Infinite variable slide motion for a mechanical power press

Information

  • Patent Grant
  • 6711995
  • Patent Number
    6,711,995
  • Date Filed
    Monday, October 22, 2001
    23 years ago
  • Date Issued
    Tuesday, March 30, 2004
    20 years ago
Abstract
An infinite variable slide motion for a mechanical power press is achieved by use of a differential located on the press drive system. Differential movement means are employed to rotate the differential relative to the drive system so that the output of the differential may be increased or decreased relative to the drive system.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to mechanical presses, and, more particularly, to a variable slide motion adjustment apparatus and method for changing the motion versus crankshaft angle curve of the press slide.




2. Description of the Related Art




Mechanical presses, for example, stamping presses and drawing presses, comprise a frame having a crown and bed. A slide is supported within a frame for motion toward and away from the bed. The slide is driven by a crankshaft having a connecting arm connected to the slide.




Such mechanical presses are widely used for stamping and drawing operations and vary substantially in size and available tonnage depending upon the intent of use.




After manufacturing of a mechanical press, the only way to change the slide motion or the usual slider crank motion of the slide, was to substitute new parts and particular sizes and gearing of the press. Additionally, a necessity was the use of a wrench or other hand tools to change particular settings on the apparatus thereof. A benefit in some types of press room operations would be the ability to change the slider crank motion to vary the speed and dwelling of the slide without such manual adjustments.




Of interest, in some mechanical presses, is that there are portions of the slide which may be actuated by a hydraulic cylinder hydraulic pressure in the same rectilinear direction as slide movement, so therefore the bottom of the slide may be controlled in an additional upward or downward direction during slide reciprocation. Such structure necessitates additional parts such as the hydraulic cylinders or hydraulic pressure application means, along with the various plumbing and controls that necessarily reciprocate with the slide. Such additional mass on the slide may cause problems in press balance during operation.




What is needed in the art is the ability to mechanically alter the slider crank motion of the slide without the use of wrenched or hand tools to maintain mechanical connections between all of the moving parts.




SUMMARY OF THE INVENTION




The present invention is directed to improve mechanical press slide motion control by creating an apparatus and method for allowing mechanical control of the slide motion versus crankshaft angle curve, thereby altering the speed position and dwell of the slide during operation.




The present invention provides an infinite variable slide motion control apparatus utilizing a differential disposed between the driveshaft and connection arms of the slide. Such a differential is controlled or adjusted by links connecting such differential to other operating gears. By varying positions of the links connected to the differential and their particular orientation relative to the gearing, the effective link length is adjusted, thereby changing the type of slide motion. Changes in slide motion may be used to obtain the best performance of a particular die used in production with the workpieces on the press. Such effective link length adjustment is controlled by use of a hydraulic motor within an encoder giving a pulse count of the position of the link being adjusted. By determining the effective location of the link to the associated gearing and differential control of the press slide, an effective press slide curve is created.




The invention, in one form thereof, comprises a mechanical press including a frame and bed connected together with a slide connected with the frame for reciprocating motion opposing the bed. In the preferred embodiment, the clutch is still engaged as conventionally utilized in the flywheel with the energy from the flywheel being transmitted to the slide through a driveshaft, main gears through a controlled differential to a crankshaft and slide connection arms. Differential mechanism operation is controlled via the position of a link and link spider arrangement connected either to the main gear of a press or to an auxiliary drive gear.




The invention, in another form thereof, includes a hydraulic cylinder, screw adjustment or other means to vary the effective position and/or length of a link or link spider connected to one of the main gear or drive gear of the press. Such changes in relative position of the link can cause the differential in a particular application, to control motion of the other operating portions of the press.




An advantage of the infinite variable slide motion system of the present invention is that now mechanical presses may control the motion versus crankshaft angle curve, with variable alternate slide motion curves as needed for particular press or drawing operations. Of particular interest is the ability to mechanically change the dwell of the press slide to maintain it for particular periods of time and crankshaft or driveshaft rotation.




