1. Field of the Invention
The present invention relates to mixing apparatus and more particularly an infinitely adjustable extrusion machine for mixing together and treating a wide variety of flowable components to create a wide variety of output products therefrom, and is based upon U.S. Provisional Patent Application Ser. No. 60/730,211, filed Oct. 25, 2005 and incorporated herein by reference in its entirety.
2. Prior Art
Extrusion machines have been know for many years and have been utilized in the plastic industry for the melting, mixing and converting of pellet, flakes, powders and like flowable components into extruded fibers, and polymers or the like for making plastic parts or as sheets or films or raw material for subsequent treatment and use. Controlling the conditions and the ultimate output of such multiple components has often vexed the industry, particularly where it is desirable to include in the mix, very small size particles, particularly in the nano-technology field or to create multi-phase component polymer alloys.
It is an object of the present invention to provide a mixing arrangement which is variable in its mixing configuration to provide particulate output in a flow, which can be very tightly controlled and idealized for a desired use.
It is a further object of the present invention to provide a mixing apparatus in which the torque and shear rate can be adjusted and controlled and components of the apparatus may be readily reconfigured to provide optimum output.
The present invention relates to plasticating machines for mixing and incorporating multiple components such as for example, fibers, particles of wood and polymeric materials which are fed from satellite extruders. The configuration of the apparatus of the present invention comprises an elongated housing, generally of cylindrical shape, and may be split along the longitudinal, having a first or output end and a second or power drive end. The cylindrical housing has an elongated bore extending longitudinally therethrough. The elongated bore encloses a rotatable elongated shaft. The elongated shaft has an upper or driven end which is attached to a motorized drive shaft. The motorized drive shaft and the upper end of the elongated shaft are supported within bearings at the second or power drive end of the mixing apparatus. The elongated shaft at the upper or second end thereof, in the mixer apparatus has a spiral thread arranged therearound.
One, two or more “satellite” extruders may be in a fluid feed communication with the threaded portion of the elongated shaft near the second or power driven end of the mixer apparatus. The satellite extruder(s) feed components of the mix to be extruded through the mixer apparatus through ports in the sidewall of the elongated cylindrical housing. The rotation of the elongated shaft by the motorized drive shaft contributes to and helps effect propulsion of the components of the mix downwardly within the cylindrical housing.
The elongated shaft has a plurality of annularly shaped stators and rotors mounted within the elongated bore of that cylindrical housing. The stators and rotors configured in the present invention, may be arranged in an alternating series or may be arranged contiguous, so as to have adjacent stators and adjacent rotors or any combination thereof. The output or downstream end of the elongated shaft may have a further screw-like surface thereon at its adjacent output end. The threaded portion at the distal end presses outwardly on the extrudate and discharges it through a downstream port at the output end of the mixer apparatus.
The stators may be held in place within the elongated bore within the cylindrical housing by attachment bolts secured through bolt holes within the wall of the cylindrical housing. The attachment bolts extend into a recess in the peripheral surface of that particular stator to hold it securely therewithin. The elongated shaft would extend through a central opening within that stator as will be defined here and below. A rotor for the present invention, as aforesaid, is comprised of an annular or disc shaped component having a central bore therethrough. The central bore in each rotor may have a keyway extending longitudinally therewithin. The central bore of the rotor would mate about the periphery of the rotatable elongated shaft at a desired, variably changeable location thereon.
A stator similarly comprises an annular or disc shaped component having an axial bore extending longitudinally therethrough. The stator remains held in place in a stationary manner about the rotatable elongated shaft, within the elongated bore of the cylindrical housing. A first and a second bolt may be arranged through the wall of the cylindrical housing to engage to a depression within the outer peripheral wall of the stator to hold that stator secure and immovable during rotation of the elongated shaft therewithin.
In a first embodiment of a stator, the central bore extends therethrough for rotation of the elongated shaft. The central bore of the stator has an annular surface with a plurality of cuts or channels arranged within it inner annular surface. The cuts or channels may in one preferred embodiment, may be angled with respect to the longitudinal axis of the bore therewithin. Those angled cuts or channels within the inner surface of the bore in the stator may be irregular or smooth. Those cuts may be in longitudinal alignment with the longitudinal axis of the stator itself or in a further preferred embodiment may be disposed at an oblique angle with respect to the longitudinal axis of the stator and rotating elongated shaft therewithin.
Those cuts or channels within the internal peripheral or annular surface, or of a plurality of annularly distributed bores adjacent the inner annular surface of the stator in a further preferred embodiment thereof, may be tapered, pinched or narrowed from one longitudinal side of the stator to the other longitudinal side of the stator, preferably tapering narrower from an upstream side of the stator (or rotor) to a downstream side of the stator in a preferred embodiment thereof so as to accelerate and otherwise controllably affect the flow and manipulating of the mix thereby.
