Field of the Invention
The field of the inventive embodiments relates generally to mechanical power transmission, and more particularly to methods, systems, devices, assemblies, subassemblies and/or components for continuously or infinitely variable transmissions.
Description of the Related Art
In certain systems, power is characterized by torque and rotational speed. More specifically, power in these systems is generally defined as the product of torque and rotational speed. Typically, a transmission couples to a power input that provides an input torque at an input speed. The transmission also couples to a load that demands an output torque and output speed, which may differ from the input torque and input speed. Typically, and generalizing, a prime mover provides the power input to the transmission, and a driven device or load receives the power output from the transmission. A primary function of the transmission is to modulate the power input in such a way to deliver a power output to the driven device at a desired ratio of input speed to output speed (“speed ratio”).
Some mechanical drives include transmissions of the type known as stepped, discrete, or fixed ratio. These transmissions are configured to provide speed ratios that are discrete or stepped in a given ratio range. For example, such a transmission may provide for a speed ratio of 1:2, 1:1, or 2:1, but such a transmission cannot deliver intermediate speed ratios such as 1:1.5, 1:1.75, 1.5:1, or 1.75:1, for example. Other drives include a type of transmission generally known as a continuously variable transmission (or “CVT”), which includes a continuously variable variator. A CVT, in contrast to a stepped transmission, is configured to provide every fractional ratio in a given range. For example, in the range mentioned above, a CVT is generally capable of delivering any desired speed ratio between 1:2 and 2:1, which would include speed ratios such as 1:1.9, 1:1.1, 1.3:1, 1.7:1, etc. Yet other drives employ an infinitely variable transmission (or “IVT”). An IVT, like a CVT, is capable of producing every speed ratio in a given ratio range. However, in contrast to a CVT, the IVT is configured to deliver a zero output speed (a “powered zero” state) with a steady input speed. Hence, given the definition of speed ratio as the ratio of input speed to output speed, the IVT is (at least theoretically) capable of delivering an infinite set of speed ratios, and consequently, the IVT is not limited to a given ratio range. It should be noted that some transmissions use a continuously variable variator coupled to other gearing and/or clutches to produce IVT functionality. However, as used here, the term IVT is primarily understood as comprehending an infinitely variable variator which produces IVT functionality without being necessarily coupled to additional gearing and/or clutches.
The field of mechanical power transmission is cognizant of continuous or infinitely variable variators of several types. For example, one well known class of continuous variators is the belt-and-variable-radius-pulley variator. Other known variators include hydrostatic, toroidal, and cone-and-ring variators. In some cases, these variators couple to other gearing to provide IVT functionality. Some hydromechanical variators can provide infinite ratio variability without additional gearing. Some variators, continuously and/or infinitely variable, are classified as frictional or traction variators because they rely on dry friction or elastohydrodynamic traction, respectively, to transfer torque across the variator. One example of a traction variator is a ball variator in which spherical elements are clamped between torque transfer elements and a thin layer of elastohydrodynamic fluid serves as the torque transfer conduit between the spherical and the torque transfer elements. It is to this latter class of variators that the inventive embodiments disclosed here are most related.
There is a continuing need in the CVT/IVT industry for transmission and variator improvements in increasing efficiency and packaging flexibility, simplifying operation, and reducing cost, size, and complexity, among other things. The inventive embodiments of the CVT and/or IVT methods, systems, subassemblies, components, etc., disclosed below address some or all of the aspects of this need.
The systems and methods herein described have several features, no single one of which is solely responsible for its desirable attributes. Without limiting the scope as expressed by the claims that follow, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Inventive Embodiments” one will understand how the features of the system and methods provide several advantages over traditional systems and methods.
One aspect of the invention relates to a carrier input cap for an infinitely variable transmission having planet-pivot arm assemblies. In one embodiment, the carrier input cap has a generally circular body with a central bore. In one embodiment the carrier input cap includes a group of carrier fingers arranged angularly about the central bore. The carrier fingers have a first set of fluid channels. The carrier input cap includes a set of surfaces formed on the carrier fingers. The surfaces can be configured to couple to the planet-pivot arm assemblies.
Another aspect of the invention addresses a carrier center block for an infinitely variable transmission having planet-pivot arm assemblies. The carrier center block includes a generally circular body having a central bore, and the carrier center block includes a neck extending axially from the circular body and concentric with the central bore. In one embodiment, the carrier center block includes several carrier fingers arranged angularly about, and extending radially from, the central bore. The carrier fingers have a first set of fluid channels. The carrier center block also has a set of surfaces formed on the carrier fingers. The surfaces can be configured to couple to the planet-pivot arm assemblies.
One more aspect of the invention concerns a carrier output block for an infinitely variable transmission having planet-pivot arm assemblies. The carrier output block includes a generally circular body having a central bore, and includes a shaft extending from the circular body and coaxial with the central bore. The shaft has a splined end. In one embodiment, the carrier output block has several carrier fingers arranged angularly about, and extending radially from, the central bore. The carrier fingers have a first set of fluid channels. In one embodiment, the carrier output block also has several surfaces formed on the carrier fingers. The surfaces can be configured to couple to the planet-pivot arm assemblies.
Yet another aspect of the invention involves a pivot arm for an infinitely variable transmission. The pivot arm includes a first arm extension having a first bearing bore and a pivot bore configured on one end of the first arm extension at a distal location from the first bearing bore. In one embodiment, the pivot arm has a second arm extension coupled on one end to the pivot bore. The second arm extension has a second bearing bore formed on an end of the second arm extension that is at a distal location from the pivot bore. At least one of the first and second arm extensions has a group of lubricant passages.
One aspect of the invention concerns a pivot arm for a shifting mechanism of an infinitely variable transmission (IVT), where the shifting mechanism has a planet axle. The pivot arm has a central pivot bore, a first extension extending from the central pivot bore. The pivot arm has a second extension extending from the central pivot bore and opposite the first extension. In one embodiment, the pivot arm has first and second axle bores respectively located on the first extension and the second extension. The axle bores can be configured to receive the planet axle.
Another aspect of the invention relates to a planet axle for a variator. The planet axle has an elongated body with a substantially cylindrical center portion. The planet axle also has a plurality of grooves arranged on the cylindrical central portion. At least one of the grooves is configured to receive an elastomer ball. At least one of the grooves is configured to receive a retainer clip. In one embodiment, the planet axle has a first neck on one end of the elongated body. The first neck can be configured to taper radially toward a longitudinal axis of the elongated body. The first neck can also be configured to expand radially toward the cylindrical central portion. The planet axle can have a second neck on another end of the elongated body opposite the first neck. The second neck can be configured to taper radially toward the longitudinal axis of the elongated body, and the second neck can be configured to expand radially toward the cylindrical center portion.
Yet one more aspect of the invention addresses a planet axle for a pivot-arm assembly of an infinitely variable transmission. The planet axle has an elongated body with a substantially cylindrical central portion. The cylindrical central portion has a set of eccentric grooves. In one embodiment, the planet axle has a first cylindrical portion extending from and coaxial with, the cylindrical central portion. The first cylindrical portion has a smaller diameter than the cylindrical central portion. The planet axle includes a second cylindrical portion extending from and coaxial with, the first cylindrical portion. The second cylindrical portion has a smaller diameter than the first cylindrical portion. In one embodiment, the planet axle has a third cylindrical portion extending from, and coaxial with, the second cylindrical portion, the third cylindrical portion has a smaller diameter than the second cylindrical portion.
In another aspect, the invention concerns an input shaft for an infinitely variable transmission having a hydraulic system. The input shaft includes a substantially cylindrical body having a central bore. The cylindrical body can be configured to house a valve of the hydraulic system. In one embodiment, the input shaft includes a manifold flange that extends from a first end of the cylindrical body. The input shaft can have a splined portion extending from a second end of the cylindrical body. The input shaft can also have several recesses formed on the outer face of the flange. The recesses can be configured to cooperate with the hydraulic system. In one embodiment, the input shaft a number of fluid channels arranged on the outer face of the flange.
Another aspect of the invention relates to an input shaft for a transmission having an elongated body with an external surface. The input shaft includes a central cavity formed in the elongated body. The input shaft can have several fluid channels configured to provide fluid communication between the central cavity and the external surface. In one embodiment, the input shaft has a valve spool positioned in the central cavity.
One aspect of the invention relates to an input shaft for an infinitely variable transmission having a hydraulic system. The input shaft includes a substantially cylindrical body having a central bore. In one embodiment, the input shaft has a manifold flange extending from a first end of the cylindrical body. The input shaft can include a splined portion extending from a second end of the cylindrical body. The input shaft has several seal grooves formed on an outer circumference of the cylindrical body. The seal grooves can be configured to provide several fluid chambers disposed between the seal grooves. In one embodiment, the input shaft has several fluid ports arranged on the outer circumference of the cylindrical body. The fluid ports can be arranged between the seal grooves.
Another aspect of the invention addresses a fluid manifold for an infinitely variable transmission having a hydraulic system. The fluid manifold has a substantially circular body having a first face, a second face, and a central bore. In one embodiment, the fluid manifold has a lubricant fluid port located on the periphery of the first face. The fluid manifold has several lubricant fluid channels configured to be in fluid communication with the lubricant fluid port. The lubricant fluid channels can be spaced angularly about the central bore, and the lubricant fluid channels can be formed on the second face. In one embodiment, the fluid manifold has a line pressure port located on the periphery of the first face. The fluid manifold has a line pressure fluid channel configured to be in fluid communication with the line pressure port. The line pressure fluid channel formed on the second face. The fluid manifold includes a pilot pressure port located on the periphery of the first face. In one embodiment, the fluid manifold includes a pilot pressure fluid channel configured to be in fluid communication with the pilot pressure port. The pilot pressure fluid channel formed on the second face.
One more aspect of the invention concerns a pivot pin hub for an infinitely variable transmission (IVT). The pivot pin hub includes a substantially cylindrical body having a central bore. The pivot pin hub has a number of finger pairs arranged angularly about, and concentric to, the central bore. The finger pairs extend radially from the central bore. The pivot pin hub includes a first face of the cylindrical body having a substantially flat surface. In one embodiment, the pivot pin hub has a second face of the cylindrical body having several flutes configured to couple to a lock washer of the IVT.
Yet another aspect of the invention involves a control piston for an infinitely variable transmission (IVT). The control piston includes a substantially cylindrical body having a central bore. In one embodiment, the control piston has a flange located at a first end of the cylindrical body. The flange extends radially from the central bore. The control piston has a groove formed on the cylindrical body. The groove can be located on a second end of the cylindrical body, and the groove can be configured to receive a lock washer of the IVT. The control piston includes a seal recess formed on the outer circumference of the flange.
One aspect of the invention concerns a traction ring for an infinitely variable transmission. The traction ring includes a substantially annular ring. In one embodiment, the traction ring has a straight face formed on one side of the annular ring. The traction ring includes a traction surface extending from the straight face toward an inner circumference of the annular ring. The traction surface is angled with respect to the straight face. The traction ring has a set of splines formed on the periphery of the annular ring.
Another aspect of the invention relates to a drive flange for an infinitely variable transmission. The drive flange includes a substantially annular and cylindrical body having a first end and a second end. The first end is placed at a distal location relative to the second end. The drive flange has a set of splines formed on the inner diameter of the first end. The drive flange includes a cap formed on the second end. The cap has a central bore.
Yet one more aspect of the invention addresses a reaction flange for an infinitely variable transmission (IVT). The reaction flange includes a generally annular and cylindrical body having a first end and a second end. In one embodiment, the reaction flange has a set of splines formed on the inner circumference of the first end. The reaction flange has a substantially flat surface formed on the second end. The flat surface can be configured to react axial force during operation of the IVT. The flat surface has several dowel recesses.
In another aspect, the invention concerns a torque transfer coupling for an infinitely variable transmission (IVT). The torque transfer coupling includes a substantially annular cylinder having a first end, a middle portion, and a second end. In one embodiment, the torque transfer coupling has a first set of splines formed on the inner circumference of the first end. The torque transfer coupling has a second set of splines formed on the inner circumference of the second end. The torque transfer coupling also has a third set of splines formed on the outer circumference of the middle portion.
Another aspect of the invention relates to a reaction flange for an infinitely variable transmission having a traction ring. The reaction flange includes a substantially circular body having a first end, a second end, and a central bore. The reaction flange has a first set of splines formed on the inner circumference of the first end. The first set of splines can be configured to couple to the traction ring. The reaction flange also has an end cover formed on the second end. The end cover has a splined central bore.
One aspect of the invention relates to an input cam flange for an infinitely variable transmission. The input cam flange includes a substantially cylindrical and tubular body having a first end and a second end. In one embodiment, the input cam flange has a set of splines formed on the inner circumference of the first end. The input cam flange has a flange extending from the periphery of the cylindrical and tubular body. The input cam flange includes a set of cam ramps formed on the flange. The cam ramps have a set of counter-clockwise helical ramps and a set of clockwise helical ramps. The input cam flange also has a neck extending from the flange.
Another aspect of the invention addresses a cam base for an infinitely variable transmission. The cam base includes a substantially annular ring having a set of cam ramps formed on one face of the annular ring. The set of cam ramps include a set of counterclockwise helical ramps and a set of clockwise helical ramps. The cam base also has several dowel recesses formed on outer circumference of the annular ring.
One more aspect of the invention concerns a cam load piston for an infinitely variable transmission (IVT). The cam load piston includes a substantially annular flange having a substantially flat surface on one side and a recessed portion on a side that is opposite to the side with the flat surface. The recessed portion can be configured to couple to compression springs of the IVT. The cam load piston has a first sealing ring groove formed on an inner circumference of the annular flange. The cam load piston also has a second sealing ring groove formed on an outer circumference of the annular flange.