Another advantage of the present invention is the ability to utilize a differential between the main gear and eccentric portions of the crankshaft, thereby obtaining particular control of the power applied thereto.




A further advantage of the invention is the ability to create a slide motion different from the normal slider crank motion to increase the dwell of the slide on the bottom for upwards of 25°±15°.




Yet another advantage of the present invention is the ability of the clutch to maintain fully engaged and transfer energy therefrom to the crankshaft and slide via entire mechanical connections.




Another advantage of the present invention is that the infinite variable slide motion may be adjusted without a wrench or hand tool, but by use of a hydraulic motor controlling the effective position or length of the control links utilized.




Yet another advantage of the present invention is that the system now allows dies and tooling to tap or draw at 90° from the bed during the vastly extended slide dwell period.




Still another advantage of the present invention is the creation of a substantially constant slide and die velocity during the bottom 25 percent of slide stroke.




A further advantage of the present invention is the ability to withstand overload hits without breaking the links between the slide and crankshaft. Stamping presses may take tremendous overload due to items left in the presses, and for other reasons. A conventional press with crankshaft connection slide can withstand such load, but presses with links between the crankshaft and slide for adjusting stroke have had trouble withstanding such severe overloads.




Another advantage of the present invention is on a high speed press a dynamic balancer may be adjusted at the same time as the slide motion is adjusted.











BRIEF DESCRIPTION OF THE DRAWINGS




The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:





FIG. 1

is a elevational view of a mechanical press incorporating the infinite variable slide motion system of the present invention;





FIG. 2

is a graph showing a motion versus crankshaft angle curve for both a conventional press (dashed line) and one of the present invention (solid line);





FIG. 3

is an end view of a portion of the mechanical press shown in

FIG. 1

;





FIG. 4

is a top and side view of a portion of the press shown in

FIG. 1

;





FIG. 5

is an engaged view of an embodiment of the drive mechanism of the present invention;





FIG. 6

is a diagram of the main gear, link pivot connection of one form of the invention;





FIG. 7

is a section view of an embodiment of the differential utilized in the present invention;





FIG. 8

illustrates means for effective link position length adjustment utilizing a hydraulic motor;





FIG. 8A

is a section view of a means for effective link position length adjustment, taken along the section line


8


A—


8


A in

FIG. 8

;





FIG. 8B

is a section view of a means for effective link position length adjustment, taken along the section line


8


B—


8


B in

FIG. 8

;





FIG. 9

is a section view of an alternate embodiment of the present invention utilizing planetary gears and connection of the differential to the press driveshaft; and





FIG. 10

is a diagram of the main gear link pivot connection including hydraulic cylinder length adjustment means for both the link main gear and the link spider.











Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates one preferred embodiment of the invention, in one form, and such exemplification is not to be construed as limiting the scope of the invention in any manner.




DETAILED DESCRIPTION OF THE INVENTION




Referring now to the drawings and particularly to

FIG. 1

, there is shown a mechanical press


10


comprising a crown


12


, a bed portion


54


having a bolster assembly


16


connected thereto, and uprights


52


connecting crown portion


12


to bed portion


54


. Uprights


52


are connected to or integral with the underside of crown


12


and the upper side of bed


54


. Die


53


is located between slide


51


and bed


54


. Tie rods (not shown) extend through crown


12


, uprights


52


, and bed portion


54


and are attached on each end with a tie rod (not shown).




A drive mechanism, such as a press drive motor


43


, is attached to crown


12


of the press and connected by belts


42


to a flywheel


141


. Such flywheel


141


is thereby connected to a clutch/brake mechanism


44


that may transmit rotational energy to press driveshaft


45


.




As shown in

FIG. 1

, press driveshaft


45


on opposite ends includes a pinion gear


6


engaging a main gear


49


. Main gear


49


is connected to crankshaft


2


on which particular connections


50


attach to slide


51


. Dies


53


are attached one each to both the slide


51


and bolster assembly


16


.