In yet a further preferred embodiment of the present invention, the disc like shaped stator may have its inner or internal bore having channels or spiral cuts spaced therewithin, and the stator may also have an outer peripheral surface with similar channels or spaced apart spirally arranged cuts therein. Those channels or cuts may themselves be tapered or in a downstream direction from a wider to a narrower dimension, as well as to a radially smaller dimension from a radially larger dimension at its upstream side.
Similarly, a rotor being an annular or disc shaped component having an upstream side and a downstream side with a cylindrically shaped bore extending therethrough. The rotor has a keyway which mates with a longitudinally directed key on a side of the elongated rotatable shaft to permit the rotor to engage and rotate with the elongated shaft as it rotates within the elongated bore of the cylindrically shaped housing. Each rotor has an outer peripheral surface with a plurality of channels or grooves thereon and/or with circumferentially spaced apart bores therethrough. The channels, bores and/or grooves in the rotor are preferably dimensionally changed from an upstream to a downstream dimension. Those channels or grooves are preferably narrower and smaller at the downstream side of the rotor than the upstream side.
Those channels or grooves in the outer peripheral surface of the rotor may be arranged in a helical or spiral-like configuration having roughened or smooth surface therein, in a further preferred embodiment thereof. It is also contemplated that those spiral grooves or channels may be tapered to a thinner or more narrow dimension from one side of the rotor to the other up or downstream side thereof. Thus it is possible with the components of the present invention, comprising numerous rotors and stators, to adjustably set and force and dispersably mix a number of components in a desired configuration by the utilization of rotors and stators each with specific dimensions and tapers in their channel configurations. Those channels with between upstream and downstream sides of the rotors and stators as aforementioned may also comprise holes or bores instead of peripheral surface cuts as aforesaid.
By developing a series of dimensional changes as you go downstream with the various stators and rotors in the bore of the cylindrical housing during a mixing operation, various outflow parameters may be set and output flows realized for particular compounds being admixed and treated. By numbering or setting a code for the channel configurations, for example, depth or width or length or roughness or dimension of taper or narrowing of channel or bore or chirality of spirals of particular rotors and stators, the mixing and processing of various compounds may be readily pre-configured, set according to a known flow/mix pattern and thus accomplished. The speed of the outflow and mixing may be increased as the mix goes through the tapered channels or bores, as through a venturri, so as to change/increase the flow rate and manipulate the desired mixing capabilities going therethrough. Improvements in such mixing and compounding may be accomplished, even on a nano scale compound.
Heating of the satellite extruders and their respective input, as well as heating and/or cooling the cylindrical housing and/or the stators running therewithin, may permit further manipulation and creativity of the admixing procedure.
The invention thus comprises a mixing apparatus for the treatment of a plurality of flowable components comprising: an elongated housing having an upper component-introduction end and a downstream compound-discharge end; an elongated shaft rotatably disposed within an elongated bore disposed within the housing, the shaft having a stator and rotor arrangement spaced longitudinally therearound, wherein at least one rotor has an arrangement of fluid channeling conduits spaced apart on an annular surface thereof, and wherein the channel/conduit is of tapering narrowing dimension from a first longitudinal side of the rotor to a second longitudinal side of the rotor. At least one stator has an arrangement of conduits spaced apart on an annular surface thereof, wherein the conduit is of a tapering dimension from a first longitudinal side of the stator to a second longitudinal side thereof. The first longitudinal side of the rotor may preferably correspond to an upstream side of the apparatus. The first longitudinal side of said stator preferably corresponds to an upstream side of the apparatus. At east one of the conduits may comprise a helical or spiral cut in its surface. The surface may comprise an outer annular surface on the rotor. The surface may comprise an inner annular surface on the rotor. The surface may comprise an outer annular surface on the stator. The surface may comprise an inner annular surface on the stator. At least one of the conduits may comprise a fluid treating bore extending generally longitudinally through the rotor. The fluid treating bore may have an upstream opening with a different geometrical shape than its downstream fluid flow exit opening to help achieve bi-axially oriented laminar formation of the compound during its processing.
The invention also comprises a method of providing an infinitely mixing capability to a plurality of particulate-fluid components through a fluid flow path mixing apparatus, comprising one or more of the following steps: arranging an array of rotors and stators in a mixing apparatus having a component-supplied upstream end and a downstream end; forming channels in the rotors and stators, at least one of the channels having a tapered geometry; and arranging the rotors and the stators in a particular array to provide a mix and shear effect thereto, as needed for the particular components fed to said apparatus; arranging the channels in the rotors and/or stators so as to be narrowed preferably in their downstream ends, to accelerate the movement of components being moved and treated therethrough; providing indicia on the rotors and the stators to indicate a particular known geometry of the channels therein, to permit the apparatus to be programmed and readily re-assembled to permit infinite adjustment and re-setting to a desired mix result, depending upon the need for the particular components being treated therethrough.