Yet another aspect of the invention involves an unloader piston for an infinitely variable transmission (IVT) having an unloader cylinder. The unloader piston is a substantially annular ring. In one embodiment, the unloader piston has a first rim formed on a face of the annular ring. The first rim can be configured to couple to the unloader cylinder. The unloader piston has a second rim formed on a side that is opposite to the face with the first rim. The unloader piston has a first seal groove formed on an outer circumference of the annular ring. The unloader piston also has a second seal groove formed on an inner circumference of the annular ring.
One aspect of the invention concerns a center cam base for an infinitely variable transmission. The center cam base includes a substantially annular cylindrical body. In one embodiment, the center cam base includes a set of splines formed on an outer circumference of the annular cylindrical body. The center cam base has a first set of ramps formed on a first face of the annular cylindrical body. The center cam base also has a second set of ramps formed on a second face of the annular cylindrical body.
Another aspect of the invention relates to a cam ring for an infinitely variable transmission. The cam ring includes a substantially circular flange having a central bore. The cam ring has a set of splines formed on an inner circumference of the central bore. In one embodiment, the cam ring has a cam shoulder formed on an outer periphery of the circular flange. The cam shoulder has a neck extending from the cam shoulder. The neck has a clip ring groove formed on the inner circumference. The cam shoulder also has a set of cam ramps formed on the cam shoulder.
Yet one more aspect of the invention addresses an output disc for an infinitely variable transmission. The output disc has a substantially annular cylindrical body. In one embodiment, the output disc has a first set of splines formed on an inner circumference of a first end of the annular cylindrical body. The output disc has a second set of splines formed on an outer circumference of a second end of the annular cylindrical body. The output disc also has a flange extension extending from the second end of the annular cylindrical body.
In another aspect, the invention concerns a variator housing for an infinitely variable transmission (IVT). The variator housing includes a substantially cylindrical container having a first end and a second end. The variator housing has a skirt extending from the cylindrical container. The skirt is configured to couple to an oil pan of the IVT. In one embodiment, the variator housing has a set of pick up ports arranged on the skirt. The variator housing has several instrumentation access ports arranged on the cylindrical container. The variator housing has a first set of dowel pin holes arranged on the first end of the cylindrical container. The variator housing also has a second set of dowel pin holes arranged on the second end of the container, and the variator housing has several lubrication ports arranged on a peripheral surface of the second end of the cylindrical container.
Another aspect of the invention relates to a bell housing for an infinitely variable transmission having a hydraulic system. The bell housing includes a substantially cylindrical body having a central passage. In one embodiment, the bell housing has a cam load piston port formed on the periphery of the cylindrical body. The bell housing has a lubrication port formed on the periphery of the cylindrical body, and the bell housing has a line pressure port formed on the periphery of the cylindrical body. The bell housing includes a pilot pressure port formed on the periphery of the cylindrical body. The cam load piston port, the lubrication port, the line pressure port, and the pilot pressure port are each configured to be in fluid communication with the hydraulic system. The bell housing also includes a recess formed on the central passage. The recess can be configured to couple to a cover plate of the transmission.
One aspect of the invention relates to a drivetrain having a power source and an infinitely variable variator coupled to the power source. The infinitely variable variator includes a first set of traction rollers and a second set of traction rollers. The infinitely variable variator has a carrier operationally coupled to the first and the second sets of traction rollers. The carrier can be configured to rotate about a longitudinal axis of the infinitely variable variator. In one embodiment, the drivetrain includes a hydraulic system configured to control the transmission ratio of the infinitely variable variator.
Another aspect of the invention addresses a drivetrain for a tractor having a bell housing gearing and an infinitely variable transmission operably coupled to the bell housing gearing. The infinitely variable transmission includes a carrier configured to rotate about a longitudinal axis of the infinitely variable transmission. The infinitely variable transmission has a first set of planet-pivot arm assemblies. The carrier is operationally coupled to at least one of the planet-pivot arm assemblies. The drivetrain also includes a range box coupled to the infinitely variable transmission.
One more aspect of the invention concerns a variator having an input shaft arranged along a longitudinal axis of the variator. The variator includes a carrier operationally coupled to the input shaft. In one embodiment, the variator includes an array of pivot-arm assemblies operationally coupled to the carrier. The variator has a set of traction rollers coupled to the pivot arm assemblies. The variator also has a set of planet axles coupled to the traction rollers. The traction rollers are adapted to rotate about a planet axis substantially coaxial with the planet axles.
Yet another aspect of the invention involves a variator having an input shaft and a carrier coupled to the input shaft. The variator has a first set of planet-pivot arm assemblies operationally coupled to the carrier. In one embodiment, the variator has a first non-rotatable traction ring operationally coupled to the first set of planet-pivot arm assemblies. The variator has an output traction ring operationally coupled to the first set of planet-pivot arm assemblies, and the variator has a torque transfer device operationally coupled to the output traction ring. In one embodiment, the variator has an axial force generating mechanism operationally coupled to the first non-rotatable traction ring. The variator also has a second set of planet-pivot arm assemblies coupled to the carrier. Each of the planet-pivot arm assemblies of the first and second sets of planet-pivot arm assemblies include a planet and a planet axle operationally coupled to the planet. The planet-pivot arm assemblies also include a pivot arm coupled to the planet axle. The pivot arm can be operationally coupled to a ratio shifting mechanism of the variator.
One aspect of the invention concerns a planet-pivot arm assembly for an infinitely variable transmission having a ratio shifting mechanism. The planet-pivot arm assembly includes a planet and a planet axle operationally coupled to the planet. The planet-pivot arm assembly also includes a pivot arm coupled to the planet axle. The pivot arm is operationally coupled to the ratio shifting mechanism.
Another aspect of the invention relates to a planet-pivot arm assembly for a variator of an infinitely variable transmission. The planet-pivot arm assembly has a substantially spherical planet with a central bore. In one embodiment, the planet-pivot arm assembly has a planet axle having a first and a second end. The planet-pivot arm assembly also has a set of elastomer balls mounted in the planet axle and configured to be a frictional interface between the central bore of the planet and the planet axle.
Yet one more aspect of the invention addresses a planet-pivot arm assembly for an infinitely variable transmission. The planet-pivot arm assembly includes a substantially spherical planet and a planet axle operationally coupled to the planet. The planet-pivot arm assembly has a pivot arm coupled to the planet axle. The pivot arm includes a first arm extension having a first bearing bore, and a second arm extension having a second bearing bore. The pivot arm also includes a pivot bore coupled to the first and second arm extensions. The pivot bore can be placed at a distal location from the first and second bearing bores. The planet-pivot arm assembly includes several lubricant passages formed in the first and second arm extensions.
In another aspect, the invention concerns a center cam assembly for applying an axial load to components of an infinitely variable transmission having traction rings and one or more arrays of planets. The center cam assembly includes a first cam ring configured to operably couple to a first traction ring. The center cam assembly has a second cam ring configured to operably couple to a second traction ring. The first and second cam rings are adapted to generate an axial force that urges the first and second traction rings against the one or more arrays of planets. The center cam assembly includes a number of torque transfer rings interposed between the first and second traction rings and the first and second cam rings, respectively. The center cam assembly also includes a center cam base having a set of ramps. The center cam base can be operably coupled to the first and second cam rings. The center cam base is interposed between the first and second cam rings. The center cam assembly also includes a number of cam rollers configured to cooperate with the first and second cam rings to generate an axial force.
Another aspect of the invention relates to a center cam assembly a centering coupling and a traction ring configured to have a flange. The centering coupling is operationally coupled to the flange. The center cam assembly includes a drive output element coaxial with the traction ring. The drive output element can be operably coupled to the centering coupling. The center cam assembly has a center output transfer element coupled to the drive output element. The center cam assembly also has a number of axial force generating elements interposed between the traction ring and the center output transfer element.
One aspect of the invention relates to an input cam assembly for an infinitely variable transmission having a traction ring. The input cam assembly includes a cam flange configured to couple to the traction ring. In one embodiment, the input cam assembly includes a cam base positioned coaxially with the cam flange. The input cam assembly has a set of cam rollers supported in a roller retainer. The cam rollers can be adapted to interact with the cam base.
Another aspect of the invention addresses a carrier for an infinitely variable transmission (IVT). The carrier includes a first carrier center block. In one embodiment, the carrier has a second carrier center block coupled to the first carrier center block. A hydraulic fluid chamber is formed at the interface between the first and second carrier center blocks. The carrier includes a carrier input cap coupled to the first carrier center block. The carrier also includes a carrier output cap coupled to the second carrier center block.
One more aspect of the invention concerns a hydraulic ratio shifting control system for a variator having a plurality of planets operationally coupled to planet axles and to pivot arms. The hydraulic ratio shifting control system includes a piston operationally coupled to at least one pivot arm of the variator. The hydraulic ratio shifting control system has a regulator configured to hydraulically actuate the piston and thereby actuate the pivot arm. In one embodiment, the hydraulic ratio shifting control system includes a control signal device operably coupled to the regulator. The hydraulic ratio shifting control system has a synchronizer mechanism operationally coupled to the pivot arms. The hydraulic ratio shifting control system also has a feedback system coupled between the synchronizer mechanism and the regulator.
Yet another aspect of the invention involves a ratio shifting mechanism for a continuously variable transmission having an input shaft and a carrier. The ratio shifting mechanism includes a hydraulic valve adapted to be integral, at least in part, with the input shaft. The ratio shifting mechanism includes a hydraulic circuit configured to allow a control fluid to flow in and out of the carrier through a number of channels and chambers. At least some of the channels and chambers are formed in the input shaft.
Another aspect of the invention addresses a position feedback mechanism for a continuously or infinitely variable transmission. The position feedback mechanism includes a hydraulic control valve configured to cooperate with a shifting mechanism of the transmission. The position feedback mechanism includes a control screw operationally coupled to the control valve. In one embodiment, the position feedback mechanism includes a feedback screw coupled to the control screw. The feedback screw is configured to operably couple to a variator of the transmission.
One more aspect of the invention concerns a synchronizer device for a variator of a continuously or infinitely variable transmission. The synchronizer device includes a control screw and a group of pivot pin hubs coupled to the control screw. The control screw is configured to synchronize a plurality of planet arrays of the transmission to the same tilt angles.
Yet another aspect of the invention involves a shifting mechanism for a continuously or infinitely variable transmission (C/IVT). The shifting mechanism includes a control valve configured to be housed in a cavity of an input shaft of the C/IVT. The shifting mechanism has a control piston in fluid communication with the control valve. The shifting mechanism also includes a pivot pin hub operationally coupled to the control piston. The pivot pin hub can be operably coupled to a pivot arm of the C/IVT.
One aspect of the invention concerns a method of shifting an infinitely variable transmission having a group of pivot arms. The method has the steps of operably coupling a feedback mechanism to the group of pivot arms, and the step of operably coupling a regulator to the feedback mechanism. The method includes the step of delivering one or more indications of the state of the group of pivot arms from the feedback mechanism to the regulator. The method includes receiving a control signal at the regulator, and regulating a hydraulic pressure with the regulator. The hydraulic pressure is based at least in part on the combination of the control signal and the one or more indications of the state of the group of pivot arms. The method also includes the step of actuating a transmission ratio adjustment by using the hydraulic pressure to move the plurality of pivot arms.
Another aspect of the invention relates to a variator including a first array of planet-pivot arm assemblies. The planet-pivot arm assemblies have a first array of traction rollers. The variator includes a second array of planet-pivot arm assemblies. The planet-pivot arm assemblies have a second array of traction rollers. The variator includes a carrier configured to receive and support the arrays of planet-pivot assemblies. Each of the first and second array of traction rollers is arranged angularly about a longitudinal axis of the carrier, and each of the first and second arrays of traction rollers is positioned concentrically with the longitudinal axis of the carrier. The variator includes a first non-rotatable traction ring coupled to the first array of planet-pivot arm assemblies. The variator further includes a second non-rotatable traction ring coupled to the second array of planet-pivot arm assemblies. In one embodiment, the variator has a first output traction ring coupled to the first array of planet-pivot arm assemblies. The variator also has a second output traction ring in contact with the second array of planet-pivot arm assemblies. The variator includes an axial force generation mechanism operably coupled to the first and/or second output traction ring. In one embodiment, the variator has a shifting mechanism coupled to the planet-pivot arm assemblies. The shifting mechanism synchronously actuates the first and second array of planet-pivot arm assemblies for tilting an axis of rotation of the traction rollers. The variator also has an input shaft coupled to the carrier.
Yet one more aspect of the invention addresses an infinitely variable transmission (IVT) having a carrier configured to rotate about a longitudinal axis of the IVT. The IVT includes a first array of planet-pivot assemblies operationally coupled to the carrier. The carrier is adapted to receive and support said array of planet-pivot assemblies. Each planet-pivot assembly has a group of planets arranged angularly about the longitudinal axis. The IVT includes an input shaft coupled to the carrier. The input shaft and the carrier are configured to be coaxial with, and to rotate about, a central axis of the transmission. The IVT includes a first non-rotatable traction ring coupled to the first array of planet-pivot arm assemblies, and the IVT includes an output traction ring in contact with the first array of planet-pivot assemblies. The IVT has an idler assembly arranged coaxial with the longitudinal axis of the transmission. The idler assembly is in contact with the planets. The IVT also has a hydraulic control system configured to be in fluid communication with the carrier and/or the input shaft. The hydraulic control system can be adapted to adjust the transmission ratio of the IVT.
