Infiltration/inflow control for membrane bioreactor

Information

  • Patent Grant
  • 8293098
  • Patent Number
    8,293,098
  • Date Filed
    Tuesday, October 23, 2007
    17 years ago
  • Date Issued
    Tuesday, October 23, 2012
    12 years ago
Abstract
A wastewater treatment system comprising: a first treatment zone (11) fluidly connected to one or more further treatment zones (12-14), a membrane module (16) comprising a filter membrane is positioned in or fluidly connected to the further treatment zone; and a gravity settling device (15) fluidly connected to the first treatment zone (11) to receive overflow therefrom. A method of treating wastewater comprising flowing wastewater through one or more treatment zones (11-14) to produce a fluid product which is passed through a filter membrane (16) to produce a concentrated mixed liquor and a filtrate; returning at least a portion of the concentrated mixed liquor to at least one of the treatment zones (11); when the flow of wastewater water exceeds a predetermined level, flowing a portion of the returned mixed liquor to a gravity settling device (15) and clarifying the mixed liquor within the gravity settling device (15).
Description
BACKGROUND OF INVENTION

1. Field of Invention


The present invention relates to a system and method for treating wastewater, and more particularly to a wastewater treatment system and method utilizing a membrane bioreactor.


2. Discussion of Related Art


The importance of membrane for treatment of waste water is growing rapidly. With the arrival of submerged membrane processes where membrane modules are immersed in a large feed tank and filtrate is collected typically through suction applied to the filtrate side of the membrane, membrane bioreactors (MBRs) combining biological and physical processes in one stage promise to be more compact, efficient and economic. Membrane bioreactors are typically sized to accommodate community and large-scale sewage treatment. A need has been found for these systems to periodically handle large flows of influent caused by peak rain events during storms and the like.


SUMMARY OF INVENTION

In accordance with one or more embodiments, the invention relates to a system and method of treating wastewater.


In one embodiment, a wastewater treatment system includes a first treatment zone fluidly connected to one or more further treatment zones. A membrane module comprising a filter membrane is positioned in or fluidly connected to the further treatment zone. A gravity settling device is fluidly connected to the first treatment zone to receive overflow therefrom.


Another embodiment is directed to a method of treating wastewater which includes flowing a wastewater through one or more treatment zones to produce a fluid product which is passed through a filter membrane to produce a concentrated mixed liquor and a filtrate, returning at least a portion of the concentrated mixed liquor to at least one of said treatment zones, when the flow of wastewater water exceeds a predetermined level, flowing a portion of said returned mixed liquor to a gravity settling device and clarifying the mixed liquor within the gravity settling device.


Preferably, the process may use multiple reactors in series, with the ability to maintain different food to micro-organism ratios and different dissolved oxygen concentrations in each reactor. For preference, the sludge separated from the mixed liquor in the gravity settling device is returned to a reactor downstream of the reactor feeding the gravity settling device.





BRIEF DESCRIPTION OF DRAWINGS

A preferred embodiment of the invention will now be described, by way of example only, with reference to the accompanying drawing in which:



FIG. 1 illustrates a system in accordance with one embodiment of the invention; and



FIG. 2 illustrates a system in accordance with another embodiment of the invention.





The accompanying drawings are not intended to be drawn to scale.


DETAILED DESCRIPTION

This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawing. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having,” “containing,” “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.


This invention may be directed to wastewater treatment systems utilizing membrane bioreactors designed to treat wastewater flows as low as 25,000 gallons per day, or peak flows as high as about 100 million gallons per day (MGD) or greater. In one embodiment the wastewater treatment system is designed to treat an average flow of 12 MGD and a peak wastewater flow of about 30 MGD. It will be appreciated these flow volumes are merely exemplary and in no way intended to restrict the application of the invention which may be applied over a much wider range of flow.


“Wastewater,” as used herein, defines a stream of waste from a residential or community source, having pollutants of biodegradable material, inorganic or organic compounds capable of being decomposed by bacteria, flowing into the wastewater treatment system. As used herein, a “wastewater treatment system” is a system, typically a biological treatment system, having a biomass population of bacterial micro-organisms of a diversity of types of bacteria, used to digest biodegradable material. Notably, the biomass requires an environment that provides the proper conditions for growth.


One embodiment of the present invention includes bioreactor having one or more treatment zones. As used herein, the phrase “treatment zone” is used to denote an individual treatment region. Individual treatment regions may be housed in a single vessel with one or more compartments. Alternatively, individual treatment regions may be housed in separate vessels, wherein a different treatment is carried out in separate vessels. The treatment zone, i.e. the vessel or compartment, may be sized and shaped according to a desired application and volume of wastewater to be treated.


The wastewater treatment system may include a fluidizable media housed in a first treatment zone. The fluidizable media may comprise biomass carriers designed to immobilize anoxic organisms. The biomass carriers may be formed of any material suitable to support organisms and to remain fluidized under operating conditions. In one embodiment, the fluidizable media has a specific gravity substantially the same as that of water. In another embodiment the fluidizable media has a surface area adequate to allow denitrifying bacteria to grow, which may enhance the efficiency of the anoxic reaction to remove nitrogen.


Any volume of fluidizable media may be utilized within the first treatment zone for a particular purpose. For example, a maximum volume of fluidized media may be used to substantially fill the first treatment zone, or a lesser volume of fluidized material may be used to fill a portion of the first treatment zone.


According to one embodiment of the invention, one or more porous or permeable membranes may be used to treat fluid flow from treatment zones and in some embodiments may be positioned within a treatment zone. The membrane may have any configuration suitable for a particular purpose, such as sheet or hollow tube. The membrane may be formed of any material (natural or synthetic) suitable for a particular filtration process. In one embodiment, the membrane is formed of polymeric hollow fibers.


One or more membranes may be positioned in one or more membrane modules. The membrane modules may have any shape and cross sectional area suitable for use in a desired application, for example, square, rectangular, or cylindrical. In one embodiment, the membrane modules are rectangular.


According to one embodiment, one or more membrane modules may be positioned in a treatment zone in such a way as to be completely submerged by fluid during operation. For example, the membrane module may be positioned vertically, horizontally, or at an angle within the second treatment zone. Multiple membrane modules may be positioned adjacent one another, or located at predetermined positions within the second treatment zone and may, but need not, be positioned in the same plane as others or parallel to one another. In one embodiment, hollow fiber membranes may be positioned horizontally within the treatment zone. One or more membrane modules may be mounted directly to the vessel or compartment which forms a treatment zone. Alternatively, one or more membrane modules may be mounted to a module support which may be removably attached to the vessel or compartment forming the treatment zone. In one embodiment, a plurality of membrane modules are mounted to a module support rack to facilitate membrane maintenance and/or replacement. In another embodiment, membrane modules having vertical partitions may be positioned horizontally.


The treatment zone may include an aeration system to suspend solids in wastewater or resultant concentrated mixed liquor contained within the second treatment zone, and/or to assist water transfer through the membrane. The aeration system may produce fine bubbles, coarse bubbles, a jet stream of gas, a jet of gas and fluid, and combinations thereof. The aeration system may be positioned in any suitable location within the treatment zone. In one embodiment, aeration may be provided along a length of one or more membrane modules horizontally positioned.


According to another embodiment, the wastewater treatment system may include one or more pretreatment units, such as to collect solids and/or to remove phosphorous. In one embodiment the pretreatment unit is a trap to remove floating solids, such as grease, and other gross organic solids until they become more soluble, and is positioned upstream of the first treatment zone. The trap may be sized to provide a volume of about 1×FF (1 forward feed). In another embodiment, the pretreatment unit is a chemical phosphorous removal unit.


According to another embodiment, the wastewater treatment system may further include an equalization tank and/or a reserve storage tank fluidly connected to the bioreactor. The tank may be sized to accommodate fluctuations in wastewater generation to normalize flow into the bioreactor. For example, the equalization capacity may be equal to about 8 hours or about 33% of the FF. The same tank may also be sized to provide reserve capacity for an emergency such as a power failure, and may have a reserve capacity of about 16 hours or about 67% of the FF. In one embodiment, the tank is sized to provide a volume of about 1×FF to provide for equalization and a reserve.


