteins responsible for inducing a stronger immune or protective response in pigs (e.g., proteins derived from ORF1, ORF1/1, ORF2, ORF2/2, etc.). Such identified genes or immuno-dominant fragments can be cloned into standard protein expression vectors, such as the baculovirus vector, and used to infect appropriate host cells (see, for example, O'Reilly et al., “Baculovirus Expression Vectors: A Lab Manual,” Freeman & Co., 1992). The host cells are cultured, thus expressing the desired vaccine proteins, which can be purified to the desired extent and formulated into a suitable vaccine product. The recombinant subunit vaccines are based on bacteria-expressed (
If the clones retain any undesirable natural abilities of causing disease, it is also possible to pinpoint the nucleotide sequences in the viral genome responsible for any residual virulence, and genetically engineer the virus avirulent through, for example, site-directed mutagenesis. Site-directed mutagenesis is able to add, delete or change one or more nucleotides (see, for instance, Zoller et al., DNA 3:479-488, 1984). An oligonucleotide is synthesized containing the desired mutation and annealed to a portion of single stranded viral DNA. The hybrid molecule, which results from that procedure, is employed to transform bacteria. Then double-stranded DNA, which is isolated containing the appropriate mutation, is used to produce full-length DNA by ligation to a restriction fragment of the latter that is subsequently transfected into a suitable cell culture. Ligation of the genome into the suitable vector for transfer may be accomplished through any standard technique known to those of ordinary skill in the art. Transfection of the vector into host cells for the production of viral progeny may be done using any of the conventional methods such as calcium-phosphate or DEAE-dextran mediated transfection, electroporation, protoplast fusion and other well-known techniques (e.g., Sambrook et al., “Molecular Cloning: A Laboratory Manual,” Cold Spring Harbor Laboratory Press, 1989). The cloned virus then exhibits the desired mutation. Alternatively, two oligonucleotides can be synthesized which contain the appropriate mutation. These may be annealed to form double-stranded DNA that can be inserted in the viral DNA to produce full-length DNA.
An immunologically effective amount of the vaccines of the present invention is administered to a pig in need of protection against viral infection. The immunologically effective amount or the immunogenic amount that inoculates the pig can be easily determined or readily titrated by routine testing. An effective amount is one in which a sufficient immunological response to the vaccine is attained to protect the pig exposed to the TTsuV virus. Preferably, the pig is protected to an extent in which one to all of the adverse physiological symptoms or effects of the viral disease are significantly reduced, ameliorated or totally prevented.
The vaccine can be administered in a single dose or in repeated doses. Dosages may range, for example, from about 1 microgram to about 1,000 micrograms of the plasmid DNA containing the infectious chimeric DNA genome (dependent upon the concentration of the immuno-active component of the vaccine), preferably 100 to 200 micrograms of the TTsuV DNA clone, but should not contain an amount of virus-based antigen sufficient to result in an adverse reaction or physiological symptoms of viral infection. Methods are known in the art for determining or titrating suitable dosages of active antigenic agent to find minimal effective dosages based on the weight of the pig, concentration of the antigen and other typical factors. Preferably, the infectious viral DNA clone is used as a vaccine, or a live infectious virus can be generated in vitro and then the live virus is used as a vaccine. In that case, from about 50 to about 10,000 of the 50% tissue culture infective dose (TCID 50) of live virus, for example, can be given to a pig.
The new vaccines of this invention are not restricted to any particular type or method of preparation. The vaccines include, but are not limited to, modified live vaccines, inactivated vaccines, subunit vaccines, attenuated vaccines, genetically engineered vaccines, etc.
The advantages of live vaccines are that all possible immune responses are activated in the recipient of the vaccine, including systemic, local, humoral and cell-mediated immune responses. The disadvantages of live virus vaccines, which may outweigh the advantages, lie in the potential for contamination with live adventitious viral agents or the risk that the virus may revert to virulence in the field.
To prepare inactivated virus vaccines, for instance, the virus propagation and virus production can occur in cultured porcine cell lines such as, without limitation PK-15 cells. Serial virus inactivation is then optimized by protocols generally known to those of ordinary skill in the art or, preferably, by the methods described herein.
Inactivated virus vaccines may be prepared by treating the TTsuV with inactivating agents such as formalin or hydrophobic solvents, acids, etc., by irradiation with ultraviolet light or X-rays, by heating, etc. Inactivation is conducted in a manner understood in the art. For example, in chemical inactivation, a suitable virus sample or serum sample containing the virus is treated for a sufficient length of time with a sufficient amount or concentration of inactivating agent at a sufficiently high (or low, depending on the inactivating agent) temperature or pH to inactivate the virus. Inactivation by heating is conducted at a temperature and for a length of time sufficient to inactivate the virus. Inactivation by irradiation is conducted using a wavelength of light or other energy source for a length of time sufficient to inactivate the virus. The virus is considered inactivated if it is unable to infect a cell susceptible to infection.
The preparation of subunit vaccines typically differs from the preparation of a modified live vaccine or an inactivated vaccine. Prior to preparation of a subunit vaccine, the protective or antigenic components of the vaccine must be identified. In the present invention, antigenic components of TTsuV were identified as the ORF1 capsid proteins of TTsuV1a, TTsuV1b and TTsuV2, which were expressed and purified in Escherichia coli (E. coli) in this invention, and other expression system, such as baculovirus expression system, for use as subunit recombinant capsid vaccines. Such protective or antigenic components include certain amino acid segments or fragments of the viral capsid proteins which raise a particularly strong protective or immunological response in pigs; single or multiple viral capsid proteins themselves, oligomers thereof, and higher-order associations of the viral capsid proteins which form virus substructures or identifiable parts or units of such substructures; oligoglycosides, glycolipids or glycoproteins present on or near the surface of the virus or in viral substructures such as the lipoproteins or lipid groups associated with the virus, etc. Preferably, the ORF1 protein is employed as the antigenic component of the subunit vaccine. Other proteins may also be used such as those encoded by the nucleotide sequence in the ORF2, ORF1/1, and ORF2/2 gene. These immunogenic components are readily identified by methods known in the art. Once identified, the protective or antigenic portions of the virus (i.e., the “subunit”) are subsequently purified and/or cloned by procedures known in the art. The subunit vaccine provides an advantage over other vaccines based on the live virus since the subunit, such as highly purified subunits of the virus, is less toxic than the whole virus.
If the subunit vaccine is produced through recombinant genetic techniques, expression of the cloned subunit such as the ORF1, ORF2. ORF1/1, and ORF2/2 genes, for example, may be expressed by the method provided above, and may also be optimized by methods known to those in the art (see, for example, Maniatis et al., “Molecular Cloning: A Laboratory Manual,” Cold Spring Harbor Laboratory, Cold Spring Harbor, Mass. (1989)). On the other hand, if the subunit being employed represents an intact structural feature of the virus, such as an entire capsid protein, the procedure for its isolation from the virus must then be optimized. In either case, after optimization of the inactivation protocol, the subunit purification protocol may be optimized prior to manufacture.
To prepare attenuated vaccines, the live, pathogenic virus is first attenuated (rendered nonpathogenic or harmless) by methods known in the art or, preferably, as described herein. For instance, attenuated viruses may be prepared by the technique of the present invention which involves the novel serial passage through embryonated pig eggs. Attenuated viruses can be found in nature and may have naturally-occurring gene deletions or, alternatively, the pathogenic viruses can be attenuated by making gene deletions or producing gene mutations. The attenuated and inactivated virus vaccines comprise the preferred vaccines of the present invention.
Genetically engineered vaccines, which are also desirable in the present invention, are produced by techniques known in the art. Such techniques involve, but are not limited to, the use of RNA, recombinant DNA, recombinant proteins, live viruses and the like.
For instance, after purification, the wild-type virus may be isolated from suitable clinical, biological samples such as serum, fecal, saliva, semen and tissue samples by methods known in the art, preferably by the method taught herein using infected pigs or infected suitable cell lines. The DNA is extracted from the biologically pure virus or infectious agent by methods known in the art, and purified by methods known in the art, preferably by ultracentrifugation in a CsC1 gradient. The cDNA of viral genome is cloned into a suitable host by methods known in the art (see Maniatis et al., id.), and the virus genome is then analyzed to determine essential regions of the genome for producing antigenic portions of the virus. Thereafter, the procedure is generally the same as that for the modified live vaccine, an inactivated vaccine or a subunit vaccine.
Genetically engineered vaccines based on recombinant DNA technology are made, for instance, by identifying the portion of the viral gene which encodes for proteins responsible for inducing a stronger immune or protective response in pigs (e.g., proteins derived from ORF1, ORF2, ORF1/1, and ORF2/2, etc.). Such identified genes or immuno-dominant fragments can be cloned into standard protein expression vectors, such as the baculovirus vector, and used to infect appropriate host cells (see, for example, O'Reilly et al., “Baculovirus Expression Vectors: A Lab Manual,” Freeman & Co. (1992)). The host cells are cultured, thus expressing the desired vaccine proteins, which can be purified to the desired extent and formulated into a suitable vaccine product.
Genetically engineered proteins, useful in vaccines, for instance, may be expressed in insect cells, yeast cells or mammalian cells. The genetically engineered proteins, which may be purified or isolated by conventional methods, can be directly inoculated into a porcine or mammalian species to confer protection against TTsuV.