In another aspect, the invention concerns a method of operating a variator of an infinitely variable transmission. The method includes the steps of operably coupling an input shaft to a carrier of the variator and receiving a power at the input shaft. The method includes the step of transferring an input torque T1 at an input speed W1 to the carrier via the input shaft. The method further includes the step of transferring out of the variator a second torque T2 at a second speed W2 from a drive flange of the variator. The second torque T2 and the second speed W2 can be configured to be continuously variable. The second torque T2 and the second speed W2 depend at least in part on a tilt angle of traction planets of a group of planet-pivot arm assemblies of the variator. The second speed W2 is capable of having a magnitude of zero. The second speed W2 is capable of having a forward and a reverse direction of rotation.
Another aspect of the invention relates to a method of providing hydraulic axial loading to allow for dynamic reaction to torque spikes in a continuously variable transmission. The method includes the step of providing a mechanical load cam assembly configured to produce axial force in response to a torque spike. The method also includes the step of coupling a hydraulic axial loading mechanism to the mechanical load cam assembly. The hydraulic axial loading mechanism can be configured to provide an axial force based at least in part on a steady state operating torque of the transmission.
One aspect of the invention relates to a method of changing the ratio of a variator of a continuously variable or infinitely variable transmission. The method includes the steps of providing a hydraulic control valve and operably coupling the hydraulic control valve to a set of hydraulic pistons. The method includes the step of operably coupling a group of planet axles of the variator to at least one of the set of hydraulic pistons. In one embodiment, the method includes the step of regulating the hydraulic pressure with the hydraulic control valve. The method includes the step of supplying a hydraulic pressure from the hydraulic control valve to at least one of the set of hydraulic pistons. The method also includes the step of actuating a change in a tilt angle of the planet axles via the hydraulic pressure.
Another aspect of the invention addresses a method of shifting a continuously or infinitely variable transmission. The method includes the steps of hydraulically coupling a control valve to a control piston and coupling the control piston to a feedback spring. In one embodiment, the method includes the step of providing a pilot pressure indicative of a tilt angle of a planet axle of the transmission to the control valve. The pilot pressure range is at least a function of a spring rate of the feedback spring, a total deflection range of the feedback spring, and an area of the control piston. The method also includes the step of actuating a tilting of the planet axle based at least in part on the pilot pressure. The tilting of the planet axle shifts the transmission.
Certain inventive embodiments will now be described with reference to the accompanying figures, wherein like numerals refer to like elements throughout. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner simply because it is being utilized in conjunction with a detailed description of certain specific embodiments of the invention. Furthermore, embodiments of the invention may include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the inventions herein described. The CVT/IVT embodiments described here are generally related to transmissions and variators disclosed in U.S. Pat. Nos. 6,241,636, 6,419,608, 6,689,012, and 7,011,600. The entire disclosure of each of these patents is hereby incorporated herein by reference.
As used here, the terms “operationally connected,” “operationally coupled”, “operationally linked”, “operably connected”, “operably coupled”, “operably linked,” and like terms, refer to a relationship (mechanical, linkage, coupling, etc.) between elements whereby operation of one element results in a corresponding, following, or simultaneous operation or actuation of a second element. It is noted that in using said terms to describe inventive embodiments, specific structures or mechanisms that link or couple the elements are typically described. However, unless otherwise specifically stated, when one of said terms is used, the term indicates that the actual linkage or coupling may take a variety of forms, which in certain instances will be obvious to a person of ordinary skill in the relevant technology.
For description purposes, the term “radial” is used here to indicate a direction or position that is perpendicular relative to a longitudinal axis of a transmission or variator. The term “axial” as used here refers to a direction or position along an axis that is parallel to a main or longitudinal axis of a transmission or variator. For clarity and conciseness, at times similar components labeled similarly (for example, control piston 582A and control piston 582B) will be referred to collectively by a single label (for example, control pistons 582).
Referencing
The power source 110 can be, for example, an electric motor, an internal combustion engine, or a hybrid prime mover combining both the electric motor and the internal combustion engine. The first and second gearsets 120, 140 can be any gear box arrangements, each of which can include one or more planetary gearsets. The driven device 150 can be, for example, a coupling, a shaft, a propeller, a differential drive split gearbox, a tractive load (for example, moving a motorcycle, car, truck, or tractor), an industrial load (for example, driving a fixed or semi-fixed installation such as a printing press), a propulsive load (for example, moving watercraft such as a ship or a boat, or moving aircraft such as an airplane or a helicopter), a utility load (for example, driving a dumpster lift, garbage truck compactor, or turbine propeller), an agricultural load (for example, driving a spray attachment on a tractor or a combine), and mixed uses thereof such as tractive and agricultural loads, or tractive and utility loads, etc. The driven device 150 can additionally be a compressor, a generator, a pump, an accessory drive that includes, for example, an alternator, a water pump, a cooling fan, etc.
The couplings 160, 170, 180, and 190 can be any suitable mechanisms for transferring power between the coupled devices. For example, the couplings 160, 170, 180, and 190 can be any type of coupling ranging from a spline, key, weld, or flange coupling to a single planetary gearset, to a gearbox having multiple planetary gearsets and other gears in parallel or serial arrangements. The CV/IV variator 130 can be any of the embodiments of a continuously variable or an infinitely variable variator such as those described hereinafter.
In some embodiments, the drive system 100 can have one or none of the first and second gearsets 120, 140. Hence, for example, the drive system 100 can be configured such that the power source 110 couples to the CV/IV variator 130 via a coupling 160, without the first gearset 120 coupling between the power source 110 and the CV/IV variator 130. In other embodiments, the CV/IV variator 130 can couple to the driven device 150 without the second gearset 140 coupling between the CV/IV variator 130 and the driven device 150. Moreover, in some embodiments additional gearsets can be coupled in series or in parallel to the first gearset 120, CV/IV variator 130, or the second gearset 140.
One embodiment of the drive system 100 can be implemented with a transmission assembly 300 in, for example, a tractor application as shown in
Referring now to
Traction rings 225 and 227 contact, respectively, planet arrays 222A and 222B of the planet-pivot arm assemblies 220. Idler assemblies (not shown in
In the embodiment shown in
In the embodiment shown in
In embodiments where the carrier 215 is configured to rotate about the axis of the variator 200 and the traction rings 225, 227 are nonrotatable, the torque output element 232 can be made to achieve a zero speed and/or reverse the direction of its rotation. Moreover, when the output of the torque output element 232 is combined with the output of the output shaft 256, the output of the variator 200 can be zero or negative. Because some embodiments of the variator 200 can produce a zero output speed while the input speed is nonzero, and the torque ratio is generally inverse to the speed ratio, the variator 200 can be described as an infinitely variable variator.
In the embodiment shown in
Referencing now
The regulator 282 can be a valve, for example. In one embodiment, the regulator 282 is a four-way valve having a valve spool that regulates control fluid pressure and/or flow to the piston 294 and the tank 298. The control signal device 290 may be any mechanical, electrical, or electro-mechanical device suitably configured to deliver a control signal to the regulator 282. In some embodiments, the control signal is hydraulic fluid pressure (also referred to as pilot pressure). In yet other embodiments, the control signal device 290 can be adapted to receive and process electrical or mechanical signals from the feedback mechanism 292 and/or the synchronizer 293.
The control piston 294 can be configured and adapted such that shift pressure 284 actuates a movement of the control piston 294. The pivot arms 296 can be the pivot arms 252 shown in
During operation, to shift ratio the control signal device 290 actuates the regulator 282, which is configured to allow shift pressure 284 to actuate the piston 294. In some embodiments, the regulator 282 can be configured to regulate the rate at which shift pressure 284 is delivered. Since the control piston 294 couples to the pivot arms 296, the pivot arms 296 are actuated by and respond to the motion of the control piston 294. In some embodiments, the pivot arms 296 are operationally coupled to the planet axles 254 such that a motion of the pivot arms 296 results in a shifting or tilting of the angle of the planet axles 254 with respect to a longitudinal axis of the variator 200. The shifting of the angle of the planet axles 254 results in a shifting of the ratio of the variator 200.
As stated above, in some embodiments, the pivot arms 296 may be coupled to the feedback mechanism 292. In such embodiments, the feedback mechanism 292 may be configured to deliver to the regulator 282 one or more indications of the state of the pivots arms 296, such indications can include, for example, angular position, axial position, angular speed, axial or linear speed, etc. In some embodiments, indications can include hydraulic fluid flow and/or pressure in the pistons, an electrical signal from speed ratio measurements, position of the carrier 215, angular position of the planets 222, axial force on the traction rings 225, 227, 230, and/or 233 caused by centrifugal or gyroscopic forces that arise from rotation of the carrier 215. As the pivot arms 296 move in response to the movement of the controls piston 294, the feedback mechanism 292 relays any of the above mentioned indications to the regulator 282. By combining the control signal from the control signal device 290 and the indicia delivered by the feedback mechanism 292, the regulator 282 further regulates the shift pressure 284 to actuate a desired ratio adjustment or to maintain a steady state ratio.
In some embodiments of the variator 200, AFG mechanisms 235 apply axial force to the traction rings 225, 227, 230 and 233 to facilitate the efficient transfer of torque between the planet arrays 222A, 222B and the traction rings 230 and 233. In other embodiments, AFG mechanisms 235 may be coupled only to some of the traction rings 225, 227, 230 and 233, rather than to all of them. The AFG mechanisms 235 can be cam-based, wherein the interaction between cam surfaces and rollers generates axial force (which can be proportional to the torque applied at the cam surfaces), or can be hydraulic-actuator-based, wherein a hydraulic fluid actuates a combination of pistons and cylinders to generate axial force. In yet other embodiments, the AFG mechanisms 235 can combine both cam and hydraulic axial force generating methods. It should be noted that hydraulic- or cam-based AFG mechanisms 235 are not the only options to generate suitable axial force in the variator 200. Preferably, AFG mechanisms 235 are configured to generate axial force that can respond quickly to transient torque spikes and that is dependent or responsive, at least in part, to the highest torque level present at any of the traction rings 225, 227, 230, and 233.
Referencing
In one embodiment, the variator 310 includes planet-pivot arm assemblies 579 (see Detail A and
In some embodiments, a cover plate 560 mounts coaxially about the input shaft 510 and couples to a manifold 565. The cover plate 560 can be configured to provide bearing support for the input shaft 510. In the embodiment shown, a bell housing 531 is adapted to receive, support, and fasten to the cover plate 560 and manifold 565.
Traction rings 525A, 530 contact the planets 522A, while the traction rings 525B, 533 contact the planets 522B. In the embodiment depicted, the traction rings 525A, 525B are configured to be substantially or completely nonrotatable. A drive flange 532 couples to the traction rings 530, 533 through a center cam assembly 570 (see Detail B and
In the embodiment illustrated, an input cam assembly 575 couples to the traction ring 525A (see Detail C and
During operation of the variator 310, in one embodiment the input shaft 510 applies a torque to the carrier 515, which then transfers torque to the traction rings 530, 533 via the planet-pivot arm assemblies 579. The traction rings 530, 533 then transfer torque to the center cam assembly 570 and the drive flange 532, which rotate together as a rigid body. Hence, certain embodiments of the variator 310 facilitate power splitting. That is, the variator 310 can be adapted to receive a power input at the input shaft 510 and to deliver power via two different paths. Assuming, for example, that the input shaft 510 delivers power at an input speed w1 and an input torque T1, the variator 310 can deliver power at a continuously variable speed w2 and output torque T2 via the drive flange 532, and the variator 310 can provide power at an output speed w1 and output torque T3 via a splined shaft 844 coupled to the carrier 515. In the embodiment shown, the splined shaft 844 is integral to the carrier 515; however, in other embodiments, the splined shaft 844 can be coupled to the carrier 515 via any suitable means, including keying, splines, bolts, dowels, gears, hydraulic or electric motors, etc.
In certain embodiments, one of either the drive flange 532 or the carrier spline shaft 844 can be used as drive or as a power take off. In yet other embodiments, the two torque outputs T2 and T3 can be summed into one torque output T4 at the output shaft 585 via auxiliary gearsets. As discussed below with reference to
Referencing
In some embodiments, Control pistons 582 couple to pivot pin hubs 805. Pivot pin blocks 810, supported in the pivot pin hubs 805, receive pivot pins 815 that couple to the pivot arms 552. In one embodiment, a control screw 820 is composed of a right control screw 820A rigidly coupled to a left control screw 820B, wherein the lead of the threads of the right control screw 820A are opposite in direction to the lead of the threads of the left control screw 820B. When the control screw 820 turns in one direction, the oppositely directed threads of the right and left control screws 820A, 820B provide a turnbuckle functionality. In some embodiments, the right control screw 820A and the left control screw 820B are one integral part. In one embodiment, a right control screw nut 825A is rigidly coupled to a pivot pin hub 805A, while a left control screw nut 825B is rigidly coupled to a pivot pin hub 805B. Hence, when the control screw 820 is axially constrained and turned, the right control screw nut 825A and the left control screw nut 825B translate axially in opposite direction to each other (see
Further, in some embodiments, the absolute value of the thread lead between the right control screw 820A and the right control screw nut 825A and the left control screw 820B and left control screw nut 825B is equal, which causes the axial motion of the right control screw nut 825A and the left control screw nut 825B to be substantially equal in magnitude and opposite in direction. In one embodiment, the equal but opposite axial motion is converted to equal and opposite rotational motion of pivot arms 552A, 522B via pin slider mechanisms. As the pivot arms 552 are made to pivot, due to the operational coupling of the pivot arms 552 to the planet axles 554, the tilt angle of the axis of rotation of the planets 522 is adjusted and, thereby, an equal adjustment in the ratio of the separate variator cavities of variator 310 takes place. In some embodiments, through the use of a differential mechanism for example, the ratio of the separate variator cavities can be set to different values by, in part, choosing different leads for each of the control screws 820A, 820B and/or the control screw nuts 825A, 825B. The control screw 820, control screw nuts 825, pivot pin hubs 805, and link screw end stops 870, shown in
In some embodiments, the control screw 820A cooperates with a control screw nut 825A to provide mechanical feedback to the hydraulic valve. In the embodiment shown in
It is noted that in this embodiment of the variator 310, at least in part because of the configuration of the center cam assembly 570, axial thrust bearings are not used to transmit axial loads that arise from traction transfer between components. Rather, the traction rings 525A, 525B are fixed rotationally and configured to transmit axial force to the variator housing 505. Since the traction rings 525A, 525B do not use axial thrust bearings, the bearing drag loss that usually arises where axial thrust bearings are used for transmitting axial loads is avoided.