Referring to the FIG. 1 there is illustrated one embodiment of the present wastewater treatment system. The figure shows a bioreactor 10 comprising a number of treatment tanks 11 to 14 connected in series with the same or different environments maintained in each tank and a membrane filter 16 connected thereto. The tanks are fluidly coupled in series to each other. Possible environments in the tanks could include anaerobic, anoxic, aerated anoxic, or aerobic depending on the effluent water quality requirements for each specific application. A clarifier 15 is fluidly connected to tanks 11 and 12 by fluid inflow line 17 and fluid outflow line 18. A fluid feedback line 19 is provided from the feed side of the membrane filter 16 to tanks 11 and 12. Wastewater is fed into the bioreactor 10 through influent line 20. Effluent is withdrawn from the bioreactor 10 through effluent line 21 coupled to the filtrate side of the membrane filter 16. Clarifier effluent is flowed from the clarifier 15 through clarifier effluent line 22.


In one mode of operation, during average inflow conditions, the inflow to tank 11 is the average design flow rate Q and all flow is directed through the treatment tanks to the membrane filter 16. A portion of the mixed liquor, typically a flow equal to around 2 to 8 times the average design flow, Q, is returned to treatment tank 11. In this mode of operation no overflow is provided to clarifier 15 from tank 11 and there is no feedback of mixed liquor to tank 12.


In a second mode of operation, during wet weather or high inflow conditions, a portion of the mixed liquor flow (typically a flow equal to around 1 to 4 times the average design flow, Q) into tank 11 is diverted to the clarifier 15 through inflow line 17 with the remainder flowing from tank 11 to tank 12. The mixed liquor feedback from the membrane filter 16 to tank 11 is also reduced (typically to about 0.5 to 2 times the average design flow, Q) by diverting a portion of the flow to tank 12. The flow from tank 11 into the clarifier 15 is selected to allow reliable gravity settling of solids material within the clarifier 15.


Activated sludge is returned from the clarifier 15 through outflow line 18 to tank 12 (typically a flow equal to about 0.25 to 1 times the average design flow, Q). Clarified effluent is withdrawn from the clarifier 15 through clarifier effluent line 22.


Referring to FIG. 2 by way of example only, there is illustrated another embodiment of the present wastewater treatment system in the form of a bioreactor 25. It will be appreciated that this embodiment functions similarly to the embodiment disclosed in FIG. 1, although a fluid feedback line 26 is now provided from the feed side of the membrane filter 16 to tank 12 and a pump 27 with associated feedback lines 28 and 29 interconnecting tanks 11 and 12 for providing feedback therebetween. In this embodiment the speed of the pump can control the rate of feedback from treatment tank 12 to treatment tank 1, and is used to control the concentration of mixed liquor in tank 11 such that reliable gravity settling of solids material within the clarifier 15 can be achieved. It will be appreciated that, referring FIG. 1, this is an alternative to splitting the fluid feedback line 19 between reactors 11 and 12.


It is often advantageous to include a means of automated control. By way of example, an automated control process can include:

    • 1) Splitting Effluent flow from one or more initial treatment tanks, whereby part of the flow is diverted to the clarifiers 18 and the remainder is treated by the membrane filter 16.
    • 2) Splitting feedback flow provided from the feed side of the membrane filter 16, whereby part of the flow is diverted to upstream treatment tanks that feed the clarifiers 15 and the remainder is sent to downstream treatment tanks that flow to the membrane filter 16.


In an embodiment, by way of example only, effluent flow from one or more initial treatment tanks is split, whereby part of the flow is diverted to the clarifiers 18 and the remainder is treated by a membrane filter 16. It will be appreciated that the flow to the membranes is typically controlled by pumps, and is based on the liquid level in the furthest upstream treatment tank. It will be further appreciated that flow to the clarifiers can be regulated by a weir in the furthest upstream treatment tank. In this example, if the influent flow rate exceeds the rate that the membranes can handle, the liquid level in the treatment tank will rise and liquid will start to flow over the weir and travel to the clarifiers. The weir can be a fixed weir. Preferably the weir is either manually adjustable, or automatically adjustable based on an influent flow meter signal or other process measurement. It will be further appreciated that, in another embodiments, the flow split between the clarifiers and the membranes can be regulated using valves, gates, or other suitable devices known to a person skilled in the art.


In another embodiment, flow to the membrane tanks is caused by gravity and a return stream back to the treatment tanks uses a pump. This embodiment requires a means for restricting the flow to the membrane tanks and thereby to back the liquid up into the upstream treatment tanks where it can be directed to the clarifiers. It would be appreciated that a means for restricting the flow to the membrane tanks can include an adjustable weir, gate, valve or other suitable devices known to a person skilled in the art.


In an embodiment, by way of example, feedback flow provided from the feed side of the membrane filter 16 is split whereby part of the flow is diverted to upstream treatment tanks that feed the clarifiers 15 and the remainder is sent to downstream treatment tanks that flow to the membrane filter 16. For example, influent flow rate and the flow rate being treated by the membranes can be measured, and the proportion of the total flow being treated by the clarifiers can be calculated. By way of example, the desired percentage of the fluid feedback provided from the feed side of the membrane filter to be sent to the clarifiers can be calculated by a programmable logic controller (PLC) using a mass balance equation. For example, this flow split can be calculated for substantially maintaining a target MLSS concentration in the stream being sent to the clarifiers. It would be appreciated that the mass balance equation can be a function of at least four variables, being the average TSS concentration in the mixed liquor (user input or as measured with TSS probes), the desired target concentration in the upstream treatment tanks (which may or may not be verified with a TSS probe), the influent flow to the plant, and the percentage of that flow being treated by the final clarifiers.


Accordingly, the invention provides an efficient means of dealing with large inflows without compromising the operation of the membrane bioreactor.


Having thus described several aspects of at least one embodiment of this invention, it should be apparent to those skilled in the art that the foregoing is merely illustrative and not limiting, having been presented by way of example only. Numerous modification and other embodiments are within the scope of the invention. In particular, although many embodiments presented herein involve specific combinations of method acts or system elements, it should be understood that those acts and those elements may be combined in other ways to accomplish the same objectives.


Further, acts, elements, and features discusses only in connection with one embodiment are not intended to be excluded from a similar role in other embodiments.


It is to be appreciated that various alterations, modifications, and improvements can readily occur to those skilled in the art and that such alterations, modifications, and improvements are intended to be part of the disclosure and within the spirit and scope of the invention.


Moreover, it should also be appreciated that the invention is directed to each feature, system, subsystem, or technique described herein and any combination of two or more features, systems, subsystems, and/or method, if such features, systems, subsystems, and techniques are not mutually inconsistent, is considered to be within the scope of the invention as described.


Those skilled in the art should appreciate that the parameters and configuration described herein are exemplary and that actual parameters and/or configurations will depend on the specific application in which the systems and techniques of the invention are used. Those skilled in the art should also recognize or be able to ascertain, using no more than routing experimentation, equivalents to the specific embodiments of the invention. It is therefore to be understood that the embodiments described herein are presented by way of example only and that, within the scope of the invention described and equivalents thereto; the invention may be practice d otherwise than as specifically described.