An insect cell line (like sf9, sf21, or HIGH-FIVE) can be transformed with a transfer vector containing polynucleic acids obtained from the virus or copied from the viral genome which encodes one or more of the immuno-dominant proteins of the virus. The transfer vector includes, for example, linearized baculovirus DNA and a plasmid containing the desired polynucleotides. The host cell line may be co-transfected with the linearized baculovirus DNA and a plasmid in order to make a recombinant baculovirus.
Alternatively, DNA from the isolated TTsuV which encode one or more capsid proteins can be inserted into live vectors, such as a poxvirus or an adenovirus and used as a vaccine.
An immunologically effective amount of the vaccine of the present invention is administered to an porcine or mammalian species in need of protection against said infection or syndrome. The “immunologically effective amount” can be easily determined or readily titrated by routine testing. An effective amount is one in which a sufficient immunological response to the vaccine is attained to protect the pig or other mammal exposed to the TTsuV virus, or TTsuV co-infection, which may cause porcine dermatitis and nephropathy syndrome (PDNS), postweaning multisystemic wasting syndrome (PMWS) or related illness. Preferably, the pig or other mammalian species is protected to an extent in which one to all of the adverse physiological symptoms or effects of the viral disease are found to be significantly reduced, ameliorated or totally prevented.
The vaccine can be administered in a single dose or in repeated doses. Dosages may contain, for example, from 1 to 1,000 micrograms of virus-based antigen (dependent upon the concentration of the immuno-active component of the vaccine), but should not contain an amount of virus-based antigen sufficient to result in an adverse reaction or physiological symptoms of viral infection. Methods are known in the art for determining or titrating suitable dosages of active antigenic agent based on the weight of the bird or mammal, concentration of the antigen and other typical factors.
The vaccine can be administered to pigs. Also, the vaccine can be given to humans such as pig farmers who are at high risk of being infected by the viral agent. It is contemplated that a vaccine based on the TTsuV can be designed to provide broad protection against both porcine and human TTV. In other words, the vaccine based on the TTsuV can be preferentially designed to protect against human TTV infection through the so-called “Jennerian approach” (i.e., cowpox virus vaccine can be used against human smallpox by Edward Jenner). Desirably, the vaccine is administered directly to a porcine or other mammalian species not yet exposed to the TTV virus. The vaccine can conveniently be administered orally, intrabuccally, intranasally, transdermally, parenterally, etc. The parenteral route of administration includes, but is not limited to, intramuscular, intravenous, intraperitoneal and subcutaneous routes.
When administered as a liquid, the present vaccine may be prepared in the form of an aqueous solution, a syrup, an elixir, a tincture and the like. Such formulations are known in the art and are typically prepared by dissolution of the antigen and other typical additives in the appropriate carrier or solvent systems. Suitable carriers or solvents include, but are not limited to, water, saline, ethanol, ethylene glycol, glycerol, etc. Typical additives are, for example, certified dyes, flavors, sweeteners and antimicrobial preservatives such as thimerosal (sodium ethylmercurithiosalicylate). Such solutions may be stabilized, for example, by addition of partially hydrolyzed gelatin, sorbitol or cell culture medium, and may be buffered by conventional methods using reagents known in the art, such as sodium hydrogen phosphate, sodium dihydrogen phosphate, potassium hydrogen phosphate, potassium dihydrogen phosphate, a mixture thereof, and the like.
Liquid formulations also may include suspensions and emulsions which contain suspending or emulsifying agents in combination with other standard co-formulants. These types of liquid formulations may be prepared by conventional methods. Suspensions, for example, may be prepared using a colloid mill. Emulsions, for example, may be prepared using a homogenizer.
Parenteral formulations, designed for injection into body fluid systems, require proper isotonicity and pH buffering to the corresponding levels of mammalian body fluids. Isotonicity can be appropriately adjusted with sodium chloride and other salts as needed. Suitable solvents, such as ethanol or propylene glycol, can be used to increase the solubility of the ingredients in the formulation and the stability of the liquid preparation. Further additives which can be employed in the present vaccine include, but are not limited to, dextrose, conventional antioxidants and conventional chelating agents such as ethylenediamine tetraacetic acid (EDTA). Parenteral dosage forms must also be sterilized prior to use.
The following examples demonstrate certain aspects of the present invention. However, it is to be understood that these examples are for illustration only and do not purport to be wholly definitive as to conditions and scope of this invention. It should be appreciated that when typical reaction conditions (e.g., temperature, reaction times, etc.) have been given, the conditions both above and below the specified ranges can also be used, though generally less conveniently. The examples are conducted at room temperature (about 23° C. to about 28° C.) and at atmospheric pressure. All parts and percents referred to herein are on a weight basis and all temperatures are expressed in degrees centigrade unless otherwise specified.
Convenient serum and semen samples from 20 conventional adult boars from a Virginia pig farm were used in the study. Total DNA was isolated from 20 serum and 19 semen samples using QIAamp DNA mini kit (Qiagen). To screen for the positive PTTV-containing samples, nested PCR amplifications of the conserved regions in the UTR of PTTV1 and PTTV2 were initially performed by using AmpliTag Gold polymerase (Applied Biosystems). The two primer pairs used to amplify the fragment A of PTTV1 were TTV1-mF (SEQ ID NO:45)/TTV1-mR (SEQ ID NO:46)(for the first-round PCR) and TTV1-nF (SEQ ID NO:47)/TTV1-nR (SEQ ID NO:48) (for the second-round PCR), whereas the two primer pairs used to amplify the fragment D of PTTV2 were TTV2-mF (SEQ ID NO:49)/TTV2-mR (SEQ ID NO:50) (for the first-round PCR) and TTV2-nF (SEQ ID NO:51)/TTV2-nR (SEQ ID NO:52) (for the second-round PCR;
In order to amplify the full-length genomic sequences of both PTTV1 and PTTV2, we first performed an inverse genomic PCR using a pair of conserved gene-specific primers TTV1-IF (SEQ ID NO:1)/TTV1-IR (SEQ ID NO:4) located in region A for PTTV1 and another pair of gene-specific primers TTV2-IF (SEQ ID NO:5)/TTV2-IR (SEQ ID NO:8) located in region D for PTTV2, respectively, with Herculase II Fusion DNA Polymerase (Stratagene) according to the manufacturer's instructions. No PCR products with expected sizes were detected. Subsequently we designed new sets of primers to amplify two regions covering the complete PTTV1 and PTTV2 genomes in the second-round PCR, respectively (
Porcine TTV DNA was previously detected from pigs in different geographic regions by nested-PCR based on the UTR sequence of a Japanese PTTV1 strain Sd-TTV31 (McKeown et al., 2004, supra). With the recent identification of PTTV2, two different sets of nested-PCR primers have been used to amplify region A of PTTV1 and region D of PTTV2, respectively (
Generic analyses and alignment of DNA and amino acid sequences were performed using Lasergene package (DNASTAR Inc., Madison, Wis.). The genomic sequences of three known PTTV strains and their corresponding GenBank accession numbers used for the alignment and comparison are Sd-TTV31 (AB076001), TTV-1p (AY823990) and TTV-2p (AY823991). Pairwise sequence comparisons (PASC) were performed using 121 full-length genomic sequences of human and animal TTV-related strains available in GenBank with an online program PASC (Pairwise Sequence Comparison) developed for analysis of pairwise identity distribution within viral families and available from the National Center for Biotechnology Information (NCBI) (Bao Y., Kapustin Y. & Tatusova T. (2008). Virus Classification by Pairwise Sequence Comparison (PASC). Encyclopedia of Virology, 5 vols. (B. W. J. Mahy and M. H. V. Van Regenmortel, Editors). Oxford: Elsevier. Vol. 5, 342-348).
Phylogenetic trees were constructed by the neighbor-joining method in the PAUP4.0 program (David Swofford, Smithsonian Institute, Washington, D.C., distributed by Sinauer Associate Inc.) based upon the full-length genomic sequences and the deduced amino acid sequences of 4 ORFs of seven PTTV strains. The data were obtained from 1000 re-sampling.
Analyses and alignment of DNA sequences were performed using Lasergene package (DNASTAR Inc., Madison, Wis.). Full-length genomic sequences of ten porcine TTV strains and their corresponding GenBank accession numbers used for the alignment were as follows. Species PTTV1: Sd-TTV31 (AB076001), PTTV1a-VA (GU456383), TTV-1p (AY823990), PTTV1b-VA (GU456384), swSTHY-TT27 (GQ120664) and TTV1 #471819 (GU188045). Species PTTV2: PTTV2b-VA (GU456385), PTTV2c-VA (GU456386), TTV-2p (AY823991) and TTV2 #472142 (GU188046). The conserved sequences among the 6 PTTV1 and 4 PTTV2 genomes were identified, respectively, and subsequently used to guide real-time PCR primer selections using the Beacon Designer program (PREMIER Biosoft International, Palo Alto, Calif.). Primers used for the duplex nested PCR of PTTV1 were designed by the Lasergene package.