Referencing
Bearings 630, 635 hold, respectively, the torque transfer rings 620, 625 concentric to the carrier 515. In some embodiments, the bearings 630, 635 are radial bearings, but in other embodiments the bearings 630, 635 can be ball bearings, for example. A carrier pilot ring 640 and a carrier center bearing shim 642 are located between the bearings 630, 635. A synchronization ring 645 fits concentrically between the cam rings 610, 615 and the torque transfer rings 620, 625. The synchronization ring 645 couples to the cam rings 610, 615. The synchronization ring 645 allows axial deflection but does not allow the cam rings 610, 615 to rotate relative to each other, which keeps the center cam base 605 centered between the two planet arrays 522A, 522B. As shown in
Because the cam ring 610 couples via the synchronization ring 645 to the cam rings 615, the rise of the respective rollers in the cam rings 610, 615 is substantially equal. This ensures symmetrical axial displacement of the cam rings 610, 615 relative to the planet arrays 522A, 522B as the cam rings 610, 615 are loaded. It is preferable that during operation the distance between the center of the planet arrays 522A, 522B and the center of the transmission carrier 515 be the same for both planet arrays 522A, 522B. In some embodiments, it is also preferable that the carrier 515 move axially with the deflection produced by the axial force. The inner races of the bearings 630, 635 rigidly mount to the carrier 515. The outer races of the bearings 630, 635 mount, with a sliding fit for example, to the torque transfer rings 620, 625. In this embodiment, the outer races of the bearings 630, 635 can move axially with respect to the center cam assembly 570. To aid in keeping the carrier 515 centered between the planet arrays 522A, 522B, wave springs (not shown) are positioned between the side 655 of the outer races of the bearings 630, 635 and the torque transfer rings 620, 625. Axial deflection is preferably allowed, because of the axial force generation, but the carrier 515 is preferably centered at all times between the planet arrays 522A, 522B. In some embodiments, the wave springs act only on the outer races of the bearings 630, 635 and only on the axial direction. However, in other embodiments, the outer races of the bearings 630, 635 are press fit, for example, to the torque transfer rings 620, 625, and the wave springs act only on the inner races of the bearings 630, 635.
Referring now to
With reference to
The input cam assembly 575 is one embodiment of an axial force mechanism that combines both hydraulic- and cam-based axial force generation. Using hydraulic pressure, the cam load piston 720 can apply axial force to the traction ring 525 via the mechanical load cam assembly 717. In other embodiments, the mechanical load cam assembly 717 can be modified into a single, or multiple, part component that without the use of cams transmits axial force from the cam load piston 720 to the traction ring 525. In some embodiments, however, the cam load piston 720 is not used and only the mechanical load cam assembly 717 provides axial force at the input side of the variator 310. The mechanical load cam assembly 717 may be characterized as a passive axial force generator that reacts axial force in series and in proportion to a torque.
In embodiments that employ hydraulic axial loading, it is preferable to provide for dynamic reaction to torque spikes. This can be done by combining a cam-based axial loading mechanism, configured to react quickly to torque spikes, with a hydraulic axial loading mechanism. In one embodiment employing active axial force generation, hydraulic pressure regulates the axial force generated by a cam to a desired magnitude. For example, the mechanical load cam assembly 717 can be configured to provide a level of axial force that exceeds the maximum required operational axial force, and the unloader piston 725 and unloader cylinder 730 provide hydraulic control to regulate the axial force generated by the mechanical load input cam assembly 717 to a desired axial force. Hence, in one embodiment, the cam load piston 720 is not used, and instead axial force generation is controlled with the mechanical load cam assembly 717 such that the cam-based axial force generation is oversized for the transmission. In the embodiment shown in
By way of example, as torque increases, hydraulic pressure is reduced to let the input cam assembly 717 take over. If in a given application 100 pounds of axial force is desired at steady state, a cam that produces 1000 pounds of axial force is provided. A pressure to the unloader piston 725 and unloader cylinder 730 is provided to reduce the axial force on the traction ring 525 to 100 pounds. This configuration handles torque spikes, minimizes drag during normal operation, and facilitates programming desired axial force requirements.
It is to be noted that while
It should be noted that embodiments of the center cam assembly 570 and the input cam assembly 575 produce axial force that is proportional to the torque across the respective cam assembly 570, 575. Hence, whichever cam assembly 570, 575 experiences the highest torque determines the level of axial force in the variator 310 because the cam assembly 570, 575 experiencing the highest torque produces the highest axial force.
Referencing
Referencing
The carrier input cap 802 also includes carrier fingers 822 that have surfaces 824 for imparting force to the bearings 920 of the planet-pivot arm assembly 579 (see
In the vicinity of the carrier fingers 822 and the fastening fingers 816, in this embodiment, the carrier input cap 802 includes lubrication ports 885 configured to feed lubrication turrets 887. In the embodiment illustrated, lubrication fluid is pumped from the input shaft 510 into the channels 812 of the carrier input cap 802 and delivered to the lubrication ports 885.
The first and second carrier center blocks 804, 808 are substantially similar; hence, the following description of the first carrier center block 804 is generally applicable to and descriptive of the second carrier center block 808.
The center block 804 includes carrier fingers 834 that are similar in form and function to the carrier fingers 822 of the carrier input cap 802. Surfaces 836 of the carrier fingers 834 transfer force to the bearings 920, and surfaces 838 provide support for the guide wheels 925. As illustrated in
Referencing
In some embodiments, the carrier input cap 802, carrier output cap 806, and/or the first and second carrier blocks 804, 808 can be provided with lubrication ports to deliver lubricant to an idler 562 (see
Referencing
In the embodiment illustrated, clips 1305 fix the axial position of the planet 522 on the planet axle 554. The ends of the planet axle 554 are received in the legs of the pivot arm 552. In this embodiment, each leg of the pivot arm 552 is configured to receive a shell-type needle bearing 910 and an angular contact ball bearing 915. The needle bearing 910 may be press-fit into a bore 1410 (see
One embodiment of a pivot arm 552 is illustrated in
In this embodiment, each pivot arm extension 1425, 1430 includes a bore 1410 and a bore 1420 for receiving bearings 910, 915 (as described above with reference to
In one embodiment of the pivot arm 552, the distance between the bores 1315 is about 4 inches, and the distance between the center of the pivot bore 1435 and the center of the bore 1410 is about 2.5-3.0 inches. In some embodiments, the pivot arm extensions 1425, 1430 extend from the pivot arm bore 1435 on a radius of about 2.5-3.0 inches, more preferably about 2.75 inches. For some applications, the diameter of the bore 1410 is about 0.5-0.8 inches, and the diameter of the bore 1420 is about 0.8-1.2 inches. In one embodiment, the pivot bore 1435 can have a diameter of about 0.2-0.3 inches, the diameter of the recesses 1440 can be about 0.6-0.8 inches, and the diameter of the bores 1315 can be about 0.2-0.3 inches. For certain applications, the passages 1445, 1450 can have diameters of about 0.1-0.2 inches. In one embodiment, the pivot arm 552 is made of, for example, 4140 heat treated steel. However, due to the centrifugal forces that arise in embodiments where the carrier 515 rotates, it might be preferable to make the pivot arm 552 of a material that has suitable strength but weighs less than steel.
One embodiment of the planet axle 554 is illustrated in
In one embodiment, the planet axle 544 has an overall length of about 5.5 inches. The central portion 1510, in certain applications, has a diameter of about 0.5 inches for a slide fit or a press fit into the central bore of the planet 522. In one embodiment, the central portion 1510 has a length of about 2.5 inches. In some embodiments, the cylindrical portion 1520 has a length of about 0.5 inches and a diameter of about 0.45 inches, the cylindrical portion 1525 has a length of about 0.4 inches and a diameter of about 0.40 inches, and the cylindrical portion 1530 has a length of about 0.3 inches and a diameter of about 0.27 inches.
In one embodiment, the diameter of the central bore 1502 is about 0.2-0.3 inches, and the diameter of counterbore 1506 is about 0.4-0.5 inches. The outer diameter of the guide wheel 925 can be about 0.6-0.8 inches, and the diameter of the neck 1504 can be about 0.4-0.6 inches. In one embodiment, the width of the guide wheel 925 is about 0.25-0.35 inches. For certain applications, the guide wheel 925 can be made of AISI or SAE 52100 steel quenched and tempered to about 58 HRC minimum.
One embodiment and operation of a hydraulic ratio shifting mechanism 577 (hereinafter “shifter 577”) will be described now; however, first it will be helpful to set out certain definitions. Referencing
In the embodiment where the traction rings 525A, 525B are nonrotatable, the rotational speed of the planets 522 about the axis 2390 depends on the gamma angle 2395. In an embodiment where the carrier 515 rotates about the axis 2385, the planets 522 have an orbital speed about the axis 2385. For simplicity, the rotational speed of the planets 522 about the axis 2390 will be referred to as the rotational speed of the planets 522, and the orbital speed of the planets 522 about the axis 2385 will be referred to as the orbital speed of the planets 522. The surface speed on any point of a planet 522 is dependent on both the rotational speed and the orbital speed of the planet 522. The speed of the output traction rings 530, 533 depends on the surface speed of the planets 522 at the contact point between the planets 522 and the output traction rings 530, 533. Said contact point between the planets 522 and the output traction rings 530, 533 will be referred to as the “contact point.” Said surface speed at the contact point will be referred to as the “surface speed.” The speed of the drive flange 532 is dependent on the speed of the output traction rings 530, 533.
In brief, in one embodiment, to change the ratio of the variator 310 a control valve 1605 is operationally coupled to the planet axles 554. An adjustment in the state of the valve 1605 results in an adjustment of the gamma angle 2395, which produces a change in the rotational speed of the planets 522. As the rotational speed of the planets 522 changes, the speed of the output traction rings 530, 533 changes, which results in a change in the speed of the drive flange 532. What follows is a description of a number of embodiments of devices and methods for causing a change in, or holding steady, the gamma angle 2395.
Turning to
Referencing
In the embodiment shown in
Partly housed by the spool bushing 1610, a compression spring 1615 has one end that pushes against a recess of the input shaft 510 and another end that engages a pilot control piston 1620. A pilot control cylinder 1625 receives the pilot control piston 1620. In this embodiment, a flange of the pilot control cylinder 1625 engages the spool bushing 1610. The compression spring 1615 is preferably configured to ensure that the pilot control piston 1620 is continuously pressed against a valve spool 1630. One end of a feedback spring 1635 couples to the valve spool 1630 and the other end of the feedback spring 1635 couples to a feedback screw 1640.
In certain embodiments, the control valve 1605 is adapted to balance the pilot pressure applied to the piston area of the pilot control piston 1620, for example, against the feedback spring 1635. Control sensitivity or resolution is defined here as the operating pilot pressure range divided by the operating range of the gamma angle 2395. Pilot pressure range is the difference between the highest and the lowest pilot pressure. In some applications, it is preferred to use the widest pilot pressure range possible for a given range of the gamma angle 2395. In one instance, for example, the resolution can be 20 psi pilot pressure change for every 1 degree of change in the gamma angle 2395. The pressure range can be adjusted by selection of the area of the pilot control piston 1620 and the characteristics of the feedback spring 1635. Hence, the pilot pressure range can be given by pressure_range=k*d/A, where k is the spring rate, d is the total deflection range of the feedback spring 1635, and A is the area of the pilot control piston 1620. In general, for a given A, a stiffer (that is, higher k) feedback spring 1635 will result in a wider pilot pressure range. Similarly, if the feedback spring 1635 has a higher d over a given range of the gamma angle 2395, the pilot pressure range will be larger. Finally, if A is decreased, the overall pilot pressure range will increase.
Additionally, once the pilot pressure range is established, the center point of that range can be adjusted by setting the initial preload on the feedback spring 1635. If a higher pilot pressure is desired, the feedback spring can be given a larger preloaded deflection. If a lower pilot pressure is desired, the feedback spring 1635 can be given a lower initial deflection. For example, if the feedback spring 1635 is given an initial deflection of 0.020 inch, and the pilot pressure range is 50-250 psi over a range of −20 to 20 degrees for the gamma angle 2395, the pressure range can be increased with a higher initial deflection. Hence, if the feedback spring were given a 0.04 inch initial deflection, the pilot pressure range could change from about 100 psi to 300 psi, for example. In some embodiments, as long as the feedback spring 1635 is never deflected beyond the linear range of the feedback spring 1635, the middle point of the pilot pressure range can be moved up or down without affecting the pilot pressure range.