Claims
  • 1. A wastewater treatment system, comprising: at least one biological treatment zone;a membrane module fluidly connected downstream of the at least one biological treatment zone;a gravity settling device fluidly connected to the at least one biological treatment zone;a feedback line fluidly connecting a feed side of the membrane module to the at least one biological treatment zone; anda controller configured to operate in a first mode of operation during inflow conditions that are at or below a predetermined level to direct all inflow through the at least one biological treatment zone to the membrane module, and further configured to operate in a second mode of operation during inflow conditions that exceed the predetermined value to divert at least a portion of inflow from the at least one biological treatment zone to the gravity settling device.
  • 2. The system of claim 1, wherein the at least one biological treatment zone is at least partially filled with a fluidizable media having a specific gravity substantially the same as that of water or a surface area adequate to promote growth of denitrifying bacteria.
  • 3. The system of claim 1, wherein the at least one biological treatment zone comprises a plurality of biological treatment zones fluidly connected in series.
  • 4. The system of claim 3, wherein the plurality of biological treatment zones are housed in a single vessel.
  • 5. The system of claim 3, wherein different biological environments including one or more of anaerobic, anoxic, aerated anoxic or aerobic environments are maintained in each of the plurality of biological treatment zones.
  • 6. The system of claim 5, wherein each of the plurality of biological treatment zones is maintained at a different food-to-microorganism ratio or at different dissolved oxygen concentrations.
  • 7. The system of claim 1, wherein the at least one biological treatment zone includes a first biological treatment zone and a second biological treatment zone, and wherein the feedback line is configured to fluidly connect the feed side of the membrane module to at least one of the first and second biological treatment zones.
  • 8. The system of claim 7, wherein the controller is further configured in the first mode of operation to return a portion of mixed liquor from the membrane module to only the first biological treatment zone along the feedback line, and wherein the controller is further configured in the second mode of operation to return a portion of mixed liquor from the membrane module to both the first and second biological treatment zones along the feedback line.
  • 9. The system of claim 8, wherein the controller is further configured to determine relative percentages of mixed liquor to be returned along the feedback line to the first and second biological treatment zones using a mass balance equation to substantially maintain a target mixed liquor suspended solids concentration of a stream delivered to the gravity settling device.
  • 10. The system of claim 8, wherein the controller is further configured in the second mode of operation to discharge effluent from the gravity settling device and to return activated sludge from the gravity settling device to the second biological treatment zone.
  • 11. The system of claim 1, wherein the at least one biological treatment zone includes a first biological treatment zone and a second biological treatment zone, and wherein the feedback line is configured to fluidly connect the feed side of the membrane module to the second biological treatment zone.
  • 12. The system of claim 11, further comprising a second feedback line fluidly connecting the second biological treatment zone to the first biological treatment zone, and further comprising a pump configured to control a flow rate from the second biological treatment zone to the first treatment zone along the second feedback line to control a concentration level of mixed liquor within the first biological treatment zone.
  • 13. The system of claim 7, wherein the controller is further configured to control flow to the gravity settling device in the second mode of operation based on a liquid level in the first biological treatment zone.
  • 14. The system of claim 1, further comprising a weir, gate, valve or other device configured to restrict flow to the membrane module.
  • 15. The system of claim 1, wherein the membrane module comprises polymeric hollow fiber membranes.
  • 16. The system of claim 1, wherein the gravity settling device comprises a clarifier.
  • 17. The system of claim 1, further comprising an equalization tank or a reserve storage tank fluidly connected to the at least one biological treatment zone.
  • 18. The system of claim 1, further comprising an aeration system in cooperation with the at least one biological treatment zone or the membrane module.
  • 19. The system of claim 1, further comprising a pretreatment unit fluidly connected upstream of the at least one biological treatment zone.
  • 20. The system of claim 19, wherein the pretreatment unit comprises at least one of a floating solids trap and a chemical phosphorus removal unit.
CROSS REFERENCE TO RELATED APPLICATION AND PRIORITY CLAIM