A region of 2091 bp corresponding to the PCR fragment B of PTTV1b-VA genome was re-amplified from the same PCR fragment using primers TTV1-IF (5′-CATAGGGTGTAACCAATCAGATTTAAGGCGTT-3′) and TTV1-2340R (5′-GGTCATCAGACGATCCATCTCCCTCAG-3′) as described previously (Huang et al., 2010). The resulting amplicon was gel-purified by QIAquick Gel Extraction Kit (Qiagen) and quantified by a NanoDrop spectrophotometer that was used for the real-time PCR standard template of porcine TTV species 1. A full-length DNA clone of PTTV2c-VA strain, pSC-PTTV2c, was constructed by assembling PCR fragments E and F from PTTV2c-VA in the vector pSC-B-amp/kan (Huang et al., unpublished data). Plasmid pSC-PTTV2c (7082 bp) was used for the real-time PCR standard template of porcine TTV species 2 and the plasmid DNA concentration was measured by a NanoDrop spectrophotometer. A 10-fold dilution series of the two templates was used to generate the real-time PCR standard curves, respectively.
Total DNA was isolated from 20 serum and 19 semen samples collected from 20 conventional adult boars (with no clinical syndromes) from a Virginia pig farm using QIAamp DNA mini kit (Qiagen) as described previously (Huang et al., 2010). A sample volume of 400 μl for sera and semen was used to extract DNA with a final eluate of 50 μl sterile water. All extracted DNA samples were stored at −20° C. until real-time PCR testing. Detection of porcine TTVs in these samples by conventional nested PCR had been described previously (Huang et al., 2010). Total DNA extracted from a goat serum sample with the same procedure was used as the negative control.
PTTV1- and PTTV2-specific real-time PCR were performed, respectively, using SensiMix SYBR & Fluorescein kit (Quantace Ltd) and the MyiQ iCYCLER Real Time PCR instrument (BIO-RAD Laboratories). Each 25-μ1 reaction contained 12.5 μl of SYBR green Master Mix, 4 μl of extracted DNA, 0.5 μl of each primer (10 nM) and 7.5 μl of sterile water. The PCR condition for PTTV1 was 10 min at 95° C. followed by 40 cycles of amplification (15 sec at 95° C., 30 sec at 59.4° C., 10 sec at 72° C.). This was immediately followed by a melting point analysis obtained by gradually increasing the temperature form 55° C. to 95° C. with the fluorescence signal being measured every 0.5° C. The PCR condition for PTTV2 was the same as PTTV1 except that the annealing temperature was 56° C. PTTV1 and PTTV2 standard templates were included as positive controls in every run. Amplification and data analysis were carried out using MyiQ System software (BIO-RAD Laboratories). All samples were run in duplicate on the same plate.
The optimal annealing temperatures for amplification of PTTV1- and PTTV2-specific assays were 59.4° C. and 56° C., respectively, as determined by a 10-fold dilution of amplifications using a gradient of annealing temperatures. Amplification of the 118-bp product using primers TTV1F/TTV1R was obtained only with PTTV1 template whereas amplification of the 200-bp product with PTTV2 template was only observed when primers TTVF4/TTVR4 were used. Neither assay yielded any cross-amplification from the other, confirming the specificity of the primers and targets (data not shown).
A PTTV1 standard curve was established over a range of target DNA concentrations per 25 μl. The linear range was shown to span 4.4×101 to 4.4×108 copies. The minimum detection limit (44 copies) corresponded to a threshold cycle (Ct) of 37.57. Tested samples with Ct>37.57 were considered as below the detection limit and were not quantifiable. Similarly, a PTTV2 standard curve was generated and used to detect DNA concentration ranging from 8.6×100 to 8.6×108 copies per 25 μl reaction. The corresponding Ct of minimum detection limit (8.6 copies) was 36.53. All samples that were considered as PTTV1- or PTTV2-positive had copy numbers lower than the respective maximum detection limit. Melting curves using a 10-fold dilution of PTTV1 or PTTV2 standard template, as well as 20 boar serum samples, displayed melting temperatures (Tm) of 87.0° C. for PTTV1 and 80.0° C. for PTTV2, respectively. No peaks were observed for the negative controls using sterile water or goat serum DNA as templates.
Viral load was expressed as copy numbers of PTTV1 or PTTV2 genomes per ml of original boar serum samples. PTTV1 DNA were detected in all 20 serum samples ranging from 1.91×103 to 3.25×105 copies/ml whereas PTTV2 DNA were detected in 19 serum samples (except #10) ranging from 3.59×102 to 1.39×106 copies/ml. The result was consistent to our previous study by using conventional nested PCR (Table 5). None of the semen samples were PTTV1-positive whereas three semen samples were PTTV2-positive with very low viral loads (230, 244 and 357 copies/ml, respectively).
PTTV1/PTTV2 duplex real-time PCR assay was performed in a 25 μl PCR system containing 12.5 μl of SYBR green Master Mix, 0.5 μl of each PTTV1 primers, 0.5 μl of each PTTV2 primers, 4 μl of DNA and 6.5 μl of sterile water. The duplex PCR condition and melting point analysis were the same as PTTV1 except that the annealing temperature was 58° C. The melting peaks were analyzed to distinguish the PTTV1- and PTTV2-specific amplicons.
The first-round PCR was performed with a Platinum PCR HiFi Supermix (Invitrogen) using 4 μl of extracted DNA in a total volume of 50 μl. The PCR condition was 30 cycles of 94° C. for 30 sec, 55° C. for 30 sec, 72° C. for 30 sec with an initial denaturation of the template DNA at 94° C. for 2 min. A 4-μl aliquot of the first-round PCR product was used for the second-round PCR with the same PCR reagents and condition. One pair of primers P1ab-mF/P1ab-mR was used in the first-round PCR whereas a mixture of two pairs of primers, P1a-nF/P1a-nR for detection of PTTV1a, and P1b-nF/P1b-nR for detection of PTTV1b, were used in the second-round PCR (Table 1). The amplification products were visualized by gel electrophoresis on a 1% agarose gel stained with ethidium bromide and two bands specific for each type were differentiated by UV light.
The C-terminal parts of ORF1 of PTTV1a, PTTV1b and PTTV2c were amplified from the respective full-length DNA clones (pSC-PTTV1a, pSC-PTTV1b and pSC-PTTV2c; described elsewhere). The amplified fragments were expected to encode protein products with 319 aa for PTTV1a (ORF1 aa positions 317-635 (SEQ ID NO:13); GenBank accession no. GU456383), 318 aa for PTTV1b (ORF1 aa positions 322-639 (SEQ ID NO:14); GenBank accession no. GU456384), and 316 aa for PTTV2c (ORF1 aa positions 310-625 (SEQ ID NO:16); GenBank accession no. GU456386), respectively. A C-terminal truncated fragment of PTTV1b encoding 248 aa (ORF1 aa positions 322-569 (SEQ ID NO:14)) was also amplified and used as a comparison control for SDS-PAGE analysis. All the plasmids were constructed by cloning of the PCR products into an E. coli/baculovirus/mammalian cells triple expression vector pTriEx1.1-Neo (Novagen) between the NcoI and XhoI restriction sites to generate C-terminally 8×His-tagged fusion proteins. The four recombinant plasmids were designated pTri-PTTV1a-ORF1, pTri-PTTV1b-ORF1, pTri-PTTV1b-ORF1 ctruc and pTri-PTTV2c-ORF1. All cloned sequences were confirmed by DNA sequencing.
The four expression plasmids were transformed into Rosetta 2 (DE3) pLacI competent cells (Novagen), respectively, and the bacteria were plated on LB agar plates containing 100 ampicillin overnight at 37° C. A single transformation colony for each construct was used to inoculate 3 ml of LB medium containing 100 μg/ml of ampicillin (LB/amp), and grown 6-8 hours at 37° C. The turbid 3 ml culture for each construct was then used to make bacterial stocks by adding 25% filter sterilized glycerol, and freezing the culture down at −80° C. Prior to purification, 10 μl of the frozen bacterial stock for each construct was used to inoculate a 3 ml starter culture of LB/amp, and grown for 6-8 hours at 37° C. A 100-ml of Overnight Express TB Media (Novagen) was inoculated with the starter culture to induce protein expression, and was grown 16-18 hours at 37° C. After incubation, the autoinduction culture underwent centrifugation at 3400 rpm for 15 minutes at 4° C. The resulting supernatant for each construct was discarded, and each of the bacterial pellets was reserved at −20° C. until use.
The recombinant proteins were insoluble and expressed within the bacterial inclusion bodies. Each of the bacterial pellets was treated with BugBuster and rLysozyme according to the manufacture's protocol (Novagen), and Benzonase Nuclease (Novagen) was added for degradation of DNA and RNA. Each of the inclusion body pellets was subsequently resuspended with 840 μl of lysis buffer (6M Guanidine Hydrochloride, 0.1M sodium phosphate, 0.01M Tris-Chloride, 0.01M imidazole, pH 8.0), and frozen at −80° C. for at least 30 minutes. It was then thawed, diluted with an additional 2.5 ml of lysis buffer and gently rotated for 30 minutes at room temperature. The lysate supernatants were collected by centrifugation at 15,000×g for 30 minutes at room temperature. A 50%-Ni-NTA His-bind slurry (Novagen) was added to each of the decanted supernatants, and the mixtures were shaken for 60 minutes at room temperature to promote his-tag binding. The lysate/resin mixtures were loaded into an empty chromatography column. After the initial flow-through, a 7-ml of lysis buffer was added to the column and allowed to flow through. Each column was then washed 2 times with 7 mL of wash buffer (8M Urea, 0.1M Sodium Phosphate, 0.15M Sodium Chloride, 0.02M imidazole, pH 8.0). Elution of the target protein was achieved by adding 4 separate 1 ml aliquots of elution buffer (8M Urea, 0.05M Sodium Phosphate, 1M Sodium Chloride, 0.5M Imidazole, pH 8.0) to the column. The four elution fractions were analyzed by SDS Page and Coomasie Blue Staining.