In one embodiment, the pilot control piston 1620 is about 1.0 inches long, includes a central cavity having a diameter of about 0.2-0.3 inches, and has an outer diameter of about 0.3-0.4 inches. In some embodiments, the pilot control cylinder 1625 has a through, central bore with a diameter of about 0.3-0.4 inches adapted to receive the pilot control piston 1620. An outer diameter of the pilot control cylinder 1625 can be about 0.5-0.6 inches and is adapted to fit, as shown in
In one embodiment, the spool bushing 1610 has an overall length of about 4.5-5 inches. A central cavity of the spool bushing 1610 can be about 0.4-0.6 inches in diameter. The outer diameter of the spool bushing can range from about 0.7 at one of its ends to about 1.1 inches at its other end. One end of the spool bushing 1610 can be provided with a set of class 4 acme treads for mating corresponding threads of the feedback screw 1640. The set of acme threads can have a 0.75 inches nominal diameter, a 0.25 inches lead, 0.125 inches pitch. The spool bushing 1610 can be provided with a number of ports (see
Referencing
Referencing
In one embodiment, the control screw 820 couples to pivot pin hubs 805A, 805B via a control screw nuts 825A, 825B. Hence, the control screw 820 functions as synchronizing device or synchronizer in that the control screw 820 ensures that the planet axles 554 are at the same gamma angle 2395 for each of the planet arrays 522A and 522B.
In some embodiments, the control screw 820 has an overall length of about 19 inches. In one embodiment, the screws 820A, 820B have a lead of about 3 inches, wherein the screw 820A has a left hand thread and the screw 820B has a right hand thread. For certain applications, the nominal diameter of the control screw 820 can be about 1.0 inch. In one embodiment, the center sleeve 1615 has an overall length of about 6.5-7.0 inches. In some embodiments, the center sleeve 1615 has an outer diameter of about 1.5 inches and an inner diameter of about 1.0 inch. In one embodiment, the feedback screw 1640 has an overall length of about 0.8-0.9 inches, an acme thread having a nominal diameter of about 0.75 inches, and a hexagonally profiled bore of about 0.3 inches in diameter.
Referencing
Control fluid in the chamber 580B is vented via vent ports 1650 of the valve spool 1630 as the port 2030, connecting to channels 814B, comes in fluid communication with the vent ports 1650. For additional description of the venting of control fluid, see below the description of the input shaft 510 with reference to
As noted above, increasing the pilot pressure results in control fluid filling the chamber 580A and emptying from the chamber 580B. As the chamber 580A fills, the control fluid in the chamber 580A pushes the control pistons 582 outwardly from the center of the chamber 580. Because the pivot pin hubs 805 couple to the control pistons 582, the pivot pin hubs 805 move axially away from the center of the chamber 580. That is, the pivot pin hub 805A moves toward the left, while simultaneously the pivot pin hub 805B moves toward the right (“left” and “right” here are as viewed on the plane of
Thus, the filling or emptying of the chambers 580A, 580B actuates the control pistons 582. The axial movement of the control pistons 582 produces an axial movement of the pivot pin hubs 805, which in turn produces a rotational movement of the pivot arms 552. Because the pivot arms 552 couple to the planet axles 554, as the pivot arms 552 rotate, the planet axles 554 are tilted, and thereby, the gamma angle 2395 is changed.
As previously mentioned, in one embodiment the pivot pin hubs 805 are rigidly connected to the control screw nuts 825, which are threaded to the control screw 820. Because the control screw 820 incorporates two screws 820A, 820B that are oppositely threaded and coupled by a pin (not shown), the control screw 820 works like a turnbuckle. Due to the opposing threads on the control screw 820, as the control pistons 582 move in opposite directions, the control screw 820 is driven in one constant rotation. The control screw 820 rotates but does not move axially. As the pivot pin hub 805A moves to the left, for example, the control screw nut 825A causes a rotation of the control screw 820A, which has left-handed threads. Since the control screw 820A is rotationally coupled to the feedback screw 1640, the control screw 820A causes the feedback screw 1640 to rotate also. Rotation of the feedback screw 1640 in the threads of the spool bushing 1610 causes the feedback screw 1640 to translate axially and, thereby, to react against the control spring 1635 and change the deflection of the control spring 1635. The valve spool 1630 is balanced by forces from the pressure on the load piston 1620 and the control spring 1635. When the force of the control spring 1635 is greater than the pilot pressure, the valve spool 1630 is then actuated by the control spring 1635. The ratio of the variator 310 is held steady when the valve spool 1630 is situated such that the valve spool 1630 closes the ports 2030 and 2025 (as is shown in
The following will describe certain behaviors of the variator 310 as the gamma angle 2395 is changed. For descriptive purposes, it is assumed that the input shaft 510 spins in a clockwise direction, wherein the observer is looking at the input shaft 510 on the side of the input shaft flange 1715 that makes contact with the carrier input cap 802. In the following discussion, all angular direction references are made with reference to the direction of the angular speed of the input shaft 510.
In the embodiment illustrated, the carrier 515 spins in the same direction as the input shaft 510 because the carrier 515 couples directly to the input shaft 510. Hence, since it has been assumed that the input shaft 510 spins clockwise, the carrier 515 also spins clockwise. The carrier 515 pushes on the bearings 920 coupled to the planet axles 554. Because the traction rings 525A, 525B are fixed rotationally, and since the planets 522 roll on the traction rings 525A, 525B and the idler 562, the planets 522 rotate counterclockwise about the axis 2390. In this embodiment, the rotation of the planets 522 about the axis 2390 is always in a direction opposite to the direction of rotation of the carrier 515. Additionally, the carrier 515 also causes the planets 522 to orbit clockwise about axis 2385. In this embodiment, the planets 522 always orbit in the same angular direction as the rotation of the carrier 515. While the orbiting speed of the planets 522 is “fixed” in the sense that it is determined by the rotational speed of the carrier 515, the rotational speed of the planets 522 about the axis 2390 can be varied by changing the gamma angle 2395.
With reference to
Referencing
In this example, assuming an initial value of the gamma angle 2395 equal to zero, increasing pilot pressure at the valve 1605 causes the control pistons to move away from the center of the chamber 805A, which causes the pivot arms 552A, 552B to rotate about the planets 522 and thereby actuate the planet axles 554 in the direction of increasing negative gamma angle 2395. Consequently, the contact point moves toward the equators, the counterclockwise rotational speed of the planets 522 increases, and the counterclockwise speed of the traction rings 530, 533 increases. Hence, in this embodiment, since the speed of the drive flange 532 equals the speed of the traction rings 530, 533, increasing pilot pressure from the gamma angle 2395 equal to zero results in increasing the counterclockwise speed of the drive flange 532.
In reversing the process (that is, decreasing the pilot pressure when the gamma angle 2395 is equal to zero), the chamber 580B expands and the chamber 580A contracts. This causes the control pistons 582 and pivot pin hubs 805 to move toward the center of the chamber 580. Being actuated by the pivot pin hubs 805, the pivot arms 552A, 552B rotate about the planets 522 and thereby actuate the planet axles 554 in a direction of increasing positive gamma angle 2395. The contact point moves toward the poles, the counterclockwise speed of the planets 522 decreases, resulting in an increase in the clockwise speed of the traction rings 530, 533, which ultimately causes an increase in the clockwise speed of the drive flange 532. Hence, in this embodiment, decreasing pilot pressure at the valve 1605 results in increasing the clockwise speed of the drive flange 532.
The speed of the traction rings 530, 533, and consequently the speed of the drive flange 532, is a function of the surface speed of the planets 522 at the contact point. The planet axles 554 are operationally coupled to the control pistons 582 such that actuation of the control pistons 582 changes the angle gamma 2395, which results in changing the rotational speed of the planets 522. That is, the rotational speed of the planets 522 is a function of the angle gamma 2395. However, the surface speed is a function of both the rotational and orbital speeds of the planets 522. As the effect of the counterclockwise rotational speed of the planets 522 on the surface speed overcomes the effect of the clockwise orbital speed of the planets 522, or vice-versa, the direction of the speed of the traction rings 530, 533 reverses, which is in effect a reversal of the speed of the drive flange 532.
Because the surface speed of the planets 522 can vary smoothly over a certain speed range, the variator 310 provides continuously variable speed ratios. That is, certain embodiments of the variator 310 can be used to provide continuously variable transmissions. Additionally, since in certain embodiments the speed of the planets 522 is counterclockwise, and the speed of the carrier 515 is clockwise, the speed of the traction rings 530, 533 (and thereby the speed of the drive flange 532) can be varied from a certain value in a clockwise direction, reduced to zero, and increased to a certain value in a counterclockwise direction. Consequently, because certain embodiments of the variator 310 can have a zero-power state, said embodiments of the variator 310 can be infinitely variable units that can be, or can be implemented in, infinitely variable transmissions.
Referencing
Recesses 1765 of the manifold flange 1715 are configured to, among other things, allow venting of hydraulic control fluid from the valve 1605 to the cavity of the variator housing 505. As explained above, during operation of the valve 1605, venting of hydraulic fluid from the chambers 580A or 580B is through the vent ports 1650 of the valve 1605. The vented fluid enters a cavity 1655 of the valve spool 1630 and flows toward the control spring 1635. The vented fluid then passes through channels 1752, 1754 (partially shown) of the input shaft 510 and enters the manifold flange 1715, traverses the recesses 1765, and exits the manifold flange 1715 via flange venting ports 1770. The vented fluid collects in the variator housing 505. An external pump (not shown) collects and recirculates the control fluid as line pressure to the manifold flange 1715.
In one embodiment, the valve housing 1710 has three fluid chambers bounded by seal grooves 1756. A first chamber includes a line pressure fluid port 2015 that communicates with a line pressure fluid channel 1730. A second chamber has a pilot pressure port 2005 that communicates with a pilot pressure fluid channel 1725. A third chamber has, among other things, several lubrication fluid ports 1758 that communication with lubrication fluid channels 1763.
In one embodiment, the input shaft 510 has an overall length of about 7.5-8.0 inches, wherein the external length of the valve housing 1710 can be about 5-6 inches, and the length of the drive spline can be about 2-3 inches. In some embodiments, an outer diameter of the valve housing 1710 can be about 2-3 inches. In one embodiment, the manifold flange 1715 has an outer diameter of about 7-8 inches and a width of about 0.5-1.0 inches. For certain applications, the cavity 512 is formed of several sections varying in diameter from about 0.75 inches to about 1.25 inches; similarly, the lengths of the sections can vary from about 0.5 inches to about 2.0 inches. The various ports and channels formed in the input shaft 510 generally have a diameter of about 0.125 to 0.30 inches. In one embodiment, the input shaft 510 is made of, for example, SAE 8620 or SAE 1060 steel.
In this embodiment, the manifold 565 has bolt holes 1814 to facilitate coupling of the manifold 565 to the cover 560. As illustrated in
In one embodiment, the outer diameter of the manifold 565 can be about 11.0-11.5 inches. For certain applications, the central bore 1818 has a diameter of about 2.0-3.0 inches, more preferably 2.25-2.75 inches, and most preferably about 2.5 inches. In the embodiment illustrated in
A pivot pin hub 805 is illustrated in
In one embodiment, the central bore 2105 can have a diameter of about 1.5-2 inches, wherein the diameter of the central bore 2105 is suitable selected to cooperate with the control screw nut 825 and/or the control piston 5832. In some embodiments, the finger pairs 2110 extend radially to a radius of about 1.5-2 inches from the center of the central bore 2105. For certain applications, the width of each finger in a finger pair 2110 is about 0.5-1.0 inches, and the spacing between the fingers of each finger pair 2110 is about 0.3-0.5 inches. In some embodiments, the pivot pin hub 805 is made of SAE 4140, or 4150, heat treated steel, for example.
As shown in the embodiment of
The disclosure this far has made several references to a lubrication system for the variator 310. To summarize in one place, in one embodiment, variator 310 can be provided with a lubrication system that includes a pump (not shown), the manifold 565, the input shaft 510, and the carrier 515. In some embodiments, the same type of fluid used for the control fluid is used for with the lubrication system. In one embodiment, the manifold 565 can be adapted to receive and distribute lubrication fluid, see
It has been observed that in certain embodiments of the variator 310, when the carrier 515 is configured to rotate about the longitudinal axis of the variator 310, the carrier 515 behaves as a centrifugal fluid pump and tends to circulate the lubrication fluid without the assistance of a separate lubrication fluid pump. It is theorized that this effect is due to an increase in pressure at the turrets 887, and other lubrication ports, from centrifugal force on the lubrication fluid. In an embodiment where a lubrication exit port is located at a larger radial diameter than the location of a lubrication inlet port, the pressure increase due to centrifugal forces is P_exit=P_inlet+ρ*r*ω2, where P_exit is the pressure at the exit port, P_inlet is the pressure at the inlet port, ρ is the density of the fluid, r is the radial distance from the inlet port to the exit port, and ω is the rotation speed of the carrier 515. If the exit port is of a fixed orifice size and/or fluid restriction then an increase in P_exit will result in an increased flow through the exit port. The increased flow pulls more fluid through the system, and as long as the P_inlet is maintained constant, the system flow increases in some proportion to ω. This centrifugal pumping action tends to circulate lubrication throughout the system without an external pump.
In one embodiment, the output from the drive flange 532 and the carrier spline shaft 844 are summed by the gearset 320, which can include a compound planetary gearset.
In some embodiments, as in the embodiment shown in
In one embodiment, the planet carrier 2305 is coupled to a splined extension 2307 that can have a spline pitch diameter of about 3.0-3.5 inches. As show in the embodiment of
Referring to
The ring gear R1 is adapted to couple to a coupled set of planet gears P3, P4. A carrier C2 supports the planet gears P3, P4. The planet gear P4 couples to a sun gear S2, and the planet gear P3 couples to a sun gear S3. The shaft 844 (see
Two clutches, a low range clutch CL and a high range clutch CH, selectively couple elements of the gearbox 2382 to the shaft 2387. The low range clutch CL is engageable to couple the carrier C2 to the shaft 2387 for a low speed forward range. The high range clutch CH is engageable to couple the sun gear S3 to the shaft 2387 for a high speed forward range. A reverse clutch CR, for providing a reverse mode, is engageable to couple the carrier C2 to the shaft 2387 via a sun gear S4 that couples to the ring gear R2 via the planet gears P5 and P6. Thus, in one embodiment, the variator 310 can be coupled to a gearbox 2382 to provide continuous speed variation at low and high speed ranges (two forward modes, two forward clutches), as well as a reverse mode.