This application is a U.S. national stage application and claims the benefit under 35U.S.C. §371 of International Application No. PCT/US2007/022493 filed on Oct.23, 2007, entitled INFILTRATION/INFLOW CONTROL FOR MEMBRANE BIOREACTOR, which claims the benefit under 35U.S.C. §119(e) of copending U.S. Provisional Application Ser. No.60/862,626, entitled INFILTRATION/INFLOW CONTROL FORMEMBRANE BIOREACTOR filed on Oct.24, 2006, each of which is hereby incorporated by reference in their entirety and to which this application claims the benefit of priority.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2007/022493 10/23/2007 WO 00 2/5/2010
Publishing Document Publishing Date Country Kind
WO2008/051546 5/2/2008 WO A
US Referenced Citations (617)
Number Name Date Kind
256008 Leak Apr 1882 A
285321 Tams Sep 1883 A
511995 Buckley Jan 1894 A
1997074 Novotny Apr 1935 A
2080783 Petersen May 1937 A
2105700 Ramage Jan 1938 A
2843038 Manspeaker Jul 1958 A
2926086 Chenicek et al. Feb 1960 A
3068655 Murray et al. Dec 1962 A
3139401 Hach Jun 1964 A
3183191 Hach May 1965 A
3191674 Richardson Jun 1965 A
3198636 Bouthilet Aug 1965 A
3228876 Mahon Jan 1966 A
3275554 Wagenaar Sep 1966 A
3442002 Geary et al. May 1969 A
3462362 Kollsman Aug 1969 A
3472168 Inoue et al. Oct 1969 A
3472765 Budd et al. Oct 1969 A
3492698 Geary et al. Feb 1970 A
3501798 Carraro Mar 1970 A
3505215 Bray Apr 1970 A
3556305 Jacob Shorr Jan 1971 A
3591010 Pall et al. Jul 1971 A
3625827 Wildi et al. Dec 1971 A
3654147 Levin Apr 1972 A
3679052 Asper Jul 1972 A
3693406 Tobin, III Sep 1972 A
3700561 Ziffer Oct 1972 A
3700591 Higley Oct 1972 A
3708071 Crowley Jan 1973 A
3728256 Cooper Apr 1973 A
3763055 White et al. Oct 1973 A
3791631 Meyer Feb 1974 A
3795609 Hill et al. Mar 1974 A
3804258 Okuniewski et al. Apr 1974 A
3843809 Luck Oct 1974 A
3876738 Marinaccio et al. Apr 1975 A
3955998 Clampitt et al. May 1976 A
3968192 Hoffman, III et al. Jul 1976 A
3992301 Shippey et al. Nov 1976 A
3993816 Baudet et al. Nov 1976 A
4049765 Yamazaki Sep 1977 A
4076656 White et al. Feb 1978 A
4082683 Galesloot Apr 1978 A
4105556 O'Amaddio et al. Aug 1978 A
4105731 Yamazaki Aug 1978 A
4107043 McKinney Aug 1978 A
4138460 Tigner Feb 1979 A
4157899 Wheaton Jun 1979 A
4183890 Bollinger Jan 1980 A
4188817 Steigelmann Feb 1980 A
4190411 Fujimoto Feb 1980 A
4190419 Bauer Feb 1980 A
4192750 Elfes et al. Mar 1980 A
4193780 Cotton, Jr. et al. Mar 1980 A
4203848 Grandine, II May 1980 A
4204961 Cusato, Jr. May 1980 A
4218324 Hartmann et al. Aug 1980 A
4226921 Tsang Oct 1980 A
4227295 Bodnar et al. Oct 1980 A
4230583 Chiolle et al. Oct 1980 A
4243525 Greenberg Jan 1981 A
4247498 Castro Jan 1981 A
4248648 Kopp Feb 1981 A
4253936 Leysen et al. Mar 1981 A
4271026 Chen et al. Jun 1981 A
4272379 Pollock Jun 1981 A
4302336 Kawaguchi et al. Nov 1981 A
4315819 King et al. Feb 1982 A
4323453 Zampini Apr 1982 A
4340479 Pall Jul 1982 A
4350592 Kronsbein Sep 1982 A
4353802 Hara et al. Oct 1982 A
4359359 Gerlach et al. Nov 1982 A
4367139 Graham Jan 1983 A
4367140 Wilson Jan 1983 A
4369605 Opersteny et al. Jan 1983 A
4384474 Kowalski May 1983 A
4385150 Miyake et al. May 1983 A
4388189 Kawaguchi et al. Jun 1983 A
4389363 Molthop Jun 1983 A
4405688 Lowery et al. Sep 1983 A
4407975 Yamaguchi Oct 1983 A
4414113 LaTerra Nov 1983 A
4414172 Leason Nov 1983 A
4415452 Heil et al. Nov 1983 A
4431545 Pall et al. Feb 1984 A
4451369 Sekino et al. May 1984 A
4462855 Yankowsky et al. Jul 1984 A
4467001 Coplan et al. Aug 1984 A
4476015 Schmitt et al. Oct 1984 A
4476112 Aversano Oct 1984 A
4491522 Ishida et al. Jan 1985 A
4496470 Kapiloff et al. Jan 1985 A
4511471 Muller Apr 1985 A
4519909 Castro May 1985 A
4539940 Young Sep 1985 A
4540490 Shibata et al. Sep 1985 A
4547289 Okano et al. Oct 1985 A
4609465 Miller Sep 1986 A
4610789 Barch Sep 1986 A
4614109 Hofmann Sep 1986 A
4623460 Kuzumoto et al. Nov 1986 A
4623670 Mutoh et al. Nov 1986 A
4629563 Wrasidlo Dec 1986 A
4632745 Giuffrida et al. Dec 1986 A
4636296 Kunz Jan 1987 A
4642182 Drori Feb 1987 A
4647377 Miura Mar 1987 A
4650586 Ellis, III Mar 1987 A
4650596 Schlueter et al. Mar 1987 A
4656865 Callan Apr 1987 A
4660411 Reid Apr 1987 A
4666543 Kawano May 1987 A
4670145 Edwards Jun 1987 A
4673507 Brown Jun 1987 A
4687561 Kunz Aug 1987 A
4687578 Stookey Aug 1987 A
4688511 Gerlach et al. Aug 1987 A
4689191 Beck et al. Aug 1987 A
4702836 Mutoh et al. Oct 1987 A
4702840 Degen et al. Oct 1987 A
4707266 Degen et al. Nov 1987 A
4708799 Gerlach et al. Nov 1987 A
4718270 Storr Jan 1988 A
4744240 Reichelt May 1988 A
4749487 Lefebvre Jun 1988 A
4756875 Tajima et al. Jul 1988 A
4763612 Iwanami Aug 1988 A
4767539 Ford Aug 1988 A
4774132 Joffee et al. Sep 1988 A
4775471 Nagai et al. Oct 1988 A
4779448 Gogins Oct 1988 A
4781831 Goldsmith Nov 1988 A
4784771 Wathen et al. Nov 1988 A
4793932 Ford et al. Dec 1988 A
4797187 Davis et al. Jan 1989 A
4797211 Ehrfeld et al. Jan 1989 A
4800019 Bikson et al. Jan 1989 A
4810384 Fabre Mar 1989 A
4812235 Seleman et al. Mar 1989 A
4816160 Ford et al. Mar 1989 A
4824563 Iwahori et al. Apr 1989 A
4834998 Shrikhande May 1989 A
4839048 Reed et al. Jun 1989 A
4840227 Schmidt Jun 1989 A
4846970 Bertelsen et al. Jul 1989 A
4867883 Daigger et al. Sep 1989 A
4876006 Ohkubo et al. Oct 1989 A
4876012 Kopp et al. Oct 1989 A
4886601 Iwatsuka et al. Dec 1989 A
4888115 Marinaccio et al. Dec 1989 A
4904426 Lundgard et al. Feb 1990 A
4919815 Copa et al. Apr 1990 A
4921610 Ford et al. May 1990 A
4931186 Ford et al. Jun 1990 A
4933084 Bandel et al. Jun 1990 A
4935143 Kopp et al. Jun 1990 A
4952317 Culkin Aug 1990 A
4963304 Im et al. Oct 1990 A
4966699 Sasaki et al. Oct 1990 A
4968430 Hildenbrand et al. Nov 1990 A
4968733 Muller et al. Nov 1990 A
4969997 Kluver et al. Nov 1990 A
4988444 Applegate et al. Jan 1991 A
4999038 Lundberg Mar 1991 A
5002666 Matsumoto et al. Mar 1991 A