The elutions containing significant concentrations of the target protein were injected into a 0.5 ml-3 ml dialysis cassette with a 20,000 molecular weight cut-off (Pierce). A series of 4 dialysis buffers were used for dialysis; dialysis buffer 1 (6M Urea, 0.05M Sodium Phosphate, 0.8M Sodium Chloride, 0.3M Imidazole, pH 8.0), dialysis buffer 2 (4M Urea, 0.033M Sodium Phosphate, 0.533M Sodium Chloride, 0.2M Imidazole, pH 8.0), dialysis buffer 3 (2.67M Urea, 0.022M Sodium Phosphate, 0.356M Sodium Chloride, 0.133M Imidazole, pH 8.0) and dialysis buffer 4 (1.5M Urea, 0.0148 Sodium Phosphate, 0.237M Sodium Chloride, 0.089M Imidazole, pH 8.0). The dialysis cassette was sequentially submerged and rotated in each dialysis buffer for over 6 hours at 4° C. When dialysis was complete, the recombinant His-tagged fusion proteins were each removed from the cassettes, quantified using a NanoDrop and frozen at −80° C.
A western blot was developed to detect purified recombinant proteins by using an anti-6×His-tagged monoclonal antibody (Rockland). Equal volumes of each of the purified truncated ORF1 proteins and LDS/10% β-ME were mixed, and boiled at 95° C. for 10 minutes. A 10-μ1 of the boiled sample was added to each appropriate well of a 4-12% Bis-Tris Polyacrylamide Gel (Invitrogen), and was run at 200 volts for 43 minutes in 1×MES running buffer (Invitrogen). The proteins were transferred to a PVDF membrane (Bio-Rad) using a Trans blot semi dry transfer apparatus and 1×transfer buffer (Invitrogen). Once transfer was complete, the PVDF membrane was incubated in Odyssey blocking buffer (Li-Cor) at room temperature for 1 hour. The anti-6×His-tagged MAb was diluted at 1:1000 in Odyssey blocking buffer/0.2% tween 20, and transferred to the membrane after the previous Odyssey blocking buffer was removed. The MAb was left on a rocker to incubate with the membrane for either 2 hours at room temperature or 4° C. overnight, and then the membrane was washed 3 times with tris buffered saline/0.05% tween 20 (TBS-T, Sigma). A Goat anti-rabbit IgG IRDye 800 (Li-Cor) antibody was diluted at 1:5000 in Odyssey blocking buffer/0.2% tween 20/0.1% SDS. It was transferred to the freshly washed PVDF membrane, and allowed to incubate for 1 hour at room temperature while gently rocking. The membrane was washed 3 times with TBS-T, 1 time with TBS and imaged with the Li-Cor Odyssey.
A serum western blot was developed, and used to identify positive and negative serum controls for ELISA development. After SDS-PAGE as described above, the proteins were transferred to a PVDF membrane that was subsequently incubated in Odyssey blocking buffer (Li-Cor) at room temperature for 1 hour. A selected serum sample was diluted at 1:100 in Odyssey blocking buffer/0.2% tween 20, and transferred to the membrane after the previous Odyssey blocking buffer was removed. The serum sample was left on a rocker to incubate with the membrane for 2 hours at room temperature, and then the membrane was washed 3 times with tris buffered saline/0.05% tween 20 (TBS-T, Sigma). A goat anti-swine IgG IRDye 800 antibody (Rockland) was diluted at 1:2500 in Odyssey blocking buffer/0.2% tween 20/0.1% SDS. It was transferred to the freshly washed PVDF membrane, and allowed to incubate for 1 hour at room temperature while gently rocking. The membrane was washed 3 times with TBS-T, 1 time with TBS and imaged with the Li-Cor Odyssey.
The optimal concentrations of the antigens used to coat the plates and dilutions of antisera and conjugates were determined by checkboard titration. The ELISA was initiated by diluting each of the purified recombinant His-tagged fusion proteins (PTTV1a, PTTV1b and PTTV2c, respectively) to 680 ng/ml in 1×Carbonate Coating Buffer (CCB) at a pH of 9.6, and coating medium binding ELISA plates (Greiner) with 100 μl/well. The plates were covered, and allowed to incubate at 37° C. for 2 hours. After coating, the diluted proteins were removed, and each well was washed 3 times with 300 μl of 1×TBS-T. Protein Free Blocking Buffer (Pierce) was then added at a volume of 300 μl/well, and the plates were allowed to incubate at 37° C. for 1 hour. Meanwhile, in a 96-well dilution block, the serum samples were diluted at 1:100 in 150 μl of protein free blocking buffer. The block was then removed, and 100 μl of each diluted serum sample was transferred to each corresponding well on the ELISA plates. The plates were allowed to incubate at 37° C. for 2 hours, after which each well was washed 3 times with 300 μl of TBS-T. Next, the HRP-conjugated anti-swine IgG antibody (Rockland) was diluted at 1:4000 in 12 ml of protein free block, and 100 μl was added to each well of the plates. This was incubated at 37° C. for 1 hour, and then each well was washed 3 times with 300 μl of TBS-T. In order to develop the ELISA, 100 μl of Sure Blue Reserve 1-Component (KPL) was added to each well of the plates. After 20 minutes, 100 μl of 1N HCL was added to each well to stop development. The plates were then read at 450 nm.
Porcine sera used in cell culture research from a commercial company (manufactured in New Zealand and considered free from all OIE diseases) were used as a positive control for the three ELISA protocols because the sera were all PTTV1a-, PTTV1b- and PTTV2-positive as detected by serum western blot and displayed high OD values (>2.0). We initially used pooled gnotobiotic pig sera as a negative control as they were negative in western blot detection. Subsequently, in comparison of the negative gnotobiotic pig sera, we screened some porcine sera collected from a conventional pig farm in Wisconsin. They were also negative in western blot detection and their OD values corresponded to that of negative gnotobiotic pig sera. These conventional porcine sera were pooled and used as a negative control. The cutoff value for each ELISA was calculated as the mean OD value of the negative control group (n=4) plus 3 times of the standard deviation.
PCR fragments B and C from the US isolate PTTV1a-VA (GenBank accession no. GU456383) were re-amplified from the constructs described previously, and were subsequently assembled into a full-length genomic DNA with a BamH I site at the both ends of the genome by overlapping PCR using the Herculase II Fusion DNA Polymerase (Stratagene) on the vector pSC-B-amp/kan (Stratagene). The resulting construct was designated pSC-PTTV1a (
The full-length PTTV2c genome was excised from the clone pSC-PTTV2c by BamH I digestion, purified and ligated to form concatemers. Ligated concatemers were cloned into the BamH I-pre-digested pSC-B-amp/kan vector to produce a tandem-dimerized DNA clone, pSC-2PTTV2c-RR (
The ORF1-encoding product is the putative capsid protein of TTV. To generate PTTV1a-, PTTV1b- and PTTV2-specific anti-ORF1 polyclonal antibodies to detect the expression of PTTV ORF1 proteins and to determine the infectivity of PTTV DNA clones, the three ORF1 proteins from PTTV1a, PTTV1b and PTTV2c were expressed in E. coli, purified and were subsequently used to immunize New Zealand white rabbits, respectively, as a custom antibody production service at Rockland Immunochemicals (Gilbertsville, Pa.). Each anti-ORF1 polyclonal antibody was produced from serum of immunized rabbits.
PK-15 cells were seeded at 2×105 cells per well onto a 6-well plate and grown until 60%-70% confluency before transfection. The DNA clones pSC-2PTTV2b-RR and pSC-2PTTV2c-RR were directly transfected into PK-15 cells, respectively, using Lipofectamine LTX (Invitrogen) according to the manufacturer's protocol. For clones pSC-PTTV1a, pSC-PTTV2c and TTV2-#471942-full, their ligated concatemers, produced as described above, were used for transfection, respectively. Cells were cultured for 3 to 5 days, and were then applied to an immunofluorescence assay (IFA) to detect the expression of ORF1 of porcine TTVs. Alternatively, transfected cells were passaged into new 6-well plates and continued to culture for 3 days before the IFA detection.
Transfected or passaged cells were washed 2 times with PBS and fixed with acetone. Five hundred microliters of the antibodies, specific to PTTV1a or PTTV2 at 1:500 dilution in PBS, was added over the cells and incubated for 1 hour at room temperature. Cells were washed 3 times with PBS and 500 μl Texas red- or Alexa Fluor 488-labeled goat anti-rabbit IgG (Invitrogen) at 1:200 dilution was then added. After 1-hour incubation at room temperature and washed with PBS, the cells were stained with 500 μl DAPI (KPL, Inc.) at 1:1000 dilution and visualized under a fluorescence microscope.
A pig inoculation study was performed to determine the infectivities of the two tandem-dimerized porcine TTV2 clones: pSC-2TTV2b-RR and pSC-2TTV2c-RR. Briefly, eight 4-week-old conventional pigs that were seronegative and viral DNA negative for porcine TTV2 were randomly assigned into two groups of four each. Each group of pigs was housed separately and maintained under conditions that met all requirements of the Institutional Committee on Animal Care and Use.