The mechanical power press, as shown in

FIG. 1

, includes an eccentric (not shown) on crankshaft


2


. A typical connection of the eccentric between the connection


50


and crankshaft


2


will create a slide motion curve as shown in

FIG. 2

dashed line. This type of slide or crankshaft motion is similar to the majority of all mechanical presses.





FIG. 3

shows one view of the present invention, more particularly, the end view of the mechanical press of

FIG. 1

, in which the main gear


49


is connected by a link


69


to pivot link


71


. Pivot link


71


is connected by a link spider


70


to differential


84


.

FIG. 4

shows a top and side view of the connection.





FIG. 5

shows an enlarged view of one particular drive mechanism of the present invention, in which the flywheel


141


is connected to a clutch


44


onto the driveshaft


5


. A pinion


6


is thereby connected and rotates main gear


49


.





FIG. 10

illustrates link main gear length adjustment means


28


. Link main gear length adjustment means


28


can be, for example, a hydraulic cylinder.

FIG. 6

also illustrates link spider length adjustment means


26


, which can be, for example, a hydraulic cylinder.




The main gear


49


is fastened by bolt


61


A to the input gear differential


60


as shown in FIG.


5


and is turned at a constant speed by pinion


6


. The main gear


49


and input gear differential


60


are supported and rotate on the crankshaft bushing


65


. The input gear differential


60


drives at least one pinion differential


61


, which rotates on a shaft


63


A on the spider differential


63


. The spider differential


63


controls the shaft


63


A through pinions


61


. Spider differential


63


is controlled by link spider


70


. Link spider


70


controls rotation of spider differential


63


about crankshaft


2


. Pinion differential


61


drives gear output differential


62


.




When the spider differential


63


rotation is changed, the pinion differential


61


alters the drive of output gear differential


62


and can stop the output gear


62


if the spider differential


63


rotation can substantially match in the reverse direction, the input gear differential


60


. When the conditions are right, such that the differential slows or stops crankshaft


2


when slide


51


is down, the slide


51


may stop and dwell, thereby altering the slide motion curve. Spider differential


63


rotation combines with main gear


49


, such that the output gear differential


62


may be faster or slower than main gear


49


depending upon how spider differential


63


is controlled. One particular curve is shown in

FIG. 2

in which the dwell of the slide


51


is maintained longer at the bottom dead center position. Other times and locations of dwell may also be created.




In the preferred embodiment, the spider differential


63


movement is controlled by link spider


70


. Link spider


70


is connected and pivoted on a link pivot


71


through a pivot pin. The link pivot


71


is pivoted about an axis (location “z”) in FIG.


6


. The link pivot


71


is pivoted by a link main gear connection


69


which is motivated (in this embodiment) by main gear


49


.




The link main gear connection


69


pivots the link pivot


71


back and forth, and the link pivot


71


thereby drives link spider


70


which is fastened to spider differential


63


, and thus controls spider differential


63


causing a change in the output differential


62


speed which is fastened to crankshaft


2


.





FIG. 7

shows the differential


84


of the present invention, which includes the spider differential housing


101


. It is to this housing


101


that the link spider


70


attaches.




As shown in

FIG. 6

, the link spider


70


connected to pivot link


71


may be adjusted forward and backward by the structure shown in

FIG. 8

, by varying the position of link spider


70


upon link pivot


71


as shown in

FIG. 6

, various slide motions occur.




Link spider


70


is attached, as shown in

FIG. 8

, to pivot link


71


by a pin link spider


80


, mounted in a screw link spider


77


. This screw link spider


77


is supported on three sides by pivot link


71


and held in place by retainer


75


. The positioning of the screw link


77


is by a screw and nut link spider


78


. The screw link spider


77


is part of the member that has the pin link spider


80


(see section B—B). A threaded portion is positioned by rotating a nut link spider


78


. This nut link spider


78


includes pressurized oil to eliminate the need for a lock nut to prevent undamped clearance between the thread on nut link spider


78


and screw link spider


77


. The nut link spider


78


is fastened to gear link pivot


72


by bolts and the gear transmits the power to the nut link spider


78


. The gear link pivot


72


is driven by pinion link pivot


73


, which is mounted onto a hydraulic motor


74


. Hydraulic motor


74


obtains its hydraulic power from a power unit (not shown).