5005430 Kibler et al. Apr 1991 A
5015275 Beck et al. May 1991 A
5024762 Ford et al. Jun 1991 A
5034125 Karbachsch et al. Jul 1991 A
5043113 Kafchinski et al. Aug 1991 A
5059317 Marius et al. Oct 1991 A
5066375 Parsi et al. Nov 1991 A
5066401 Muller et al. Nov 1991 A
5066402 Anselme et al. Nov 1991 A
5069065 Sprunt et al. Dec 1991 A
5069353 Espenan Dec 1991 A
5075065 Effenberger et al. Dec 1991 A
5076925 Roesink et al. Dec 1991 A
5079272 Allegrezza, Jr. et al. Jan 1992 A
5094750 Kopp et al. Mar 1992 A
5094867 Detering et al. Mar 1992 A
5098567 Nishiguchi Mar 1992 A
5104535 Cote et al. Apr 1992 A
5104546 Filson et al. Apr 1992 A
H1045 Wilson May 1992 H
5135663 Newberth, III et al. Aug 1992 A
5137631 Eckman et al. Aug 1992 A
5138870 Lyssy Aug 1992 A
5147553 Waite Sep 1992 A
5151191 Sunaoka et al. Sep 1992 A
5151193 Grobe et al. Sep 1992 A
5158721 Allegrezza, Jr. et al. Oct 1992 A
5169528 Karbachsch et al. Dec 1992 A
5169530 Schucker et al. Dec 1992 A
5182019 Cote et al. Jan 1993 A
5186821 Murphy Feb 1993 A
5192442 Piccirillo et al. Mar 1993 A
5192456 Ishida et al. Mar 1993 A
5192478 Caskey Mar 1993 A
5194149 Selbie et al. Mar 1993 A
5198116 Comstock et al. Mar 1993 A
5198162 Park et al. Mar 1993 A
5203405 Gentry et al. Apr 1993 A
5209852 Sunaoka et al. May 1993 A
5211823 Giuffrida et al. May 1993 A
5221478 Dhingra et al. Jun 1993 A
5227063 Langerak et al. Jul 1993 A
5248424 Cote et al. Sep 1993 A
5262054 Wheeler Nov 1993 A
5269919 von Medlin Dec 1993 A
5271830 Faivre et al. Dec 1993 A
5275766 Gadkaree et al. Jan 1994 A
5286324 Kawai et al. Feb 1994 A
5290451 Koster et al. Mar 1994 A
5290457 Karbachsch et al. Mar 1994 A
5297420 Gilliland et al. Mar 1994 A
5316671 Murphy May 1994 A
5320760 Freund et al. Jun 1994 A
5353630 Soda et al. Oct 1994 A
5354470 Seita et al. Oct 1994 A
5358732 Seifter et al. Oct 1994 A
5361625 Ylvisaker Nov 1994 A
5364527 Zimmermann et al. Nov 1994 A
5364529 Morin et al. Nov 1994 A
5374353 Murphy Dec 1994 A
5389260 Hemp et al. Feb 1995 A
5393433 Espenan et al. Feb 1995 A
5396019 Sartori et al. Mar 1995 A
5401401 Hickok et al. Mar 1995 A
5401405 McDougald Mar 1995 A
5403479 Smith et al. Apr 1995 A
5405528 Selbie et al. Apr 1995 A
5411663 Johnson May 1995 A
5417101 Weich May 1995 A
5419816 Sampson et al. May 1995 A
5425415 Master et al. Jun 1995 A
5451317 Ishida et al. Sep 1995 A
5458779 Odegaard Oct 1995 A
5468397 Barboza et al. Nov 1995 A
5470469 Eckman Nov 1995 A
5477731 Mouton Dec 1995 A
5479590 Lin Dec 1995 A
5480553 Yamamori et al. Jan 1996 A
5482625 Shimizu et al. Jan 1996 A
5484528 Yagi et al. Jan 1996 A
5490939 Gerigk et al. Feb 1996 A
5491023 Tsai et al. Feb 1996 A
5501798 Al-Samadi et al. Mar 1996 A
5525220 Yagi et al. Jun 1996 A
5531848 Brinda et al. Jul 1996 A
5531900 Raghavan et al. Jul 1996 A
5543002 Brinda et al. Aug 1996 A
5552047 Oshida et al. Sep 1996 A
5554283 Brinda et al. Sep 1996 A
5556591 Jallerat et al. Sep 1996 A
5575963 Soffer et al. Nov 1996 A
5597732 Bryan-Brown Jan 1997 A
5607593 Cote et al. Mar 1997 A
5626755 Keyser et al. May 1997 A
5629084 Moya May 1997 A
5633163 Cameron May 1997 A
5639373 Mahendran et al. Jun 1997 A
5643455 Kopp et al. Jul 1997 A
5647988 Kawanishi et al. Jul 1997 A
5670053 Collentro et al. Sep 1997 A
5677360 Yamamori et al. Oct 1997 A
5688460 Ruschke Nov 1997 A
5690830 Ohtani et al. Nov 1997 A
5733456 Okey et al. Mar 1998 A
5744037 Fujimura et al. Apr 1998 A
5747605 Breant et al. May 1998 A
5766479 Collentro et al. Jun 1998 A
D396046 Scheel et al. Jul 1998 S
5783083 Henshaw et al. Jul 1998 A
D396726 Sadr et al. Aug 1998 S
5814234 Bower et al. Sep 1998 A
D400890 Gambardella Nov 1998 S
5843069 Butler et al. Dec 1998 A
5846424 Khudenko Dec 1998 A
5846425 Whiteman Dec 1998 A
5871823 Anders et al. Feb 1999 A
5888401 Nguyen Mar 1999 A
5895521 Otsuka et al. Apr 1999 A
5895570 Liang Apr 1999 A
5906739 Osterland et al. May 1999 A
5906742 Wang et al. May 1999 A
5910250 Mahendran et al. Jun 1999 A
5914039 Mahendran et al. Jun 1999 A
5918264 Drummond et al. Jun 1999 A
5942113 Morimura Aug 1999 A
5944997 Pedersen et al. Aug 1999 A
5951878 Astrom Sep 1999 A
5958243 Lawrence et al. Sep 1999 A
5961830 Barnett Oct 1999 A
5968357 Doelle et al. Oct 1999 A
5988400 Karachevtcev et al. Nov 1999 A
5989428 Goronszy Nov 1999 A
5997745 Tonelli et al. Dec 1999 A
6001254 Espenan et al. Dec 1999 A
6007712 Tanaka et al. Dec 1999 A
6017451 Kopf Jan 2000 A
6024872 Mahendran et al. Feb 2000 A
6036030 Stone et al. Mar 2000 A
6039872 Wu et al. Mar 2000 A
6042677 Mahendran et al. Mar 2000 A
6045698 Cote et al. Apr 2000 A
6045899 Wang et al. Apr 2000 A
6048454 Jenkins Apr 2000 A
6048455 Janik Apr 2000 A
6066401 Stilburn May 2000 A
6071404 Tsui Jun 2000 A
6074718 Puglia et al. Jun 2000 A
6077435 Beck et al. Jun 2000 A
6083393 Wu et al. Jul 2000 A
6096213 Radovanovic et al. Aug 2000 A
6113782 Leonard Sep 2000 A
6120688 Daly et al. Sep 2000 A
6126819 Heine et al. Oct 2000 A
6146747 Wang et al. Nov 2000 A
6149817 Peterson et al. Nov 2000 A
6156200 Zha et al. Dec 2000 A
6159373 Beck et al. Dec 2000 A
6193890 Pedersen et al. Feb 2001 B1
6202475 Selbie et al. Mar 2001 B1
6214231 Cote et al. Apr 2001 B1
6214232 Baurmeister et al. Apr 2001 B1
6221247 Nemser et al. Apr 2001 B1
6245239 Cote et al. Jun 2001 B1
6254773 Biltoft Jul 2001 B1
6264839 Mohr et al. Jul 2001 B1
6277512 Hamrock et al. Aug 2001 B1
6280626 Miyashita et al. Aug 2001 B1
6284135 Ookata Sep 2001 B1
6290756 Macheras et al. Sep 2001 B1
6294039 Mahendran et al. Sep 2001 B1
6299773 Takamura et al. Oct 2001 B1
6303026 Lindbo Oct 2001 B1
6303035 Cote et al. Oct 2001 B1
6315895 Summerton et al. Nov 2001 B1
6319411 Cote Nov 2001 B1
6322703 Taniguchi et al. Nov 2001 B1
6324898 Cote et al. Dec 2001 B1
6325928 Pedersen et al. Dec 2001 B1
6325938 Miyashita et al. Dec 2001 B1
6331248 Taniguchi et al. Dec 2001 B1