A gamma insert 2364 is generally a cylindrical tube that butts up against a gamma end cap 2362 on one end, and has threads on the other end for threading to a gamma screw 2366. In some embodiments, the gamma insert 2364 is fixed to the carrier 515. The bore of the gamma insert 2364 houses the gamma screw link 2360 and the gamma screw 2366, which threads inside the gamma insert 2364. A spring 2365, housed in the gamma insert 2364, is positioned coaxially about the gamma screw link 2360 and butting up against the gamma end cap 2362. A gamma hex link 2363 rigidly mounts to the control screw 820B and couples to the gamma screw 2366.
During operation, rotation of the control screw 820B causes the gamma screw 2366 to rotate and, thereby, move axially in the threads of the gamma insert 2364. As the gamma screw 2366 moves axially, the gamma screw 2366 drives the gamma screw link 2360, which has a flange 2361 that reacts against the gamma spring 2365. The spring 2365 provides preload to prevent backlash and to keep the gamma screw link 2360 against the gamma screw 2366. In one embodiment, the gamma end cap 2358 moves axially about 150 thousandths of an inch for a full range of shifting the planets 522 (for example, +/−30 degrees). The amount of displacement of the end cap 2358 is based on the lead of the gamma screw 2366 and other space considerations. A higher resolution can be achieved by providing for greater axial movement of the gamma end cap 2358 for a given range of the gamma angle 2395.
An embodiment of a traction ring 2400 is shown in
In certain applications, the traction ring 2400 has an outer diameter that is approximately 12 to 13 inches, and an inner diameter that is between 9.5 and 10.5 inches. The thickness of the traction ring 2400 can be 1.0-1.5 inches. The traction surface 2405 can be angled, with respect to a straight face 2407 of the traction ring 2400, by about 10 to 70 degrees, preferably between 20 and 60 degrees, more preferably between 30 and 50 degrees, and most preferably about 35-45 degrees. In one embodiment, the traction ring 2400 is made of SAE 8630H or SAE 8640 steel, which can be case carburized and/or heat treated. Preferably, the traction surface 2405 has substantially no inclusions.
In one embodiment, the outer diameter of the drive flange 532 is about 14-14.5 inches. In some embodiments, the pitch diameter of the splines 2510 is approximately 13-13.5 inches. For certain applications, the overall length of the drive flange 532 can be about 13 inches. The central bore 2520 can have a diameter of about 4-5 inches, wherein for some embodiments, the central bore 2520 is preferably adapted for suitably coupling the drive flange 532 to the sun gear 230 of the planetary gearset 320.
In one embodiment, the reaction flange 2600 can have an outer diameter of about 13.5-14 inches. The pitch diameter of the internal spline 2604 can be about 12.5 inches. In some embodiments, the reaction flange 2600 can have a width of about 2.5-3.0 inches and a central bore with a diameter of about 10.5-11 inches. In one embodiment, the reaction flange 2600 can be made of 4140 heat treated steel, for example.
A reaction flange 2800 is shown in
One embodiment of an input cam flange 2900 is shown in
In one embodiment, the diameter of the input cam flange 2900 at the flange 2915 is about 12.5-13.5 inches. The diameter of the internal splines 2910 can be about 11.5-12.5 inches. The outer diameter of the neck 2925 can be about 10.8-11.2 inches, and the inner diameter of the neck 2925 can be about 10.1-10.7 inches. The ramps 2920 can be a set of eight ramps 2922, 2924 arranged in an angular pattern about the center of the input cam flange 2900. In one embodiment, the ramps 2920 are suitably arranged and made to cooperate with the ramps 3002, 3003 of the cam base 710 (see
An embodiment of a cam base 710 is illustrated in
In one embodiment, the cam base 710 has an outer diameter of about 13.7 inches, an inner diameter of about 11.0 inches, and a thickness of about 0.5-0.6 inches. Referencing
In some embodiments, the cam load piston 720 can be configured to act as a sensor of axial force on the traction ring 525A through pressurization of the cam load piston 720 and sealing the fluid volume so that the bore 735 of the bell housing 531 becomes a zero leakage fluid reservoir. As the axial force on the load cam piston 720 increases the pressure on the piston cavity increases proportionally.
One embodiment of an unloader piston 725 is shown in
In embodiment, the center cam base 605 includes eight sets of ramps 3412, 3414 (on each side of the center cam base 605) arranged in an angular pattern about the center of the center cam base 605. The ramps 3412, 3414 have a width of about 1.25-2.0 inches. In one embodiment, the lead of the ramps 3412, 3414 is about 1.1-1.5 inches, preferably 1.2-1.4 inches, and more preferably about 1.3 inches. The ramp 3412 has a counterclockwise helical ramp surface, while the ramp 3414 has a clockwise helical ramp surface. In one embodiment, the center cam base 605 can be made of metallic material such as, for example, 1065 steel. Preferably, the ramp surfaces of the ramps 3005 are flame or induction hardened to 58-62 HRC at about a 0.03 inches minimum effective case depth.
One embodiment of the cam rings 610, 615 is shown in
In one embodiment, the largest outer diameter of the cam ring 610 is about 13 inches. The pitch diameter of the splines 3505 can be about 12.5 inches, for example. In some embodiments, the cam neck 3510 has an outer diameter of about 11 inches and an inner diameter of about 10.5 inches. In some embodiments, the cross-sectional width of the cam ring 610 is about 2-2.5 inches. Preferably, the cam ramps 3520 are made to cooperate with the ramps 3410 of the center cam base 605. In embodiment, the cam ring 610 includes eight sets of ramps 3522, 3524 arranged in an angular pattern about the center of the cam ring 610. The ramps 3522, 3524 have a width of about 1.25-2.0 inches. In one embodiment, the lead of the ramps 3522, 3524 is about 1.1-1.5 inches, preferably 1.2-1.4 inches, and more preferably about 1.3 inches. The ramp 3522 has a counterclockwise helical ramp surface, while the ramp 3524 has a clockwise helical ramp surface. In one embodiment, the cam ring 610 can be made of metallic material such as, for example, 1065 steel. Preferably, the ramp surfaces of the ramps 3005 are flame or induction hardened to 58-62 HRC at about a 0.03 inches minimum effective case depth.
In one embodiment, the output disc 620 can have an outer diameter of about 12.5-13.5 inches. The pitch diameter of the internal splines 3605 or the external splines 3610 can be about 12-13 inches. The overall length of the output disc 620 can be, in some embodiments, about 4.5-5.5 inches. For certain applications, the flange extension 3615 can have a length of about 1.5-3 inches and an internal diameter of about 7.5-8.5 inches. In one embodiment, the output disc 620 can be made of 4140 heat treated steel.
One embodiment of a carrier pilot ring 640 is shown in
An embodiment of an idler assembly 3900 is shown in
The container 4005 may have a number of cutouts 4015 that can be covered with, for example, Plexiglass™ windows to allow observation of the components housed in the container 4005. In one embodiment, the container 4005 includes an unloader piston port 4040 adapted to deliver fluid to the unloader piston 725 (see
In some embodiments, the container 4005 can be provided with an end plate 4063 having bores 4070 for receiving and supporting the planet shafts 2310 of the gearbox 320 (see
In one embodiment, the variator housing 505 has an overall length of about 21-22 inches and an overall height or outer diameter of about 16.5-17.5 inches. The cylindrical container 4005 can have an outer diameter of about 15.5-16.5 inches and an inner diameter of about 14.5-15.5 inches. In one embodiment, the skirt 4010 generally encloses a volume having dimensions of about 14×13×6 inches. For certain applications, the variator housing 505 can be made of, for example, mild steel.
One embodiment of a bell housing 531 adapted to couple to the variator housing 505 is depicted in
For certain applications, the bell housing 531 can be provided with a number of ports for fluid communication with the manifold 565. In one embodiment, the bell housing 531 includes a lubrication port 4112 adapted to deliver lubrication fluid to the manifold 565. The bell housing 531 can be provided with a cam load piston pressure port 4114 for delivering fluid pressure to the cam load piston 720. A pilot pressure port 4122 can be included in the bell housing 531 to deliver fluid pressure to the manifold 565 for actuating the pilot control piston 1620 (see
In one embodiment, the bell housing 531 has an overall outer diameter of about 17 inches and a length of about 8.5 inches. The recess 4107 has a diameter of about 14 inches and a length of about 2 inches. The recess 4104 has an outer diameter of about 12.5 inches, an inner diameter of about 10.5 inches, and a depth of about 0.75-1.0 inches. The recess 4108 can have a diameter of about 12 inches and a depth of about 1.5-2.0 inches. In some embodiments, the central passage 4103 has a diameter of about 9 inches. In one embodiment, the bores 755 have a diameter of about 0.6 inches and a depth of about 0.6-1.0 inches. In one embodiment, the bell housing 531 can be made of, for example, ductile iron 80-55-06.
The embodiments described herein are examples provided to meet the descriptive requirements of the law and to provide examples. These examples are only embodiments that may be employed by any party and they are not intended to be limiting in any manner.
This application is a continuation of U.S. application Ser. No. 14/082,017, filed Nov. 15, 2013 and scheduled to issue on Jan. 19, 2016 as U.S. Pat. No. 9,239,099, which is a divisional of U.S. application Ser. No. 13/679,702, filed Nov. 16, 2012 and issued as U.S. Pat. No. 8,585,528 on Nov. 19, 2013, which is a continuation of U.S. patent application Ser. No. 12/527,400, filed Aug. 14, 2009 and issued as U.S. Pat. No. 8,313,404 on Nov. 20, 2012, which is a U.S. National Phase under 35 U.S.C. § 371 of International Patent Application No. PCT/US2008/053951, filed Feb. 14, 2008, and published in English on Aug. 21, 2008 as WO 2008/101070, which claims the benefit of U.S. Provisional Application No. 60/890,438, filed on Feb. 16, 2007, all of which are incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