All pigs in each group were injected by a combination of both the intra-lymph node route and intramuscular route. The four pigs (nos. 181, 189, 192 and 193) were each injected with 200 μg of the pSC-2TTV2b-RR plasmid DNA whereas another four pigs (nos. 92, 180, 188 and 191) were each inoculated with 200 μg of the pSC-2TTV2c-RR clone. Pigs were monitored daily for clinical signs of disease for a total of 28 days. All pigs were necropsied at 28 days postinoculation.
A total of twelve continuous cell lines were used in this study. A type 1 porcine circovirus (PCV1)-free porcine kidney epithelial cell line PK-15 (Fenaux, M., T. et al. 2004. A chimeric porcine circovirus (PCV) with the immunogenic capsid gene of the pathogenic PCV type 2 (PCV2) cloned into the genomic backbone of the nonpathogenic PCV1 induces protective immunity against PCV2 infection in pigs. J Virol 78:6297-303), a swine testis cell line ST (ATCC CRL-1746, passage 6), a baby hamster kidney fibroblast cell line BHK-21 (ATCC CCL-10, passage 62), and an African green monkey kidney epithelial Vero cell (ATCC CCL-81, passage 95) were each grown in modified Eagle's medium (MEM) supplemented with 10% fetal bovine serum (FBS) and antibiotics. A porcine monocytic cell line 3D4/31 (ATCCCRL-2844, passage 8), a porcine small intestinal epithelial cell line IPEC-J2 (a gift from Dr. Anthony Blikslager at North Carolina State University, Raleigh, N.C.) (Schierack, P., M. et al. 2006. Characterization of a porcine intestinal epithelial cell line for in vitro studies of microbial pathogenesis in swine. Histochem Cell Biol 125:293-305), and a hamster ovarycell line CHO-K1 (ATCC CCL-61, passage 12) were each cultured in Dulbecco's modified Eagle's medium (DMEM) and nutrient mixture F-12 (Ham) (1:1) with GlutaMAX™-I (Invitrogen, Carlsbad, Calif.) supplemented with 5% FBS and antibiotics. A monkey kidney cell line subclone MARC-145 (passage 42) derived from MA-104 (ATCC CRL-2378), a human cervical cancer cell line HeLa (ATCC CCL-2, passage 10), two human hepatocellular carcinoma cell lines Huh-7 (subclone 10-3; a gift from Dr. Suzanne U. Emerson at NIAID, NIH) (Emerson, S. U., H. et al. 2004. In vitro replication of hepatitis E virus (HEV) genomes and of an HEV replicon expressing green fluorescent protein. J Virol 78:4838-46) and HepG2 (ATCC CRL-10741, passage 7) were each grown in DMEM supplemented with 10% fetal bovine serum (FBS) and antibiotics. A human 293 cell line, 293TT, engineered to stably express high levels of SV40 large T antigen (a gift from Dr. John T. Schiller, Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, Md.) (Buck, C. B., et al. 2004. Efficient intracellular assembly of papillomaviral vectors. J Virol 78:751-7), was cultured in DMEM-10 medium (DMEM with 10% inactivated FBS, 1% non-essential amino acids and 1% GlutaMAX-I) supplemented with 400 μg/ml hygromycin B and antibiotics. All cells were grown at 37° C. with 5% CO2.
To ensure that the porcine-derived cell lines used in the study were free of TTSuV contamination, five cell lines, PCV1-free PK-15, 3D4/31, IPEC/J2, BHK-21 and MARC-145, were tested for TTSuV1 or TTSuV2 DNA by using two singleplex SYBR green-based real-time qPCR assays (Huang, Y. W., et al. 2010. J Virol Methods 170:140-6). Briefly, total DNA was extracted from each cell line using the QIAamp DNA mini kit (Qiagen) and was subsequently subjected to TTSuV1 or TTSuV2 qPCR detection in a 25 μl PCR system using SensiMix SYBR & Fluorescein kit (Quantace Ltd) as described previously (Huang, Y. W., et al. Id.). A TTSuV1 or TTSuV2 standard template and a porcine serum sample from a commercial company used in cell culture, which is supposed to be OIE (The World Organization for Animal Health) diseases-free, were included as controls. All samples were run in duplicate on the same plate.
The inventors have previously expressed and purified a recombinant truncated ORF1 protein of TTSuV2 (PTTV2c-VA strain) (Huang, Y. W., et al. 2011. Virus Res 158:79-88). The purified protein products were used to immunize two New Zealand white rabbits as a custom antibody production service at Rockland Immunochemicals (Gilbertsville, Pa.). Serum samples from both rabbits were collected before immunization (pre-bleed) and at 45 days post-immunization.
Two PCR fragments (E and F) covering the full-length genome of the U.S. strain of TTSuV2 isolate PTTV2c-VA (GenBank accession no. GU456386; SEQ ID NO:12) were re-amplified from the constructs reported previously (Huang, Y. W., Virology 396:287-97), which were subsequently assembled into a full-length genomic DNA by overlapping PCR using the Herculase II Fusion DNA Polymerase (Stratagene) in the vector pSC-B-amp/kan (Stratagene). The monomeric TTSuV2 DNA fragment was flanked by a BamHI restriction site at both ends. The resulting construct was designated pSC-PTTV2c (
An HpaI restriction enzyme site was engineered into the putative spliced region (intron) of TTSuV2 genome in the clone pSC-TTV2-#472142 for introducing a genetic marker to discriminate between the cloned virus and the potential indigenous viruses in the subsequent animal study. To create the unique HpaI site (GTTAAC; mutations are underlined; SEQ ID NO:63), three point mutations, C to T, C to A and T to A at nucleotide (nt) positions 1817, 1819 and 1820 corresponding to the TTV2-#471942 genome were generated by a fusion PCR technique using two pairs of primers containing the desired mutations. The fusion PCR product replaced the corresponding region on the clone pSC-TTV2-#471942 by using the cloning site KpnI at both ends. The mutations did not change the putative ORF1 capsid amino acid sequence. The resulting full-length DNA clone was named pSC-TTV2-EU (
The PCV1-free PK-15 cells were seeded at 2×105 cells per well onto a 6-well plate and grown until 60%-70% confluency before transfection. Two micrograms of the tandem-dimerized clones pSC-2PTTV2b-RR and pSC-2PTTV2c-RR were directly transfected into the cells, respectively, using Lipofectamine LTX (Invitrogen) according to the manufacturer's protocol. For monomeric clones pSC-PTTV2c, pSC-TTV2-#471942, pSC-TTV2-EU, pSC TTV2-US and pSC-TTV2-AAA, the respective genomic fragment was excised by BamHI or EcoRV enzyme, gel-purified, and re-ligated with the T4 DNA ligase overnight. The ligation mixtures (˜2 μg) were used for transfection using Lipofectamine LTX, respectively. Cells were cultured for 3 to 5 days, and then subjected to an immunofluorescence assay (IFA) to detect the expression of ORF1. Alternatively, transfected cells were passaged into new 6-well plates and were cultured for 3 days before detection of ORF1 expression by IFA. Transfection of the other 11 cell lines and IFA detection were similar.
Transfected or passaged cells on 6-well plates were washed times with PBS and fixed with acetone. Five hundred microliters of the anti-TTSuV2 ORF1 antiserum at a 1:500 dilution in PBS, was added to the cells for each well and incubated for 1 hour at room temperature. Cells were washed 3 times with PBS and 500 μl Texas Red- or Alexa Fluor 488-conjugated goat anti-rabbit IgG (Invitrogen) at a 1:300 dilution was subsequently added. After incubation for 1 hour at room temperature, the cells were washed with PBS, stained with 500 μl DAPI (KPL, Inc.) at a 1:1000 dilution and visualized under a fluorescence microscope.
Total RNA was extracted from PCV1-free PK-15 cells transfected with circular TTSuV2 DNA using the RNeasy mini kit (Qiagen) followed by an RNase-free DNase I treatment. The cDNA synthesis was performed using SuperScript II reverse transcriptase (Invitrogen) with oligo-dT as the reverse primer. PCR was performed in a 50-μL reaction with the Advantage 2 PCR kit (Clontech) using primers TTV2-448F (5′-GAAGAAAGATGGCTGACGGTAGCGTACT-3′; SEQ ID NO:66) and TTV2-2316R (5′-AGGTGCTTGAGGAGTCGTCGCTTG-3′; SEQ ID NO:6). The PCR products were gel-purified, cloned into a pCR2.1 vector (Invitrogen) by TA cloning strategy and sequenced.
It has been previously demonstrated that the infectivity of infectious DNA clones for viruses with a circular genome can be tested by direct inoculation of dimerized full-length genomic DNA into animals (Fenaux, M., T. et. al. 2004. A chimeric porcine circovirus (PCV) with the immunogenic capsid gene of the pathogenic PCV type 2 (PCV2) cloned into the genomic backbone of the nonpathogenic PCV1 induces protective immunity against PCV2 infection in pigs. J Virol 78:6297-303). Therefore, in this study, a pilot animal study was initially conducted to determine the infectivity of the two tandem-dimerized TTSuV2 clones pSC-2TTV2c-RR and pSC-2TTV2b-RR. Briefly, six, 26-day old, CD pigs that were seronegative and viral DNA-negative for TTSuV1 and TTSuV2 were assigned into three groups of two each. Each group of pigs was housed separately and maintained under conditions that met all requirements of the Institutional Animal Care and Use Committee. The pigs in each group were injected by using a combination of intra-lymphoid (superficial inguinal lymph nodes) and intramuscular routes with the plasmid DNA of the full-length TTSuV2 clones. The two pigs (nos. 1 and 2) in group 1 were each given 1 ml of PBS buffer and used as the negative control. The two pigs (nos. 3 and 4) in group 2 were each injected with 200 μg of the pSC-2TTV2c-RR plasmid DNA whereas the remaining two pigs (nos. 5 and 6) in group 3 were each inoculated with 200 μg of the pSC-2TTV2b-RR clone.