6337018 Mickols Jan 2002 B1
RE37549 Mahendran et al. Feb 2002 E
6349835 Saux et al. Feb 2002 B1
6354444 Mahendran et al. Mar 2002 B1
6361695 Husain et al. Mar 2002 B1
6368819 Gaddy et al. Apr 2002 B1
6372138 Cho et al. Apr 2002 B1
6375848 Cote et al. Apr 2002 B1
6383369 Elston May 2002 B2
6387189 Groschl et al. May 2002 B1
6402955 Ookata Jun 2002 B2
6406629 Husain et al. Jun 2002 B1
6423214 Lindbo Jul 2002 B1
6423784 Hamrock et al. Jul 2002 B1
6432310 Andou et al. Aug 2002 B1
6440303 Spriegel Aug 2002 B2
D462699 Johnson et al. Sep 2002 S
6444124 Onyeche et al. Sep 2002 B1
6468430 Kimura et al. Oct 2002 B1
6471869 Yanou et al. Oct 2002 B1
6485645 Husain et al. Nov 2002 B1
6495041 Taniguchi et al. Dec 2002 B2
6517723 Daigger et al. Feb 2003 B1
6524481 Zha et al. Feb 2003 B2
6524733 Nonobe Feb 2003 B1
6550747 Rabie et al. Apr 2003 B2
6555005 Zha et al. Apr 2003 B1
6562237 Olaopa May 2003 B1
6576136 De Moel et al. Jun 2003 B1
6592762 Smith Jul 2003 B2
D478913 Johnson et al. Aug 2003 S
6613222 Mikkelson et al. Sep 2003 B2
6620319 Behmann et al. Sep 2003 B2
6627082 Del Vecchio et al. Sep 2003 B2
6632358 Suga et al. Oct 2003 B1
6635179 Summerton et al. Oct 2003 B1
6641733 Zha et al. Nov 2003 B2
6645374 Cote et al. Nov 2003 B2
6656356 Gungerich et al. Dec 2003 B2
6682652 Mahendran et al. Jan 2004 B2
6685832 Mahendran et al. Feb 2004 B2
6696465 Dellaria et al. Feb 2004 B2
6702561 Stillig et al. Mar 2004 B2
6706185 Goel et al. Mar 2004 B2
6706189 Rabie et al. Mar 2004 B2
6708957 Cote et al. Mar 2004 B2
6712970 Trivedi Mar 2004 B1
6721529 Chen et al. Apr 2004 B2
6723242 Ohkata et al. Apr 2004 B1
6723758 Stone et al. Apr 2004 B2
6727305 Pavez Aranguiz Apr 2004 B1
6743362 Porteous et al. Jun 2004 B1
6755970 Knappe et al. Jun 2004 B1
6758972 Vriens et al. Jul 2004 B2
6761826 Bender Jul 2004 B2
6770202 Kidd et al. Aug 2004 B1
6780466 Grangeon et al. Aug 2004 B2
6783008 Zha et al. Aug 2004 B2
6790912 Blong Sep 2004 B2
6805806 Arnaud Oct 2004 B2
6808629 Wouters-Wasiak et al. Oct 2004 B2
6811696 Wang et al. Nov 2004 B2
6814861 Husain et al. Nov 2004 B2
6821420 Zha et al. Nov 2004 B2
6830782 Kanazawa Dec 2004 B2
6841070 Zha et al. Jan 2005 B2
6861466 Dadalas et al. Mar 2005 B2
6863817 Liu et al. Mar 2005 B2
6863818 Daigger et al. Mar 2005 B2
6863823 Cote Mar 2005 B2
6869534 McDowell et al. Mar 2005 B2
6872305 Johnson et al. Mar 2005 B2
6881343 Rabie et al. Apr 2005 B2
6884350 Muller Apr 2005 B2
6884375 Wang et al. Apr 2005 B2
6890435 Ji et al. May 2005 B2
6890645 Disse et al. May 2005 B2
6893568 Janson et al. May 2005 B1
6899812 Cote et al. May 2005 B2
6946073 Daigger et al. Sep 2005 B2
6952258 Ebert et al. Oct 2005 B2
6955762 Gallagher et al. Oct 2005 B2
6962258 Zha et al. Nov 2005 B2
6964741 Mahendran et al. Nov 2005 B2
6969465 Zha et al. Nov 2005 B2
6974554 Cox et al. Dec 2005 B2
6994867 Hossainy et al. Feb 2006 B1
7005100 Lowell Feb 2006 B2
7014763 Johnson et al. Mar 2006 B2
7018530 Pollock Mar 2006 B2
7018533 Johnson et al. Mar 2006 B2
7022233 Chen Apr 2006 B2
7041728 Zipplies et al. May 2006 B2
7052610 Janson et al. May 2006 B2
7083733 Freydina et al. Aug 2006 B2
7087173 Cote et al. Aug 2006 B2
7122121 Ji Oct 2006 B1
7147777 Porteous Dec 2006 B1
7147778 DiMassimo et al. Dec 2006 B1
7160455 Taniguchi et al. Jan 2007 B2
7160463 Beck et al. Jan 2007 B2
7160464 Lee et al. Jan 2007 B2
7172699 Trivedi et al. Feb 2007 B1
7172701 Gaid et al. Feb 2007 B2
7186344 Hughes Mar 2007 B2
7208091 Pind et al. Apr 2007 B2
7223340 Zha et al. May 2007 B2
7226541 Muller et al. Jun 2007 B2
7247238 Mullette et al. Jul 2007 B2
7264716 Johnson et al. Sep 2007 B2
7279100 Devine Oct 2007 B2
7300022 Muller Nov 2007 B2
7314563 Cho et al. Jan 2008 B2
7329344 Jordan et al. Feb 2008 B2
7344645 Beck et al. Mar 2008 B2
7361274 Lazaredes Apr 2008 B2
7378024 Bartels et al. May 2008 B2
7387723 Jordan Jun 2008 B2
7404896 Muller Jul 2008 B2
7410584 Devine Aug 2008 B2
7455765 Elefritz et al. Nov 2008 B2
7481933 Barnes Jan 2009 B2
7510655 Barnes Mar 2009 B2
7531042 Murkute et al. May 2009 B2
7563363 Kuzma Jul 2009 B2
7591950 Zha et al. Sep 2009 B2
7632439 Mullette et al. Dec 2009 B2
7648634 Probst Jan 2010 B2
7662212 Mullette et al. Feb 2010 B2
7708887 Johnson et al. May 2010 B2
7713413 Barnes May 2010 B2
7718057 Jordan et al. May 2010 B2
7718065 Jordan May 2010 B2
7722769 Jordan et al. May 2010 B2
7761826 Thanvantri et al. Jul 2010 B1
7819956 Muller Oct 2010 B2
7850851 Zha et al. Dec 2010 B2
7862719 McMahon et al. Jan 2011 B2
7931463 Cox et al. Apr 2011 B2
7938966 Johnson May 2011 B2
20010047962 Zha et al. Dec 2001 A1
20010052494 Cote et al. Dec 2001 A1
20020070157 Yamada Jun 2002 A1
20020117444 Mikkelson et al. Aug 2002 A1
20020148767 Johnson et al. Oct 2002 A1
20020153313 Cote Oct 2002 A1
20020185435 Husain et al. Dec 2002 A1
20020185447 Blount Dec 2002 A1
20020189999 Espenan et al. Dec 2002 A1
20020195390 Zha et al. Dec 2002 A1
20030038080 Vriens et al. Feb 2003 A1
20030042199 Smith Mar 2003 A1
20030052055 Akamatsu et al. Mar 2003 A1
20030056919 Beck Mar 2003 A1
20030057155 Husain et al. Mar 2003 A1
20030075495 Dannstrom et al. Apr 2003 A1
20030111412 Jeong et al. Jun 2003 A1
20030121855 Kopp Jul 2003 A1
20030127388 Ando et al. Jul 2003 A1
20030146153 Cote et al. Aug 2003 A1
20030150807 Bartels et al. Aug 2003 A1
20030159988 Daigger et al. Aug 2003 A1
20030178365 Zha et al. Sep 2003 A1
20030196955 Hughes Oct 2003 A1
20030226797 Phelps Dec 2003 A1
20030234221 Johnson et al. Dec 2003 A1
20040000517 Austin et al. Jan 2004 A1
20040007523 Gabon et al. Jan 2004 A1
20040007525 Rabie et al. Jan 2004 A1
20040035770 Edwards et al. Feb 2004 A1
20040045893 Watanabe et al. Mar 2004 A1
20040050791 Herczeg Mar 2004 A1
20040055974 Del Vecchio et al. Mar 2004 A1
20040084369 Zha et al. May 2004 A1
20040108268 Liu et al. Jun 2004 A1
20040112831 Rabie et al. Jun 2004 A1