The arrangement of rotors and stators with their own channels creates flow division leading to a large increase in surface area in a multi-component feed which is very desirable for good mixing. Also the use of moving boundaries of rotors moving against stators and barrel surface leads to the creation of shear fields which vary with the geometry and rotor speed (Couette Flow). These shear fields are necessary for dispersive mixing to break up agglomerates. The use of convergent channels causes the fluid to accelerate which leads to extensional flow. The mixer apparatus creates specific morphology in the compound that affects both the physical and chemical properties and is highly desirable in multi-phase systems. The conveying action for output in the stator channels occurs via pressure flow (Poiseulle Flow). This flow sets up a shear field that is zero at the center of the channel and increases to a maximum at the wall. The apparatus of the present invention is capable of generating various mixing modes: Flow division; variable shear flow by a moving machine boundary; elongational flow due to a converging geometry and shear flow due to a pressure drop from the feed to the discharge end. Satellite mixers used with the present invention prepare the melt and components and are independently driven to feed the mixer. The mixer may be programmed for the correct shear and type of mixing via the use of particular marked rotors and stators. The speeds of the mixer andits satellite extruders are each adjustable individually to change the screw speeds. Also, each has its own barrel temperature control zones to control viscosity and torque.
The objects and advantages of the present invention will become more apparent, when viewed in conjunction with the following drawings in which:
Referring in detail to the drawings of the present invention, and particularly to
One, two or more “satellite” extruders 12 and 14 are be in a fluid feed communication with the threaded portion 32 of the elongated shaft 24 near the second or power driven 20 end of the mixer apparatus 10. The satellite extruder(s) 12 and 14 feed components C1 and C2 of the mix to be extruded through the mixer apparatus 10 through ports 36 in the sidewall of the elongated cylindrical housing 16. The rotation of the elongated shaft 24 by the motorized drive shaft 28 contributes to and helps effect propulsion of the components C1 and C2 of the mix downwardly within the bore 22 of the cylindrical housing 16.
The elongated shaft 24 has a plurality of annularly shaped stators 40 and rotors 42 mounted within the elongated bore 22 of that cylindrical housingl6. The stators 40 and rotors 42 configured in the present invention, may be arranged in an alternating series, as represented for example, in
The stators 40 may be held in place within the elongated bore 24 within the cylindrical housing 16 by attachment bolts 48 secured through bolt holes 50 within the wall of the cylindrical housing 16. The attachment bolts 48 may extend into a recess 60 in the peripheral surface 62 of that particular stator 40, as represented in
A rotor 42 for the present invention, as represented in
A stator 40. as aforementioned, similarly comprises an annular or disc shaped component having its axial bore 66 extending longitudinally therethrough. The stator 40 remains held in place in a stationary manner about the rotatable elongated shaft 24, within the elongated bore 22 of the cylindrical housing 16. A first and a second bolt 48 may be arranged through the wall of the cylindrical housing 16 to engage to its depression 60 within the outer peripheral surface 62 of the stator 40 to hold that stator 40 secure and immovable during rotation of the elongated shaft 24 therewithin.
In a first embodiment of a stator 40, as represented in
Those cuts or channels 80 within the internal peripheral or annular surface 74, or of a plurality of annularly distributed bores 86 (which bores 86 may have oval, circular, elliptical or rectilinear upstream/downstream inlets and outlets, which inlets and outlets may differ from one another in size and shape, not shown for clarity of view) adjacent the inner annular surface 74 of the stator 40, as represented in
In yet a further preferred embodiment of the present invention, the disc like shaped stator 40 may have its inner or internal bore 74 having channels 80 as spiral cuts 83 spaced therewithin, and the stator 40 may also have an outer peripheral surface 88 with similar channels 90 or spaced apart spirally arranged cuts 92 therein, as represeneted in
Similarly, a rotor 42 being an annular or disc shaped component having an upstream side 96 and 98 and a downstream side with a cylindrically shaped bore 70 extending therethrough, is represented in
Those channels or grooves 102 in the outer peripheral surface 100 of the rotor 42 may be arranged in a spiral-like configuration, shown in
By developing a series of dimensional changes going downstream with the various stators 40 and rotors 42 in the bore 22 of the cylindrical housing 16 during a mixing operation, various outflow parameters may be set and output flows realized for particular compounds being admixed and treated. By numbering or setting a code for the channel configurations, for example, depth or width or length or roughness or dimension of taper or narrowing of channel or bore or chirality of spirals of particular rotors and stators, the mixing and processing of various compounds may be readily pre-configured, set according to a known flow/mix pattern and thus accomplished. The speed of the outflow and mixing may be increased as the mix goes through the tapered channels or bores, as through a venturri, so as to change/increase the flow rate, elongating the fluid components as they flow downstream through the channels/bores and manipulate the desired mixing capabilities going therethrough. Improvements in such mixing and compounding may be accomplished, even on a nano scale compound.
Heating of the satellite extruders 12 and 14, and their respective input, as well as heating and/or cooling the cylindrical housing 16 and/or the stators 40 running therewithin, may permit further manipulation and creativity of the admixing procedure, being able to treat the components, even nano-sized components dispersively, to blend them in a dispersive and distributive manner, increasing the surface area of the compound by biaxial admixing thereof.
Number | Date | Country | |
---|---|---|---|
60730211 | Oct 2005 | US |