Additionally not shown, is an encoder mounted on the pinion link pivot


73


which feeds back pulses to a controller. A controller on this system controls and identifies the position of link spider


78


by counting particular pulses or otherwise determining its location. By rotating or operating hydraulic motor


74


which will rotate gear pivot


72


, an extension or contraction of the screw link spider


77


occurs. Such extension and contraction of screw link spider


77


to which the link spider


70


is connected thereby changes the relative location of link spider


70


to link pivot


71


. By controlling the relative position of link spider


70


and the link pivot


71


, control of the slide


51


dwell is accomplished.




As illustrated in

FIG. 10

, control of the slide


51


dwell can also accomplished by altering the lengths of link spider


70


or link main gear


69


. Length adjustment of the link spider can be accomplished by actuating link spider length adjustment means


26


, for example, a hydraulic cylinder. Similarly, the length of the link main gear


69


may be adjusted by actuating main gear length adjustment means


28


, for example, a hydraulic cylinder.




As shown in

FIG. 9

, an alternate embodiment is used in which the differential is placed on the press driveshaft


5


as opposed to crankshaft


2


. In this case, the system would need only a single differential versus two, such as when the press utilizes a twin drive setup as shown in FIG.


1


. This would additionally reduce costs and the part count.




A particular problem concerning the timing of the eccentric crankshaft


2


to the spider occurs to the spider and on the driveshaft


5


differential. Additionally, there may be a requirement to reduce speed, which could be accomplished with a planetary gearing


95


between link spider


97


and clutch


44


. The ratio would change in the planetary gearing when the ratio between the main gear and pinion


6


are changed. There may also be a required speed reduction between the link spider


97


and spider differential


63


.




In all cases and embodiments, the differential


84


has to match the rotation of the crankshaft


2


or have a particular speed change depending upon the position of crankshaft


2


. In other words, after one full rotation of the input occurs, one to the differential full rotation of the output also occurs. If the driveshaft spider differential has the correct change in motion, a curve as shown in

FIG. 2

can be produced. If an adjustment of the position of the pivot on the link spider


70


is made, an infinite variable slide curve motion between the two curves may be made. Furthermore, this adjustment may be made via a control panel or remote personal computer. An additional benefit is that by locating the differential on the driveshaft as opposed to the crankshaft, a single dynamic balancer may be located between the connections and that the slide motion is changed, the balancer will be adjusted automatically if driven from the crankshaft. Therefore, no additional mechanisms are needed to adjust the dynamic balancer.




While this invention has been described as having a preferred design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.



Claims
  • 1. A method of varying the slide motion in a running mechanical press, comprising:connecting a differential to a press drive system having a single motor and a press crankshaft; and utilizing the diferential to alternatively add and substract to the rotational velocity of the press crankshaft relative to the rotational velocity of the press drive system output.
Parent Case Info

This is a continuation of patent application No. 09/272,417, now U.S. Pat. No. 6,453,806 filed on Mar. 19, 1999, this disclosure of which is herein explicitly incorporated by reference. This application claims the benefit of 60/079,452 filed on Mar. 26, 1998.

US Referenced Citations (1)
Number Name Date Kind
5468194 Hayashi Nov 1995 A
Foreign Referenced Citations (8)
Number Date Country
1192544 May 1970 GB
1433112 Apr 1976 GB
2182750 May 1987 GB
6-246500 Sep 1994 JP
6-126491 Oct 1994 JP
6-190600 Dec 1994 JP
335119 May 1972 SU
1274940 Dec 1986 SU
Provisional Applications (1)
Number Date Country
60/079452 Mar 1998 US
Continuations (1)
Number Date Country
Parent 09/272417 Mar 1999 US
Child 10/076798 US