20040139992 Murkute et al. Jul 2004 A1
20040145076 Zha et al. Jul 2004 A1
20040149655 Petrucco et al. Aug 2004 A1
20040154671 Martins et al. Aug 2004 A1
20040168978 Gray Sep 2004 A1
20040168979 Zha et al. Sep 2004 A1
20040173525 Hunniford et al. Sep 2004 A1
20040178154 Zha et al. Sep 2004 A1
20040188341 Zha et al. Sep 2004 A1
20040211726 Baig et al. Oct 2004 A1
20040217053 Zha et al. Nov 2004 A1
20040222158 Husain et al. Nov 2004 A1
20040232076 Zha et al. Nov 2004 A1
20040238442 Johnson et al. Dec 2004 A1
20040245174 Takayama et al. Dec 2004 A1
20050006308 Cote et al. Jan 2005 A1
20050023219 Kirker et al. Feb 2005 A1
20050029185 Muller Feb 2005 A1
20050029186 Muller Feb 2005 A1
20050032982 Muller Feb 2005 A1
20050045557 Daigger et al. Mar 2005 A1
20050061725 Liu et al. Mar 2005 A1
20050077227 Kirker et al. Apr 2005 A1
20050098494 Mullette et al. May 2005 A1
20050103722 Freydina et al. May 2005 A1
20050109692 Zha et al. May 2005 A1
20050115880 Pollock Jun 2005 A1
20050115899 Liu et al. Jun 2005 A1
20050121389 Janson et al. Jun 2005 A1
20050126963 Phagoo et al. Jun 2005 A1
20050139538 Lazaredes Jun 2005 A1
20050184008 Schacht et al. Aug 2005 A1
20050194310 Yamamoto et al. Sep 2005 A1
20050194315 Adams et al. Sep 2005 A1
20050258098 Vincent et al. Nov 2005 A1
20060000775 Zha et al. Jan 2006 A1
20060021929 Mannheim et al. Feb 2006 A1
20060065596 Kent et al. Mar 2006 A1
20060081533 Khudenko Apr 2006 A1
20060131234 Zha et al. Jun 2006 A1
20060201876 Jordan Sep 2006 A1
20060201879 Den Boestert et al. Sep 2006 A1
20060249448 Fujishima et al. Nov 2006 A1
20060249449 Nakhla et al. Nov 2006 A1
20060261007 Zha et al. Nov 2006 A1
20060273007 Zha et al. Dec 2006 A1
20060273038 Syed et al. Dec 2006 A1
20070007205 Johnson et al. Jan 2007 A1
20070007214 Zha et al. Jan 2007 A1
20070039888 Ginzburg et al. Feb 2007 A1
20070045183 Murphy Mar 2007 A1
20070051679 Adams et al. Mar 2007 A1
20070056904 Hogt et al. Mar 2007 A1
20070056905 Beck et al. Mar 2007 A1
20070075017 Kuzma Apr 2007 A1
20070075021 Johnson Apr 2007 A1
20070084791 Jordan et al. Apr 2007 A1
20070084795 Jordan Apr 2007 A1
20070108125 Cho et al. May 2007 A1
20070138090 Jordan et al. Jun 2007 A1
20070170112 Elefritz et al. Jul 2007 A1
20070181496 Zuback Aug 2007 A1
20070227973 Zha et al. Oct 2007 A1
20080053923 Beck et al. Mar 2008 A1
20080093297 Gock et al. Apr 2008 A1
20080156745 Zha et al. Jul 2008 A1
20080179249 Beck et al. Jul 2008 A1
20080190846 Cox et al. Aug 2008 A1
20080203017 Zha et al. Aug 2008 A1
20080257822 Johnson Oct 2008 A1
20080277340 Hong et al. Nov 2008 A1
20090001018 Zha et al. Jan 2009 A1
20090194477 Hashimoto Aug 2009 A1
20090223895 Zha et al. Sep 2009 A1
20090255873 Biltoft et al. Oct 2009 A1
20100000941 Muller Jan 2010 A1
20100012585 Zha et al. Jan 2010 A1
20100025320 Johnson Feb 2010 A1
20100051545 Johnson et al. Mar 2010 A1
20100170847 Zha et al. Jul 2010 A1
20100200503 Zha et al. Aug 2010 A1
20100300968 Liu et al. Dec 2010 A1
20100326906 Barnes Dec 2010 A1
20110049047 Cumin et al. Mar 2011 A1
20110056522 Zauner et al. Mar 2011 A1
20110100907 Zha et al. May 2011 A1
20110114557 Johnson et al. May 2011 A2
20110127209 Rogers et al. Jun 2011 A1
20110132826 Muller et al. Jun 2011 A1
20110139715 Zha et al. Jun 2011 A1
20110192783 Cox et al. Aug 2011 A1
20110198283 Zha et al. Aug 2011 A1
20120091602 Cumin et al. Apr 2012 A1
Foreign Referenced Citations (381)
Number Date Country
3440084 Apr 1985 AU
5584786 Sep 1986 AU
7706687 Feb 1988 AU
762091 Jun 2003 AU
2531764 Mar 2005 CA
1050770 Jan 1995 CN
2204898 Aug 1995 CN
2236049 Sep 1996 CN
1159769 Sep 1997 CN
1249698 Apr 2000 CN
1541757 Nov 2004 CN
3904544 Aug 1990 DE
4117281 Jan 1992 DE
4113420 Oct 1992 DE
4117422 Nov 1992 DE
4326603 Feb 1995 DE
19503060 Aug 1996 DE
29804927 Jun 1998 DE
29906389 Jun 1999 DE
10209170 Aug 2003 DE
012557 Feb 1983 EP
126714 Nov 1984 EP
050447 Oct 1985 EP
194735 Sep 1986 EP
250337 Dec 1987 EP
327025 Aug 1989 EP
344633 Dec 1989 EP
090383 May 1990 EP
407900 Jan 1991 EP
463627 Jan 1992 EP
0464321 Jan 1992 EP
492942 Jul 1992 EP
518250 Dec 1992 EP
547575 Jun 1993 EP
280052 Jul 1994 EP
395133 Feb 1995 EP
662341 Jul 1995 EP
492446 Nov 1995 EP
430082 Jun 1996 EP
734758 Oct 1996 EP
763758 Mar 1997 EP
824956 Feb 1998 EP
848194 Jun 1998 EP
855214 Jul 1998 EP
627255 Jan 1999 EP
911073 Apr 1999 EP
920904 Jun 1999 EP
1034835 Sep 2000 EP
1052012 Nov 2000 EP
1156015 Nov 2001 EP
1300186 Apr 2003 EP
1349644 Oct 2003 EP
1350555 Oct 2003 EP
1236503 Aug 2004 EP
1445240 Aug 2004 EP
1466658 Oct 2004 EP
1659171 May 2006 EP
1420874 Jan 2011 EP
2620712 Mar 1989 FR
2674448 Oct 1992 FR
2699424 Jun 1994 FR
2762834 Nov 1998 FR
702911 Jan 1954 GB
996195 Jun 1965 GB
2253572 Sep 1992 GB
52-078677 Jul 1977 JP
53-5077 Jan 1978 JP
53108882 Sep 1978 JP
54162684 Dec 1979 JP
55099703 Jul 1980 JP
55129107 Oct 1980 JP
55129155 Oct 1980 JP
56021604 Feb 1981 JP
56118701 Sep 1981 JP
56121685 Sep 1981 JP
57190697 Nov 1982 JP
58088007 May 1983 JP
60019002 Jan 1985 JP
60-206412 Oct 1985 JP
60260628 Dec 1985 JP
61097005 May 1986 JP
61097006 May 1986 JP
61107905 May 1986 JP
61167406 Jul 1986 JP
61167407 Jul 1986 JP
61171504 Aug 1986 JP
61192309 Aug 1986 JP
61222510 Oct 1986 JP
61242607 Oct 1986 JP
61249505 Nov 1986 JP
61257203 Nov 1986 JP
61263605 Nov 1986 JP
61291007 Dec 1986 JP
61293504 Dec 1986 JP
62004408 Jan 1987 JP
62068828 Mar 1987 JP
62114609 May 1987 JP
62140607 Jun 1987 JP
62144708 Jun 1987 JP
62163708 Jul 1987 JP
62179540 Aug 1987 JP
62237908 Oct 1987 JP
62250908 Oct 1987 JP
62187606 Nov 1987 JP
62262710 Nov 1987 JP
63097634 Apr 1988 JP
63099246 Apr 1988 JP
63143905 Jun 1988 JP
63171607 Jul 1988 JP
63180254 Jul 1988 JP
S63-38884 Oct 1988 JP
64-075542 Mar 1989 JP
1-501046 Apr 1989 JP
1111494 Apr 1989 JP
01151906 Jun 1989 JP
01-307409 Dec 1989 JP
02-017925 Jan 1990 JP
02017924 Jan 1990 JP
02026625 Jan 1990 JP