719595 | Huss | Feb 1903 | A |
1121210 | Techel | Dec 1914 | A |
1175677 | Barnes | Mar 1916 | A |
1207985 | Null et al. | Dec 1916 | A |
1380006 | Nielsen | May 1921 | A |
1390971 | Samain | Sep 1921 | A |
1558222 | Beetow | Oct 1925 | A |
1629902 | Arter et al. | May 1927 | A |
1686446 | Gilman | Oct 1928 | A |
1774254 | Daukus | Aug 1930 | A |
1793571 | Vaughn | Feb 1931 | A |
1847027 | Thomsen et al. | Feb 1932 | A |
1850189 | Weiss | Mar 1932 | A |
1858696 | Weiss | May 1932 | A |
1865102 | Hayes | Jun 1932 | A |
1903228 | Thomson | Mar 1933 | A |
1978439 | Sharpe | Oct 1934 | A |
2030203 | Gove et al. | Feb 1936 | A |
2060884 | Madle | Nov 1936 | A |
2086491 | Dodge | Jul 1937 | A |
2100629 | Chilton | Nov 1937 | A |
2109845 | Madle | Mar 1938 | A |
2112763 | Cloudsley | Mar 1938 | A |
2131158 | Almen et al. | Sep 1938 | A |
2131159 | Almen | Sep 1938 | A |
2132751 | Murden | Oct 1938 | A |
2134225 | Christiansen | Oct 1938 | A |
2152796 | Erban | Apr 1939 | A |
2196064 | Erban | Apr 1940 | A |
2209254 | Ahnger | Jul 1940 | A |
2259933 | Holloway | Oct 1941 | A |
2269434 | Brooks | Jan 1942 | A |
2325502 | Auguste | Jul 1943 | A |
RE22761 | Wemp | May 1946 | E |
2461258 | Brooks | Feb 1949 | A |
2469653 | Kopp | May 1949 | A |
2480968 | Ronai | Sep 1949 | A |
2553465 | Monge | May 1951 | A |
2586725 | Henry | Feb 1952 | A |
2595367 | Picanol | May 1952 | A |
2596538 | Dicke | May 1952 | A |
2597849 | Alfredeen | May 1952 | A |
2675713 | Acker | Apr 1954 | A |
2696888 | Chillson et al. | Dec 1954 | A |
2868038 | Billeter | May 1955 | A |
2716357 | Rennerfelt | Aug 1955 | A |
2730904 | Rennerfelt | Jan 1956 | A |
2748614 | Weisel | Jun 1956 | A |
2959070 | Flinn | Jan 1959 | A |
2873911 | Perrine | Feb 1959 | A |
2874592 | Oehrli | Feb 1959 | A |
2883883 | Chillson | Apr 1959 | A |
2891213 | Kern | Jun 1959 | A |
2901924 | Banker | Sep 1959 | A |
2913932 | Oehrli | Nov 1959 | A |
2931234 | Hayward | Apr 1960 | A |
2931235 | Hayward | Apr 1960 | A |
2949800 | Neuschotz | Aug 1960 | A |
2959063 | Perry | Nov 1960 | A |
2959972 | Madson | Nov 1960 | A |
2959973 | Madson | Nov 1960 | A |
2964959 | Beck | Dec 1960 | A |
3008061 | Mims et al. | Nov 1961 | A |
3035460 | Guichard | May 1962 | A |
3048056 | Wolfram | Aug 1962 | A |
3051020 | Hartupee | Aug 1962 | A |
3086704 | Hurtt | Apr 1963 | A |
3087348 | Kraus | Apr 1963 | A |
3154957 | Kashihara | Nov 1964 | A |
3163050 | Kraus | Dec 1964 | A |
3176542 | Monch | Apr 1965 | A |
3184983 | Kraus | May 1965 | A |
3204476 | Rouverol | Sep 1965 | A |
3209606 | Yamamoto | Oct 1965 | A |
3211364 | Wentling et al. | Oct 1965 | A |
3216283 | General | Nov 1965 | A |
3229538 | Schlottler | Jan 1966 | A |
3237468 | Schlottler | Mar 1966 | A |
3246531 | Kashihara | Apr 1966 | A |
3248960 | Schottler | May 1966 | A |
3273468 | Allen | Sep 1966 | A |
3280646 | Lemieux | Oct 1966 | A |
3283614 | Hewko | Nov 1966 | A |
3292443 | Felix | Dec 1966 | A |
3340895 | Osgood, Jr. et al. | Sep 1967 | A |
3407687 | Hayashi | Oct 1968 | A |
3430504 | Dickenbrock | Mar 1969 | A |
3439563 | Petty | Apr 1969 | A |
3440895 | Fellows | Apr 1969 | A |
3464281 | Hiroshi et al. | Sep 1969 | A |
3477315 | Macks | Nov 1969 | A |
3487726 | Burnett | Jan 1970 | A |
3487727 | Gustafsson | Jan 1970 | A |
3574289 | Scheiter et al. | Apr 1971 | A |
3581587 | Dickenbrock | Jun 1971 | A |
3661404 | Bossaer | May 1972 | A |
3695120 | Titt | Oct 1972 | A |
3707888 | Schottler | Jan 1973 | A |
3727473 | Bayer | Apr 1973 | A |
3727474 | Fullerton | Apr 1973 | A |
3736803 | Horowitz et al. | Jun 1973 | A |
3768715 | Tout | Oct 1973 | A |
3800607 | Zurcher | Apr 1974 | A |
3802284 | Sharpe et al. | Apr 1974 | A |
3810398 | Kraus | May 1974 | A |
3820416 | Kraus | Jun 1974 | A |
3866985 | Whitehurst | Feb 1975 | A |
3891235 | Shelly | Jun 1975 | A |
3934493 | Hillyer | Jan 1976 | A |
3954282 | Hege | May 1976 | A |
3987681 | Keithley et al. | Oct 1976 | A |
3996807 | Adams | Dec 1976 | A |
4023442 | Woods et al. | May 1977 | A |
4098146 | McLarty | Jul 1978 | A |
4103514 | Grosse-Entrup | Aug 1978 | A |
4159653 | Koivunen | Jul 1979 | A |
4169609 | Zampedro | Oct 1979 | A |
4177683 | Moses | Dec 1979 | A |
4227712 | Dick | Oct 1980 | A |
4314485 | Adams | Feb 1982 | A |
4345486 | Olesen | Aug 1982 | A |
4369667 | Kemper | Jan 1983 | A |
4382186 | Cronin | May 1983 | A |
4391156 | Tibbals | Jul 1983 | A |
4459873 | Black | Jul 1984 | A |
4464952 | Stubbs | Aug 1984 | A |
4468984 | Castelli et al. | Sep 1984 | A |
4494524 | Wagner | Jan 1985 | A |
4496051 | Ortner | Jan 1985 | A |
4501172 | Kraus | Feb 1985 | A |
4515040 | Takeuchi et al. | May 1985 | A |
4526255 | Hennessey et al. | Jul 1985 | A |
4546673 | Shigematsu et al. | Oct 1985 | A |
4560369 | Hattori | Dec 1985 | A |
4567781 | Russ | Feb 1986 | A |
4569670 | McIntosh | Feb 1986 | A |
4574649 | Seol | Mar 1986 | A |
4585429 | Marier | Apr 1986 | A |
4617838 | Anderson | Oct 1986 | A |
4630839 | Seol | Dec 1986 | A |
4631469 | Tsuboi et al. | Dec 1986 | A |
4651082 | Kaneyuki | Mar 1987 | A |
4663990 | Itoh et al. | May 1987 | A |
4700581 | Tibbals, Jr. | Oct 1987 | A |
4713976 | Wilkes | Dec 1987 | A |
4717368 | Yamaguchi et al. | Jan 1988 | A |
4735430 | Tomkinson | Apr 1988 | A |
4738164 | Kaneyuki | Apr 1988 | A |
4744261 | Jacobson | May 1988 | A |
4756211 | Fellows | Jul 1988 | A |
4781663 | Reswick | Nov 1988 | A |
4838122 | Takamiya et al. | Jun 1989 | A |
4856374 | Kreuzer | Aug 1989 | A |
4869130 | Wiecko | Sep 1989 | A |
4881925 | Hattori | Nov 1989 | A |
4900046 | Aranceta-Angoitia | Feb 1990 | A |
4909101 | Terry | Mar 1990 | A |
4918344 | Chikamori et al. | Apr 1990 | A |
4964312 | Kraus | Oct 1990 | A |
5006093 | Itoh et al. | Apr 1991 | A |
5020384 | Kraus | Jun 1991 | A |
5025685 | Kobayashi et al. | Jun 1991 | A |
5033322 | Nakano | Jul 1991 | A |
5033571 | Morimoto | Jul 1991 | A |
5037361 | Takahashi | Aug 1991 | A |
5044214 | Barber | Sep 1991 | A |
5059158 | Bellio et al. | Oct 1991 | A |
5069655 | Schivelbusch | Dec 1991 | A |
5083982 | Sato | Jan 1992 | A |
5099710 | Nakano | Mar 1992 | A |
5121654 | Fasce | Jun 1992 | A |
5125677 | Ogilvie et al. | Jun 1992 | A |
5138894 | Kraus | Aug 1992 | A |
5156412 | Meguerditchian | Oct 1992 | A |
5230258 | Nakano | Jul 1993 | A |
5236211 | Meguerditchian | Aug 1993 | A |
5236403 | Schievelbusch | Aug 1993 | A |
5267920 | Hibi | Dec 1993 | A |
5273501 | Schievelbusch | Dec 1993 | A |
5318486 | Lutz | Jun 1994 | A |
5319486 | Vogel et al. | Jun 1994 | A |
5330396 | Lohr et al. | Jul 1994 | A |
5355749 | Obara et al. | Oct 1994 | A |
5375865 | Terry, Sr. | Dec 1994 | A |
5379661 | Nakano | Jan 1995 | A |
5383677 | Thomas | Jan 1995 | A |
5387000 | Sato | Feb 1995 | A |
5401221 | Fellows et al. | Mar 1995 | A |
5451070 | Lindsay et al. | Sep 1995 | A |
5489003 | Ohyama et al. | Feb 1996 | A |
5508574 | Vlock | Apr 1996 | A |
5562564 | Folino | Oct 1996 | A |
5564998 | Fellows | Oct 1996 | A |
5601301 | Liu | Feb 1997 | A |
5607373 | Ochiai et al. | Mar 1997 | A |
5645507 | Hathaway | Jul 1997 | A |
5651750 | Imanishi et al. | Jul 1997 | A |
5664636 | Ikuma et al. | Sep 1997 | A |
5669845 | Muramoto et al. | Sep 1997 | A |
5690346 | Keskitalo | Nov 1997 | A |
5722502 | Kubo | Mar 1998 | A |
5746676 | Kawase et al. | May 1998 | A |
5755303 | Yamamoto et al. | May 1998 | A |
5799541 | Arbeiter | Sep 1998 | A |
5823052 | Nobumoto | Oct 1998 | A |
5846155 | Taniguchi et al. | Dec 1998 | A |
5888160 | Miyata et al. | Mar 1999 | A |
5895337 | Fellows et al. | Apr 1999 | A |
5899827 | Nakano et al. | May 1999 | A |
5902207 | Sugihara | May 1999 | A |
5967933 | Valdenaire | Oct 1999 | A |
5976054 | Yasuoka | Nov 1999 | A |
5984826 | Nakano | Nov 1999 | A |
5995895 | Watt et al. | Nov 1999 | A |
6000707 | Miller | Dec 1999 | A |
6003649 | Fischer | Dec 1999 | A |
6004239 | Makino | Dec 1999 | A |
6006151 | Graf | Dec 1999 | A |
6012538 | Sonobe et al. | Jan 2000 | A |
6015359 | Kunii | Jan 2000 | A |
6019701 | Mori et al. | Feb 2000 | A |
6029990 | Busby | Feb 2000 | A |
6042132 | Suenaga et al. | Mar 2000 | A |
6045477 | Schmidt | Apr 2000 | A |
6045481 | Kumagai | Apr 2000 | A |
6053833 | Masaki | Apr 2000 | A |
6053841 | Kolde et al. | Apr 2000 | A |
6054844 | Frank | Apr 2000 | A |
6066067 | Greenwood | May 2000 | A |
6071210 | Kato | Jun 2000 | A |
6074320 | Miyata et al. | Jun 2000 | A |
6076846 | Clardy | Jun 2000 | A |
6079726 | Busby | Jun 2000 | A |
6083139 | Deguchi | Jul 2000 | A |
6086506 | Petersmann et al. | Jul 2000 | A |
6095940 | Ai et al. | Aug 2000 | A |
6099431 | Hoge et al. | Aug 2000 | A |
6101895 | Yamane | Aug 2000 | A |
6113513 | Itoh et al. | Sep 2000 | A |
6119539 | Papanicolaou | Sep 2000 | A |
6119800 | McComber | Sep 2000 | A |
6159126 | Oshidari | Dec 2000 | A |
6171210 | Miyata et al. | Jan 2001 | B1 |
6174260 | Tsukada et al. | Jan 2001 | B1 |
6186922 | Bursal et al. | Feb 2001 | B1 |
6210297 | Knight | Apr 2001 | B1 |
6217473 | Ueda et al. | Apr 2001 | B1 |
6217478 | Vohmann et al. | Apr 2001 | B1 |
6241636 | Miller | Jun 2001 | B1 |
6243638 | Abo et al. | Jun 2001 | B1 |
6251038 | Ishikawa et al. | Jun 2001 | B1 |
6258003 | Hirano et al. | Jul 2001 | B1 |
6261200 | Miyata et al. | Jul 2001 | B1 |
6296593 | Gotou | Oct 2001 | B1 |
6311113 | Danz et al. | Oct 2001 | B1 |
6312358 | Goi et al. | Nov 2001 | B1 |
6322475 | Miller | Nov 2001 | B2 |
6325386 | Shoge | Dec 2001 | B1 |
6358174 | Folsom et al. | Mar 2002 | B1 |
6358178 | Wittkopp | Mar 2002 | B1 |
6367833 | Horiuchi | Apr 2002 | B1 |
6371878 | Bowen | Apr 2002 | B1 |
6375412 | Dial | Apr 2002 | B1 |
6390945 | Young | May 2002 | B1 |
6390946 | Hibi et al. | May 2002 | B1 |
6406399 | Ai | Jun 2002 | B1 |
6414401 | Kuroda et al. | Jul 2002 | B1 |
6419608 | Miller | Jul 2002 | B1 |
6425838 | Matsubara et al. | Jul 2002 | B1 |
6434960 | Rousseau | Aug 2002 | B1 |
6440037 | Takagi et al. | Aug 2002 | B2 |
6459978 | Tamiguchi et al. | Oct 2002 | B2 |
6461268 | Milner | Oct 2002 | B1 |
6482094 | Kefes | Nov 2002 | B2 |
6492785 | Kasten et al. | Dec 2002 | B1 |
6494805 | Ooyama et al. | Dec 2002 | B2 |