Pigs were monitored daily for evidence of TTSuV2 infection for a total of 44 days. All pigs were necropsied at 44 days post-inoculation. Serum samples were collected from all pigs prior to inoculation and weekly thereafter until termination of the study. The samples were tested for the presence of TTSuV DNA and quantified for viral loads by a singleplex TTSuV2-specific real-time qPCR (Huang, Y. W., et al. 2010. J Virol Methods 170:140-6). Samples of tissues including brain, lung, lymph nodes, liver, kidney, thymus, spleen, small intestines, large intestines, heart, tonsil, bone marrow were collected during necropsies and processed for microscopic examination. The tissues were examined in fashion blinded to the treatment status of the pigs and given a subjective score for severity of tissue lesions ranged from 0 (normal) to 3 (severe) (Fenaux, M., et al. A chimeric porcine circovirus (PCV) with the immunogenic capsid gene of the pathogenic PCV type 2 (PCV2) cloned into the genomic backbone of the nonpathogenic PCV1 induces protective immunity against PCV2 infection in pigs. J Virol 78:6297-303; Halbur, P. G., et al. 1995. Comparison of the pathogenicity of two US porcine reproductive and respiratory syndrome virus isolates with that of the Lelystad virus. Vet Pathol 32:648-60).
To further verify the results from the initial pilot pig study, the inventors introduced tractable genetic markers into the full-length DNA clones and conducted another CD/CD pig study. Approximately 600 μg of circular or concatamerized TTSuV2 genomic DNA derived from the clone pSC-TTV2-EU or pSC-TTV2-US was generated by ligation of the linearized TTSuV2 genomic DNA. To determine the infectivity of the full-length DNA clones, the inventors inoculated four, 40-day-old, CD/CD pigs (nos. 129, 135, 139 and 140 in group 1) each with 150 μg of concatamerized “TTV2-EU DNA” by a combination of both the intra-lymph node route and intramuscular route. Another four CD/CD pigs (nos. 133, 137, 138 and 141) in group 2, which were housed in a separate room, were each similarly inoculated with 150 μg of concatamerized “TTV2-US DNA”. The remaining four CD/CD pigs (nos. 127, 132, 136 and 142) in group 3 were each injected with 1.5 ml of PBS buffer and served as negative controls. All pigs were monitored for evidence of TTSuV2 infection for a total of 35 days, at which time they were necropsied. Viremia was tested by a TTSuV2 real-time qPCR (Huang, Y. W., et al. 2010. J Virol Methods 170:140-6). A TTSuV2 genomic region of 620 bp containing the engineered genetic markers in TTV2-EU or TTV2-US was amplified from the sera of inoculated pigs by PCR using primers TTV2-tagF (5′-TGACACAGGA/CGTAGGAAATGCAGT-3′; SEQ ID NO: 67) and TTV2-tagR (5′-TGAAGTATTTAGGGTCATTTGTAGCA-3′; SEQ ID NO: 68) from selected serum samples of pigs with viremia. The PCR products were gel-purified and cloned into a pCR2.1 vector by using the TA cloning strategy. The white bacterial clones on the X-gal-containing agar plates were picked up for subsequent DNA extraction and sequencing.
Porcine sera used in this study were described previously (Huang, Y. W., et al. 2011. Virus Res 158:79-88). Briefly, serum samples for serum Western blot (WB) analysis were collected from 20 conventional adultboars with no clinical symptoms from a Virginia pig farm, seven gnotobiotic pigs from Virginia (nos. 4 to 7, 224, 229 and 230; kindly provided by Drs. Lijuan Yuan and Guohua Li fromVirginia Tech) and 12 from Iowa (group D), five cesarean-derived, colostrum-deprived (CD/CD) pigs and approximately 50 conventional piglets from a Wisconsin pig farm. A TTSuV2-seropositive porcine serum, which was manufactured in New Zealand and free of all known OIE (The World Organization for Animal Health) notifiable diseases, was also used in this study.
One hundred and sixty porcine serum samples were used for assessing the virological and serological profiles of TTSuV1a and TTSuV1b infection and were divided into five groups (A to E) as described previously (Huang, Y. W., et al. 2011. Virus Res 158:79-88): (i) Twenty group-A samples were from 10 specific-pathogen-free (SPF) pigs (60-80 days old at arrival) free of known pathogens and were collected at arrival in the facility and two months after arrival; (ii) Sixty group-B samples were collected from 105 days old pigs in a farm with an outbreak of porcine circovirus associated disease (PCVAD): 30 were from clinically affected pigs and 30 were were clinically unaffected pigs; (iii) Fifty-eight group-C samples were collected from 28 days old pigs with unknown disease status: 28 were clinically affected and 30 were clinically unaffected; (iv) Twelve group-D samples were from 14-42 days old gnotobiotic pigs located in Iowa; (v) Ten group-E sera were from 21-30 days old SPF pigs used for an experimental PCV2 infection study.
The C-terminal part of the ORF1 of two TTSuV1 strains, PTTV1a-VA (GenBank accession no. GU456383; SEQ ID NO: 9) and PTTV1b-VA (GenBank accession no. GU456384; SEQ ID NO: 10) was amplified, respectively, from the available PCR fragments reported previously. The amplicon was expected to encode a truncated PTTV1a-VA ORF1 protein of 319 aa (positions 317-635 corresponding to PTTV1a-VA) or a truncated PTTV1b-VA ORF1 protein of 318 aa (positions 322-639 corresponding to PTTV1b-VA). An additional methionine was introduced at the N-terminus of each amplified fragments. Two ORF1 expression plasmids, designated pTri-1aORF1 and pTri-1bORF1, were each constructed by cloning the respective PCR product into a bacterial/insect/mammalian-triple expression vector pTriEx1.1-Neo (Novagen) between the NcoI and XhoI restriction sites to generate two C-terminally 8×His-tagged fusion proteins. The recombinant plasmids were confirmed by DNA sequencing. The TTSuV2 ORF1 expression construct, pTri-2cORF1, had been described previously (Huang, Y. W., et al. 2011. Virus Res 158:79-88).
The two plasmids were each transformed into Rosetta 2 (DE3) pLacI competent cells (Novagen). The bacteria were grown in 100-ml of Overnight Express TB Media (Novagen) for 16-18 hours at 37° C. and then the bacterial culture was harvested by centrifugation at 3,400 rpm for 15 minutes at 4° C. The resulting bacterial pellet was treated with BugBuster and rLysozyme according to the manufacture's protocol (Novagen). Benzonase Nuclease (Novagen) was added to degrade DNA and RNA. The resulting inclusion bodies were lysed in 6M guanidine hydrochloride, 0.1 M sodium phosphate, 0.01 M Tris-Chloride, and 0.01 M imidazole with a pH value of 8.0. The lysate supernatants were collected by centrifugation and were used for His-tagged protein purification by a Ni-NTA His⋅Bind Resin 50% (Novagen) under denaturing condition with 8 M urea. Proteins were dialyzed as described previously. The recombinant His-tagged TTSuV1a- or TTSuV1b ORF1 proteins used as the antigen for ELISA and rabbit immunization were quantified using a NanoDrop spectrophotometry and frozen at −80° C. until use.
The two ORF1 proteins of TTSuV1a and TTSuV1b expressed in E. coli were purified and used to immunize two New Zealand white rabbits, respectively, at a custom antibody production service at Rockland Immunochemicals (Gilbertsville, Pa.). Antisera were harvested at 50 days post-immunization.
The unpurified or purified recombinant TTSuV1 ORF1 proteins were resolved on a 4-12% Bis-Tris Polyacrylamide Gel (Invitrogen) by electrophoresis and were subsequently transferred onto a polyvinylidene difluoride (PVDF) membrane. Proteins were detected on the PVDF membrane using an anti-6×His-tagged Mab at a 1:1000 dilution at 4° C., followed by incubation with an IRDye 800CW conjugated goat anti-rabbit IgG (LI-COR Biosciences) at a 1:10,000 dilution at room temperature. After three washing steps using Tris buffered saline/0.05% Tween 20 (TBS-T; Sigma), the membrane was analyzed using the Odyssey Infrared Imaging System (LI-COR Biosciences).
For serum WB analysis, the purified TTSuV1a- or TTSuV1b-ORF1 proteins were incubated with individual porcine sera at a 1:200 dilution and with IRDye 800CW conjugated rabbit F(ab′)2 anti-swine IgG (Rockland Immunochemicals, Inc.) at a 1:10,000 dilution at room temperature. The membrane was then analyzed using the Odyssey Infrared Imaging System.
TTSuV1a- and TTSuV1b-based ELISAs were developed. The optimal concentration of the antigens and the optimal dilutions of sera and HRP conjugates were determined by checkerboard titrations. Similar to the TTSuV2-based ELISA reported previously, the optimal amount of the ORF1 antigen of TTSuV1a or TTSuV1b was 68 ng per well. The optimal ELISA results were obtained by using a 1:100 dilution of serum samples and a 1:4000 dilution of IgG conjugates.