02031200 Feb 1990 JP
02040296 Feb 1990 JP
02107318 Apr 1990 JP
02126922 May 1990 JP
02144132 Jun 1990 JP
02164423 Jun 1990 JP
02174918 Jul 1990 JP
02241523 Sep 1990 JP
02277528 Nov 1990 JP
02284035 Nov 1990 JP
03018373 Jan 1991 JP
03028797 Feb 1991 JP
03-086529 Apr 1991 JP
03110445 May 1991 JP
04108518 Apr 1992 JP
04110023 Apr 1992 JP
4-190889 Jul 1992 JP
04187224 Jul 1992 JP
4-256425 Sep 1992 JP
04250898 Sep 1992 JP
04256424 Sep 1992 JP
04265128 Sep 1992 JP
04293527 Oct 1992 JP
04310223 Nov 1992 JP
04317793 Nov 1992 JP
04334530 Nov 1992 JP
04348252 Dec 1992 JP
05023557 Feb 1993 JP
05096136 Apr 1993 JP
05137977 Jun 1993 JP
05157654 Jun 1993 JP
05161831 Jun 1993 JP
05279447 Oct 1993 JP
05285348 Nov 1993 JP
05305221 Nov 1993 JP
06-027215 Feb 1994 JP
06071120 Mar 1994 JP
06114240 Apr 1994 JP
06170364 Jun 1994 JP
06218237 Aug 1994 JP
06-292820 Oct 1994 JP
06277469 Oct 1994 JP
06285496 Oct 1994 JP
06343837 Dec 1994 JP
07000770 Jan 1995 JP
07024272 Jan 1995 JP
07047247 Feb 1995 JP
07068139 Mar 1995 JP
07136470 May 1995 JP
07136471 May 1995 JP
07155564 Jun 1995 JP
07155758 Jun 1995 JP
7-39921 Jul 1995 JP
07178323 Jul 1995 JP
07185268 Jul 1995 JP
07185270 Jul 1995 JP
07185271 Jul 1995 JP
07185272 Jul 1995 JP
07236819 Sep 1995 JP
07-256253 Oct 1995 JP
07251043 Oct 1995 JP
07275665 Oct 1995 JP
07289860 Nov 1995 JP
07303895 Nov 1995 JP
07313973 Dec 1995 JP
08010585 Jan 1996 JP
8039089 Feb 1996 JP
08-197053 Aug 1996 JP
08323161 Dec 1996 JP
08332357 Dec 1996 JP
09000890 Jan 1997 JP
09038470 Feb 1997 JP
09-075689 Mar 1997 JP
09072993 Mar 1997 JP
09099227 Apr 1997 JP
9103661 Apr 1997 JP
9138298 May 1997 JP
09141063 Jun 1997 JP
09155345 Jun 1997 JP
09187628 Jul 1997 JP
09192458 Jul 1997 JP
09220569 Aug 1997 JP
09271641 Oct 1997 JP
09-313902 Dec 1997 JP
09324067 Dec 1997 JP
10-015365 Jan 1998 JP
10024222 Jan 1998 JP
10033955 Feb 1998 JP
10048466 Feb 1998 JP
10076144 Mar 1998 JP
10076264 Mar 1998 JP
10085562 Apr 1998 JP
10085565 Apr 1998 JP
10085566 Apr 1998 JP
10156149 Jun 1998 JP
10180048 Jul 1998 JP
10225685 Aug 1998 JP
10235168 Sep 1998 JP
10286441 Oct 1998 JP
10328538 Dec 1998 JP
11005023 Jan 1999 JP
11028467 Feb 1999 JP
11031025 Feb 1999 JP
11033365 Feb 1999 JP
11033367 Feb 1999 JP
11076769 Mar 1999 JP
11156166 Jun 1999 JP
11156360 Jun 1999 JP
11165200 Jun 1999 JP
11-179171 Jul 1999 JP
11-309351 Nov 1999 JP
11302438 Nov 1999 JP
11319501 Nov 1999 JP
11319507 Nov 1999 JP
11333265 Dec 1999 JP
2000000439 Jan 2000 JP
2000051669 Feb 2000 JP
2000061466 Feb 2000 JP
200079390 Mar 2000 JP
2000070684 Mar 2000 JP
2000-093758 Apr 2000 JP
2000-157845 Jun 2000 JP
2000157850 Jun 2000 JP
2000185220 Jul 2000 JP
2000189958 Jul 2000 JP
2000233020 Aug 2000 JP
2000237548 Sep 2000 JP
2000300968 Oct 2000 JP
2000317276 Nov 2000 JP
2000-334276 Dec 2000 JP
2000342932 Dec 2000 JP
2001009246 Jan 2001 JP
2001070967 Mar 2001 JP
2001079366 Mar 2001 JP
2001079367 Mar 2001 JP
2001104760 Apr 2001 JP
2001120963 May 2001 JP
2001-510396 Jul 2001 JP
2001179059 Jul 2001 JP
2001179060 Jul 2001 JP
2001190937 Jul 2001 JP
2001190938 Jul 2001 JP
2001205055 Jul 2001 JP
2001-269546 Oct 2001 JP
2002177746 Jun 2002 JP
3302992 Jul 2002 JP
2002-527229 Aug 2002 JP
2002525197 Aug 2002 JP
2002263407 Sep 2002 JP
2002-336663 Nov 2002 JP
2003024751 Jan 2003 JP
2003047830 Feb 2003 JP
2003053157 Feb 2003 JP
2003053160 Feb 2003 JP
200371254 Mar 2003 JP
2003062436 Mar 2003 JP
2003135935 May 2003 JP
2003190976 Jul 2003 JP
2003-265597 Sep 2003 JP
2003-275548 Sep 2003 JP
2003266072 Sep 2003 JP
2003275759 Sep 2003 JP
2003340250 Dec 2003 JP
2004-008981 Jan 2004 JP
2004-230287 Aug 2004 JP
2004230280 Aug 2004 JP
2004322100 Nov 2004 JP
2004337730 Dec 2004 JP
2005-087887 Apr 2005 JP
2005144291 Jun 2005 JP
2005154551 Jun 2005 JP
2005279447 Oct 2005 JP
2006-116495 May 2006 JP
2007-547083 Aug 2010 JP
4833353 Dec 2011 JP
20-0232145 Jul 2001 KR
1020020067227 Aug 2002 KR
20-0295350 Nov 2002 KR
2002-0090967 Dec 2002 KR
2003-033812 May 2003 KR
2003-060625 Jul 2003 KR
2005-063478 Jun 2005 KR
1020491 Oct 2003 NL
1021197 Oct 2003 NL
510394 May 2003 NZ
537874 Feb 2007 NZ
347343 Dec 1998 TW
8800494 Jan 1988 WO
8801529 Mar 1988 WO
8801895 Mar 1988 WO
8806200 Aug 1988 WO
8900880 Feb 1989 WO
9000434 Jan 1990 WO
9104783 Apr 1991 WO
9116124 Oct 1991 WO
9302779 Feb 1993 WO
9315827 Aug 1993 WO
93223152 Nov 1993 WO
9411094 May 1994 WO
9534424 Dec 1995 WO
9603202 Feb 1996 WO
9607470 Mar 1996 WO
9628236 Sep 1996 WO
9629142 Sep 1996 WO
9641676 Dec 1996 WO
9706880 Feb 1997 WO
9822204 May 1998 WO
9825694 Jun 1998 WO
9828066 Jul 1998 WO
9853902 Dec 1998 WO
9901207 Jan 1999 WO
99-55448 Nov 1999 WO
9959707 Nov 1999 WO
0018498 Apr 2000 WO
0030742 Jun 2000 WO
0100307 Jan 2001 WO
0105715 Jan 2001 WO
0108790 Feb 2001 WO
0119414 Mar 2001 WO
0132299 May 2001 WO
0136075 May 2001 WO
0143856 Jun 2001 WO
0145829 Jun 2001 WO
0226363 Apr 2002 WO
0230550 Apr 2002 WO
0240140 May 2002 WO
0247800 Jun 2002 WO
03000389 Jan 2003 WO
03013706 Feb 2003 WO
03024575 Mar 2003 WO
03053552 Jul 2003 WO
03057632 Jul 2003 WO
03059495 Jul 2003 WO
03068374 Aug 2003 WO
03095078 Nov 2003 WO
2004018084 Mar 2004 WO
2004024304 Mar 2004 WO
2004033078 Apr 2004 WO
2004050221 Jun 2004 WO
2004056458 Jul 2004 WO
2004078327 Sep 2004 WO
2004101120 Nov 2004 WO
2005005028 Jan 2005 WO
2005021140 Mar 2005 WO
2005028085 Mar 2005 WO
2005028086 Mar 2005 WO
2005037414 Apr 2005 WO
2005046849 May 2005 WO
2005077499 Aug 2005 WO
2005082498 Sep 2005 WO
2005107929 Nov 2005 WO
2006026814 Mar 2006 WO
2006029456 Mar 2006 WO
2006029465 Mar 2006 WO
2006047814 May 2006 WO
2006066350 Jun 2006 WO
2007053528 May 2007 WO
2007065956 Jun 2007 WO
2007135087 Nov 2007 WO
2008034570 Mar 2008 WO
2008153818 Dec 2008 WO
2009030405 Mar 2009 WO
Related Publications (1)
Number Date Country
20100191377 A1 Jul 2010 US
Provisional Applications (1)
Number Date Country
60862626 Oct 2006 US