The ELISA was initiated by diluting the purified ORF1 proteins in carbonate coating buffer (pH=9.6) that was used for coating 96-well ELISA plates (Greiner Bio-One) with 100 μl/well. After incubation at 37° C. for 2 hours, each well was washed 3 times with 300 μl of Tris-buffered saline-Tween 20 solution (TBS-T) and blocked with protein-free blocking buffer (Pierce) at a volume of 300 μl for 1 hour at 37° C. One hundred μ1 of each diluted serum sample was transferred to the corresponding well on the ELISA plates and incubated at 37° C. for 2 hours. After washing the wells three times with 300 μl of TBS-T buffer, the diluted HRP-conjugated rabbit anti-swine IgG (Rockland) was added to each well in a volume of 100 μl and the plate was incubated at 37° C. for 1 hour. A volume of 100 μl of Sure Blue Reserve 1-Component (KPL) was added to each well and incubated for 10 minutes at room temperature. The reaction was stopped by adding 100 μl/well of 1 N HCL. The plates were then read at 450 nm using a spectrophotometer. All serum samples were run in duplicates. Positive and negative controls run in quadruplicates were included on each plate. In general, the mean OD value of the negative control was less than 0.5 whereas the mean OD value of the positive control was greater than 1.5. The ELISA value was calculated as the S/N value that was expressed as a ratio of the mean OD value of a sample to the mean OD value of the negative control (n=4). A subjective cut-off S/N value of 1.2 was used to distinguish between positive and negative samples.
A SYBR green-based TTSuV1-specific real-time quantitative PCR (qPCR) developed recently in our laboratory was used to measure the total TTSuV1 viral loads (both TTSuV1a and TTSuV1b) in the five groups of pig sera as described previously. The minimal detection limit was 1.0×104 copies per ml in this study. The TTSuV1 qPCR assay does not cross-amplify TTSuV2 DNA (Huang, Y. W., et al. 2010. J Virol Methods 170:140-6). Quantitation of TTSuV2 and PCV2 viral loads in group-B sera had been reported previously (Huang, Y. W., et al. 2011. Virus Res 158:79-88).
Data were analyzed using SAS software (version 9.2; SAS Institute Inc., Cary, N.C.) and GraphPad Prism software (version 5.0; San Diego, Calif.), respectively. Antibody levels (represented by S/N values) were compared between categories of log10 viral titers using the Kruskal-Wallis test followed by Dunn's procedure. For each group that contained clinically affected and non-affected pigs (groups B and C), log10 virus titers were compared between pigs with and without clinical signs using a Wilcoxon 2-sample test. Antibody levels were compared between pigs with and without disease using a 2-sample t-test. Using a cutoff point of 1.2, the proportion of pigs with antibodies was compared between affected and unaffected pigs using a Fisher's exact test.
Correlations between S/N values for TTSuV1a and S/N values for TTSuV1b, and between S/N values for TTSuV1a or TTSuV1b (separately) and TTSuV2 were assessed using Spearman's correlation coefficient. The correlations were separately generated for a combination of 3 groups (group-A to group-C).
To assess the synergistic effects between PCV2 and TTSuV1 on disease prevalence, the pigs in group B were categorized as follows: pigs positive for both PCV2 and TTSuV1, pigs only positive for PCV2, pigs only positive for TTSuV1, and pigs with neither PCV2 nor TTV1. Subsequently, the proportions of affected pigs were compared between the groups using Fisher's exact test. Statistical significance was set to alpha=0.05.
PK-15 cells were seeded onto a 6-well plate and grown until 70%-80% confluency before transfection. Two micrograms of each of the three constructs pTri-1aORF1, pTri-1 bORF1 and pTri-2cORF1, mixed with 10 μl of Lipofectamine LTX (Invitrogen), were transfected into the cells, respectively. Cells were cultured for 3 days and were subjected to IFA to detect the ORF1 expression.
Five rabbit antisera were used for IFA staining, including anti-TTSuV1a, anti-TTSuV1b, anti-TTSuV2, pre-bleed rabbit negative control serum, and rabbit anti-human genogroup-1 TTV ORF1 antiserum (AK47; a generous gift from Dr. Annette Mankertz at the Robert Koch-Institute, Berlin, Germany). Transfected cells were fixed with acetone. Five hundred microliters of each of the five antisera, at a 1:500 dilution in PBS, was added on top of the cells in each well and incubated for 1 hour at room temperature. After three washing steps with PBS, the cells were incubated with 500 μl Alexa Fluor 488-labeled goat anti-rabbit IgG (Invitrogen) at a 1:200 dilution for 1 hour incubation at room temperature. Cells were stained with 500 μl DAPI (KPL, Inc.) at a 1:1000 dilution and visualized under a fluorescence microscope.
This application is a divisional of U.S. patent application Ser. No. 13/840,805, filed Mar. 15, 2013, which is a continuation-in-part of U.S. patent application Ser. No. 12/861,378, which claims the benefit of U.S. Provisional Patent Application No. 61/235,833, filed on Aug. 21, 2009, and U.S. Provisional Patent Application 61/316,519, filed on Mar. 23, 2010. The disclosures of the above mentioned priority applications are hereby incorporated by reference in their entirety into the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
20110150913 | Nitzel et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
WO-2008127279 | Oct 2008 | WO |
WO-2008150275 | Dec 2008 | WO |
Entry |
---|
Kakkola L, Bondén H, Hedman L, Kivi N, Moisala S, Julin J, Ylä-Liedenpohja J, Miettinen S, Kantola K, Hedman K, Söderlund-Venermo M. Expression of all six human Torque teno virus (TTV) proteins in bacteria and in insect cells, and analysis of their IgG responses. Virology. Dec. 20, 2008;382(2):182-9. Epub Oct. 22, 2008. |
Anderson, et al., “Failure to genotype herpes simplex virus by real-time PCR assay and melting curve analysis due to sequence variation within probe binding sites”. Journal of Clinical Microbiology, 2003, pp. 2135-2137 vol. 41, American Society for Microbiology. |
Bao, et al., “Virus Classification by Pairwise Sequence Comparison (PASC)”, 2008, pp. 342-348, vol. 5, Elsevier Ltd. Oxford, U.K. |
Biagini, et al., “Classification of TTV and related viruses (anelloviruses)”. Current Topics in Microbiology Immunology, 2009, pp. 21-33, vol. No. 331, Springer-Verlag Berlin Heidelberg. |
Biagini, et al., “Distribution and genetic analysis of TTV and TTMV major phylogenetic groups in French blood donors”. Journal of Medical Virology, 2006, pp. 298-304, vol. No. 78, Issue No. 2, Journal of Medical Virology, Marseille, France. |
Biagini, et al., “Circular genomes related to anelloviruses identified in human and animal samples by using a combined rolling-circle amplification/sequence-independent single primer amplification approach”. Journal of General Virology, 2007, pp. 2696-2701, vol. 88, Pt 10, Marseille, France. |
Brassard, et al., “Development of a real-time TaqMan PCR assay for the detection of porcine and bovine Torque teno virus”, Journal of Applied Microbiology, Agriculture and Agri-food Canada, Nov. 2009, pp. 2191-2198, Food Research and Development Centre, Saint-Hyacinthe, QC, Canada. |
Davidson, et al., “Unraveling the puzzle of human anellovirus infections by comparison with avian infections with the chicken anemia virus”, Virus Research, 2008, pp. 1-15, vol. 137, Issue 1, Israel. |
De Smit, et al., “Apoptosis-inducing proteins in chicken anemia virus and TT virus”. Current Topics in Microbiology and Immunology, 2009, pp. 131-149, vol. 331. |
Ellis, et al., “Effect of coinfection with genogroup 1 porcine torque teno virus on porcine circovirus type 2-associated postweaning multisystemic wasting syndrome in gnotobiotic pigs”. American Journal of Veterinary Research, Dec. 2008, pp. 1608-1614, vol. 69, Issue 12, Schaumburg, IL. |
Gallei, et al., “Porcine Torque teno virus: Determination of viral genomic loads by genogroup-specific multiplex rt-PCR, detection of frequent multiple infections with genogroups 1 or 2, and establishment of viral full-length sequences”. Veterinary Microbiology, 2010, pp. 202-212, vol. 143, Veterinary Microbiology, Munster, Germany. |
Gibellini, et al., “Simultaneous detection of HCV and HIV-1 by SYBR Green real time multiplex RT-PCR technique in plasma samples”. Molecular and Cellular Probes, Mar. 2006, pp. 223-229, vol. 20. |
Hino, et al., “Torque teno virus (TTV): current status”. Reviews in Medical Virology, 2007, pp. 45-57, vol. 17, Wiley Interscience. |
Hino, et al., “Relationship of Torque teno virus to chicken anemia virus”. Current Topics in Microbiology and Immunology, 2009, pp. 117-130, vol. 331, Springer Verlag Berlin Heidelberg. |
Ilyina, et al., “Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria”. Nucleic Acids Research, pp. 3279-3285, vol. 20, No. 13, NIH, Bethesda, MD. |
Inami, et al., “Full-length nucleotide sequence of a simian TT virus isolate obtained from a chimpanzee: evidence for a new TT virus-like species”. Virology, 2000, pp. 330-335, vol. 277, No. 2, Academic Press. |
Jelcic, et al., “Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin's disease patient: genome reorganization and diversity in the hypervariable region”. Journal of Virology, 2004, pp. 7498-7507, vol. 78, No. 14, American Society for Microbiology. |
Kakkola, et al., “Replication of and protein synthesis by TT viruses”. Current Topics in Microbiology and Immunology, 2009, pp. 53-64, vol. 331, Springer Verlag Berlin Heidelberg. |
Kekarainen, et al., “Detection of swine Torque teno virus genogroups 1 and 2 in boar sera and semen”. Theriogenology, 2007, pp. 966-971, vol. 68, No. 7. |
Kekarainen, et al., “Prevalence of swine Torque teno virus in post-weaning multisystemic wasting syndrome (PMWS)-affected and non-PMWS-affected pigs in Spain”. Journal of General Virology, 2006, pp. 833-837, vol. 87, Part 4, UK. |
Krakowka, et al., “Evaluation of the effects of porcine genogroup 1 torque teno virus in gnotobiotic swine”. American Journal of Veterinary Research, 2008, pp. 1623-1629, vol. 69. |
Krakowka, et al., “Evaluation of induction of porcine dermatitis and nephropathy syndrome in gnotobiotic pigs with negative results for porcine circovirus type 2”. American Journal of Veterinary Research, 2008, pp. 1615-1622, vol. 69, Part 12. |
Maggi, et al., “Immunobiology of the Torque teno viruses and other anelloviruses”. Current Topics in Microbiology and Immunology, 2009, pp. 65-90, vol. 331. |
Martinez, “Simultaneous detection and genotyping of porcine reproductive and respiratory syndrome virus (PRRSV) by real-time RT-PCR and amplicon melting curve analysis using SYBR Green”. Research in Veterinary Science, 2008, pp. 184-193 vol. 85, Issue 1. |
McKeown, et al., “Molecular characterization of porcine TT virus, an orphan virus, in pigs from six different countries”. Veterinary Microbiology, 2004, pp. 113-117, vol. 104, Issues 1-2. |
Mouillesseaux, et al., Improvement in the specificity and sensitivity of detection for the Taura syndrome virus and yellow head virus of penaeid shrimp by increasing the amplicon size in SYBR Green real-time RT-PCR. Journal of Virological Methods, 2003, pp. 121-127, vol. 111, Issue 2. |
Mueller, et al., “Gene expression of the human Torque Teno Virus isolate P/1C1” Virology, 2008, pp. 36-45, vol. 381, Issue 1. |
Ng, et al., “Novel anellovirus discovered from a mortality event of captive California sea lions”. Journal of General Virology, 2009, pp. 1256-1261, vol. 90, Pt 5. |
Niel, et al., “Rolling-circle amplification of Torque teno virus (TTV) complete genomes from human and swine sera and identification of a novel swine TTV genogroup”. Journal of General Virology, 2005, pp. 1343-1347, vol. 86, Pt. 5. |
Niel, et al., “Coinfection with multiple TT virus strains belonging to different genotypes is a common event in healthy Brazilian adults”. Journal of Clinical Microbiology, 2000, pp. 1926-1930, vol. 38, No. 5. |
Ninomiya, et al., “Analysis of the entire genomes of torque teno midi virus variants in chimpanzees: infrequent cross-species infection between humans and chimpanzees”. Journal of General Virology, 2009, pp. 347-358, vol. 90, Pt 2. |
Nishizawa, et al., “A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology”. Biochemical Biophysical Research Communications, 1997, pp. 92-97, vol. 241, No. 1. |
Okamoto, et al., “History of discoveries and pathogenicity of TT viruses”. Current Topics in Microbiology and Immunology, 2009, pp. 1-20, vol. 331. |
Okamoto, et al., “TT viruses in animals”. Current Topics in Microbiology and Immunology, 2009, pp. 35-52, vol. 331. |
Okamoto, et al., “Genomic and evolutionary characterization of TT virus (TTV) in tupaias and comparison with species-specific TTVs in humans and non-human primates”. Journal of General Virology, 2001, pp. 2041-2050, vol. 82, Pt 9. |
Okamoto, et al., “Species-specific TT viruses in humans and nonhuman primates and their phylogenetic relatedness”. Virology, 2000, pp. 368-378,vol. 277, No. 2. |
Okamoto, et al., “TT virus mRNAs detected in the bone marrow cells from an infected individual”. Biochemical and Biophysical Research Communications. 2000, pp. 700-707, vol. 279, No. 2. |
Okamoto, et al., “Genomic characterization of TT viruses (TTVs) in pigs, cats and dogs and their relatedness with species-specific TTVs in primates and tupaias”. Journal of General Virology, 2002, pp. pp. 700-707, vol. 83, Pt 6. |
Opriessnig, et al., “Porcine circovirus type 2 associated disease: update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies”. Journal of Veterinary Diagnostic Investestigation, 2007, pp. 591-615, vol. 19. |
Pal, et al., “Development and validation of a duplex real-time PCR assay for the simultaneous detection and quantification of porcine circovirus type 2 and an internal control on porcine semen samples”. Journal of Virological Methods, 2008, pp. 217-225, vol. 149. |
Peters, et al., “Attenuation of chicken anemia virus by site-directed mutagenesis of VP2”. Journal of General Virology, 2007, pp. 2168-2175, vol. 88, Pt. 8. |
Peters, et al., “Site-directed mutagenesis of the VP2 gene of Chicken anemia virus affects virus replication, cytopathology and host-cell MHC class I expression”. Journal of General Virology, 2006, pp. 823-831, vol. 87, Pt. 4. |
Peters, et al., “Chicken anemia virus VP2 is a novel dual specificity protein phosphatase”. Journal of Biological Chemistry, 2002, pp. 39566-39573, vol. 277, No. 42. |
Pozzuto, et al., “In utero transmission of porcine torque teno viruses”. Veterinary Microbiology, 2009, pp. 375-379, vol. 137. |
Prasetyo, et al., “Replication of chicken anemia virus (CAV) requires apoptin and is complemented by VP3 of human torque teno virus (TTV)”. Virology, 2009, pp. 85-92, vol. 385, No. 1. |
Qiu, et al., “Human circovirus TT virus genotype 6 expresses six proteins following transfection of a full-length clone”. Journal of Virology, 2005, pp. 6505-6510, vol. 79, No. 10. |
Ririe, et al., “Product differentiation by analysis of DNA melting curves during the polymerase chain reaction”. Analytical Biochemistry, 1997, pp. 154-160, vol. 245. |
Sibila, et al., “Swine torque teno virus (TTV) infection and excretion dynamics in conventional pig farms”. Veterinary Microbiology, 2009, pp. 213-228, vol. 139. |
Takayama, et al., “Prevalence and persistence of a novel DNA TT virus (TTV) infection in Japanese haemophiliacs”. British Journal of Haematology, 1999, vol. 104, No. 3, pp. 626-629. |
Wilhelm, et al., “Real-time PCR protocol for the detection of porcine parvovirus in field samples”. Journal of Virological Methods, 2006, pp. 257-260, vol. 134. |
Okamoto, et al. “Genomic characterization of TT viruses (TTVs) in pigs, cats and dogs and their relatedness with species-specific TTVs in primates and tupias,” Journal of General Virology, 2002, pp. 1291-1297, The Society for General Microbiology, Reading, UK. |
Y.W. Huang, et al., Multiple infection of porcine Torque teno virus in a single pig and characterization of the full-length genomic sequences of four U.S. prototype PTTV strains: Implication for genotyping of PTTV, Nov. 2009, p. 289-297, Virology, vol. 396. |
Huang, Y.W. et al., Multiple infectin of porcine Torque teno virus in a single pig and characterization of the full-length genomic sequences of four U.S. Prototype PTTV strains: Implication for genotyping of PTTV, Virology, vol. 396, No. 2., Nov. 13, 2009, p. 289-297. |
Okamoto, H, “Torque teno virus ORF3, ORF2, ORF1 genes, complete cds. isolate Sd-TTV31”, The Journal of General Virology, vol. 83, No. Pt , Jun. 2002, pages. |
Huang, Y.W. et al., Multiple infection of porcine Torque teno virus in a single pig and characterization of the full-length genomic sequences of four U.S. prototype PTTV strains: Implication for genotyping of PTTV, Nov. 2009, p. 289-297, Virology, vol. 396. |
Ninomiya, M. M., et al., “Development of PCR assays with nested primers specific for differential detection of three human anelloviruses and early acquisition of dual or triple infection during infancy.” J Clin. Microbiol 46, pp. 507-514, 2008. |
Huang, Y. W., et al., “Multiple infection of porcine Torque teno virus in a single pig and characterization of the full-length genomic sequences of four U.S. prototype PTTV strains: implication for genotyping of PTTV.” Virology 396, pp. 287-297, 2010. |
Niel, C. L., et al., “Rolling-circle amplification of Torque teno virus (TTV) complete genomes from human and swine sera and identification of a novel swine TTV genogroup,” J Gen Virol 86, pp. 1343-1347, 2005. |
Huang, Y. W., et al., “Expression of the putative ORF1 capsid protein of Torque teno sus virus 2 (TTSuV2) and development of Western blot and ELISA serodiagnostic assays: correlation between TTSuV2 viral load and IgG antibody level in pigs,” Virus Res 158, pp. 79-88, 2011. |
Number | Date | Country | |
---|---|---|---|
20160266116 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
61588988 | Jan 2012 | US | |
61316519 | Mar 2010 | US | |
61235833 | Aug 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13840805 | Mar 2013 | US |
Child | 14978413 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12861378 | Aug 2010 | US |
Child | 13840805 | US |