6499373 | Van Cor | Dec 2002 | B2 |
6514175 | Taniguchi et al. | Feb 2003 | B2 |
6527662 | Miyata et al. | Mar 2003 | B2 |
6532890 | Chen | Mar 2003 | B2 |
6551210 | Miller | Apr 2003 | B2 |
6558285 | Sieber | May 2003 | B1 |
6575047 | Reik et al. | Jun 2003 | B2 |
6659901 | Sakai et al. | Dec 2003 | B2 |
6672418 | Makino | Jan 2004 | B1 |
6676559 | Miller | Jan 2004 | B2 |
6679109 | Gierling et al. | Jan 2004 | B2 |
6682432 | Shinozuka | Jan 2004 | B1 |
6689012 | Miller | Feb 2004 | B2 |
6721637 | Abe et al. | Apr 2004 | B2 |
6723014 | Shinso et al. | Apr 2004 | B2 |
6723016 | Sumi | Apr 2004 | B2 |
6805654 | Nishii | Oct 2004 | B2 |
6808053 | Kirkwood et al. | Oct 2004 | B2 |
6839617 | Mensler et al. | Jan 2005 | B2 |
6849020 | Sumi | Feb 2005 | B2 |
6859709 | Joe et al. | Feb 2005 | B2 |
6868949 | Braford | Mar 2005 | B2 |
6931316 | Joe et al. | Aug 2005 | B2 |
6932739 | Miyata et al. | Aug 2005 | B2 |
6942593 | Nishii et al. | Sep 2005 | B2 |
6945903 | Miller | Sep 2005 | B2 |
6949049 | Miller | Sep 2005 | B2 |
6958029 | Inoue | Oct 2005 | B2 |
6991575 | Inoue | Jan 2006 | B2 |
6991579 | Kobayashi et al. | Jan 2006 | B2 |
7011600 | Miller et al. | Mar 2006 | B2 |
7011601 | Miller | Mar 2006 | B2 |
7014591 | Miller | Mar 2006 | B2 |
7029418 | Taketsuna et al. | Apr 2006 | B2 |
7032914 | Miller | Apr 2006 | B2 |
7036620 | Miller et al. | May 2006 | B2 |
7044884 | Miller | May 2006 | B2 |
7063195 | Berhan | Jun 2006 | B2 |
7063640 | Miller | Jun 2006 | B2 |
7074007 | Miller | Jul 2006 | B2 |
7074154 | Miller | Jul 2006 | B2 |
7074155 | Miller | Jul 2006 | B2 |
7077777 | Miyata et al. | Jul 2006 | B2 |
7086979 | Frenken | Aug 2006 | B2 |
7086981 | Ali et al. | Aug 2006 | B2 |
7094171 | Inoue | Aug 2006 | B2 |
7111860 | Grimaldos | Sep 2006 | B1 |
7112158 | Miller | Sep 2006 | B2 |
7112159 | Miller et al. | Sep 2006 | B2 |
7125297 | Miller et al. | Oct 2006 | B2 |
7131930 | Miller et al. | Nov 2006 | B2 |
7140999 | Miller | Nov 2006 | B2 |
7147586 | Miller et al. | Dec 2006 | B2 |
7153233 | Miller et al. | Dec 2006 | B2 |
7156770 | Miller | Jan 2007 | B2 |
7160220 | Shinojima et al. | Jan 2007 | B2 |
7160222 | Miller | Jan 2007 | B2 |
7163485 | Miller | Jan 2007 | B2 |
7163486 | Miller et al. | Jan 2007 | B2 |
7166052 | Miller et al. | Jan 2007 | B2 |
7166056 | Miller et al. | Jan 2007 | B2 |
7166057 | Miller et al. | Jan 2007 | B2 |
7166058 | Miller et al. | Jan 2007 | B2 |
7169076 | Miller et al. | Jan 2007 | B2 |
7172529 | Miller et al. | Feb 2007 | B2 |
7175564 | Miller | Feb 2007 | B2 |
7175565 | Miller et al. | Feb 2007 | B2 |
7175566 | Miller et al. | Feb 2007 | B2 |
7192381 | Miller et al. | Mar 2007 | B2 |
7197915 | Luh et al. | Apr 2007 | B2 |
7198582 | Miller et al. | Apr 2007 | B2 |
7198583 | Miller et al. | Apr 2007 | B2 |
7198584 | Miller et al. | Apr 2007 | B2 |
7198585 | Miller et al. | Apr 2007 | B2 |
7201693 | Miller et al. | Apr 2007 | B2 |
7201694 | Miller et al. | Apr 2007 | B2 |
7201695 | Miller et al. | Apr 2007 | B2 |
7204777 | Miller et al. | Apr 2007 | B2 |
7214159 | Miller et al. | May 2007 | B2 |
7217215 | Miller et al. | May 2007 | B2 |
7217216 | Inoue | May 2007 | B2 |
7217219 | Miller | May 2007 | B2 |
7217220 | Careau et al. | May 2007 | B2 |
7232395 | Miller et al. | Jun 2007 | B2 |
7234873 | Kato et al. | Jun 2007 | B2 |
7235031 | Miller et al. | Jun 2007 | B2 |
7238136 | Miller et al. | Jul 2007 | B2 |
7238137 | Miller et al. | Jul 2007 | B2 |
7238138 | Miller et al. | Jul 2007 | B2 |
7238139 | Roethler et al. | Jul 2007 | B2 |
7246672 | Shirai et al. | Jul 2007 | B2 |
7250018 | Miller et al. | Jul 2007 | B2 |
7261663 | Miller et al. | Aug 2007 | B2 |
7275610 | Kuang et al. | Oct 2007 | B2 |
7285068 | Hosoi | Oct 2007 | B2 |
7288042 | Miller et al. | Oct 2007 | B2 |
7288043 | Shioiri et al. | Oct 2007 | B2 |
7320660 | Miller | Jan 2008 | B2 |
7322901 | Miller et al. | Jan 2008 | B2 |
7343236 | Wilson | Mar 2008 | B2 |
7347801 | Guenter et al. | Mar 2008 | B2 |
7383748 | Rankin | Jun 2008 | B2 |
7383749 | Rankin | Jun 2008 | B2 |
7384370 | Miller | Jun 2008 | B2 |
7393300 | Miller et al. | Jul 2008 | B2 |
7393302 | Miller | Jul 2008 | B2 |
7393303 | Miller | Jul 2008 | B2 |
7395731 | Miller et al. | Jul 2008 | B2 |
7396209 | Miller et al. | Jul 2008 | B2 |
7402122 | Miller | Jul 2008 | B2 |
7410443 | Miller | Aug 2008 | B2 |
7419451 | Miller | Sep 2008 | B2 |
7422541 | Miller | Sep 2008 | B2 |
7422546 | Miller et al. | Sep 2008 | B2 |
7427253 | Miller | Sep 2008 | B2 |
7431677 | Miller et al. | Oct 2008 | B2 |
7452297 | Miller et al. | Nov 2008 | B2 |
7455611 | Miller et al. | Nov 2008 | B2 |
7455617 | Miller et al. | Nov 2008 | B2 |
7462123 | Miller et al. | Dec 2008 | B2 |
7462127 | Miller et al. | Dec 2008 | B2 |
7470210 | Miller et al. | Dec 2008 | B2 |
7478885 | Urabe | Jan 2009 | B2 |
7481736 | Miller et al. | Jan 2009 | B2 |
7510499 | Miller et al. | Mar 2009 | B2 |
7540818 | Miller et al. | Jun 2009 | B2 |
7547264 | Usoro | Jun 2009 | B2 |
7574935 | Rohs et al. | Aug 2009 | B2 |
7591755 | Petrzik et al. | Sep 2009 | B2 |
7632203 | Miller | Dec 2009 | B2 |
7651437 | Miller et al. | Jan 2010 | B2 |
7654928 | Miller et al. | Feb 2010 | B2 |
7670243 | Miller | Mar 2010 | B2 |
7686729 | Miller et al. | Mar 2010 | B2 |
7727101 | Miller | Jun 2010 | B2 |
7727106 | Maheu et al. | Jun 2010 | B2 |
7727107 | Miller | Jun 2010 | B2 |
7727108 | Miller et al. | Jun 2010 | B2 |
7727110 | Miller et al. | Jun 2010 | B2 |
7727115 | Serkh | Jun 2010 | B2 |
7731615 | Miller et al. | Jun 2010 | B2 |
7762919 | Smithson et al. | Jul 2010 | B2 |
7762920 | Smithson et al. | Jul 2010 | B2 |
7770674 | Miles et al. | Aug 2010 | B2 |
7785228 | Smithson et al. | Aug 2010 | B2 |
7828685 | Miller | Nov 2010 | B2 |
7837592 | Miller | Nov 2010 | B2 |
7871353 | Nichols et al. | Jan 2011 | B2 |
7882762 | Armstrong et al. | Feb 2011 | B2 |
7883442 | Miller et al. | Feb 2011 | B2 |
7885747 | Miller et al. | Feb 2011 | B2 |
7887032 | Malone | Feb 2011 | B2 |
7909723 | Triller et al. | Mar 2011 | B2 |
7909727 | Smithson et al. | Mar 2011 | B2 |
7914029 | Miller et al. | Mar 2011 | B2 |
7959533 | Nichols et al. | Jun 2011 | B2 |
7963880 | Smithson et al. | Jun 2011 | B2 |
7967719 | Smithson et al. | Jun 2011 | B2 |
7976426 | Smithson et al. | Jul 2011 | B2 |
8066613 | Smithson et al. | Nov 2011 | B2 |
8066614 | Miller et al. | Nov 2011 | B2 |
8070635 | Miller | Dec 2011 | B2 |
8087482 | Miles et al. | Jan 2012 | B2 |
8123653 | Smithson et al. | Feb 2012 | B2 |
8133149 | Smithson et al. | Mar 2012 | B2 |
8142323 | Tsuchiya et al. | Mar 2012 | B2 |
8167759 | Pohl et al. | May 2012 | B2 |
8171636 | Smithson et al. | May 2012 | B2 |
8230961 | Schneidewind | Jul 2012 | B2 |
8262536 | Nichols et al. | Sep 2012 | B2 |
8267829 | Miller et al. | Sep 2012 | B2 |
8313404 | Carter et al. | Nov 2012 | B2 |
8313405 | Bazyn et al. | Nov 2012 | B2 |
8317650 | Nichols et al. | Nov 2012 | B2 |
8317651 | Lohr | Nov 2012 | B2 |
8321097 | Vasiliotis et al. | Nov 2012 | B2 |
8342999 | Miller | Jan 2013 | B2 |
8360917 | Nichols et al. | Jan 2013 | B2 |
8376889 | Hoffman et al. | Feb 2013 | B2 |
8376903 | Pohl et al. | Feb 2013 | B2 |
8382631 | Hoffman et al. | Feb 2013 | B2 |
8382637 | Tange | Feb 2013 | B2 |
8393989 | Pohl | Mar 2013 | B2 |
8398518 | Nichols et al. | Mar 2013 | B2 |
8469853 | Miller et al. | Jun 2013 | B2 |
8469856 | Thomassy | Jun 2013 | B2 |
8480529 | Pohl et al. | Jul 2013 | B2 |
8496554 | Pohl et al. | Jul 2013 | B2 |
8506452 | Pohl et al. | Aug 2013 | B2 |
8512195 | Lohr et al. | Aug 2013 | B2 |
8517888 | Brookins | Aug 2013 | B1 |
8535199 | Lohr et al. | Sep 2013 | B2 |
8550949 | Miller | Oct 2013 | B2 |
8585528 | Carter et al. | Nov 2013 | B2 |
8608609 | Sherrill | Dec 2013 | B2 |
8622866 | Bazyn et al. | Jan 2014 | B2 |
8626409 | Vasiliotis et al. | Jan 2014 | B2 |
8628443 | Miller et al. | Jan 2014 | B2 |
8641572 | Nichols et al. | Feb 2014 | B2 |
8641577 | Nichols et al. | Feb 2014 | B2 |
8663050 | Nichols et al. | Mar 2014 | B2 |
8678974 | Lohr | Mar 2014 | B2 |
8708360 | Miller et al. | Apr 2014 | B2 |
8721485 | Lohr et al. | May 2014 | B2 |
8738255 | Carter et al. | May 2014 | B2 |
8776633 | Armstrong et al. | Jul 2014 | B2 |
8784248 | Murakami et al. | Jul 2014 | B2 |
8790214 | Lohr et al. | Jul 2014 | B2 |
8818661 | Keilers et al. | Aug 2014 | B2 |
8827856 | Younggren et al. | Sep 2014 | B1 |
8827864 | Durack | Sep 2014 | B2 |
8845485 | Smithson et al. | Sep 2014 | B2 |
8852050 | Thomassy | Oct 2014 | B2 |
8870711 | Pohl et al. | Oct 2014 | B2 |
8888643 | Lohr et al. | Nov 2014 | B2 |
8900085 | Pohl et al. | Dec 2014 | B2 |
8920285 | Smithson et al. | Dec 2014 | B2 |
8924111 | Fuller | Dec 2014 | B2 |
8961363 | Shiina et al. | Feb 2015 | B2 |
8992376 | Ogawa et al. | Mar 2015 | B2 |
8996263 | Quinn et al. | Mar 2015 | B2 |
9017207 | Pohl et al. | Apr 2015 | B2 |
9022889 | Miller | May 2015 | B2 |
9046158 | Miller et al. | Jun 2015 | B2 |
9074674 | Nichols et al. | Jul 2015 | B2 |
9086145 | Pohl et al. | Jul 2015 | B2 |
9121464 | Nichols et al. | Sep 2015 | B2 |
9182018 | Bazyn et al. | Nov 2015 | B2 |
9239099 | Carter et al. | Jan 2016 | B2 |
9249880 | Vasiliotis et al. | Feb 2016 | B2 |
9273760 | Pohl et al. | Mar 2016 | B2 |
9279482 | Nichols et al. | Mar 2016 | B2 |
9291251 | Lohr et al. | Mar 2016 | B2 |
9528561 | Nichols et al. | Dec 2016 | B2 |
9656672 | Schieffelin | May 2017 | B2 |
9878719 | Carter et al. | Jan 2018 | B2 |
20010008192 | Morisawa | Jul 2001 | A1 |
20010023217 | Miyagawa et al. | Sep 2001 | A1 |
20010041644 | Yasuoka et al. | Nov 2001 | A1 |
20010044358 | Taniguchi | Nov 2001 | A1 |
20010044361 | Taniguchi et al. | Nov 2001 | A1 |
20020019285 | Henzler | Feb 2002 | A1 |
20020028722 | Sakai et al. | Mar 2002 | A1 |
20020037786 | Hirano et al. | Mar 2002 | A1 |
20020045511 | Geiberger et al. | Apr 2002 | A1 |
20020049113 | Watanabe et al. | Apr 2002 | A1 |
20020117860 | Man et al. | Aug 2002 | A1 |
20020128107 | Wakayama | Sep 2002 | A1 |
20020161503 | Joe et al. | Oct 2002 | A1 |
20020169051 | Oshidari | Nov 2002 | A1 |
20020179348 | Tamai et al. | Dec 2002 | A1 |
20030015358 | Abe et al. | Jan 2003 | A1 |
20030015874 | Abe et al. | Jan 2003 | A1 |
20030022753 | Mizuno et al. | Jan 2003 | A1 |
20030036456 | Skrabs | Feb 2003 | A1 |
20030132051 | Nishii et al. | Jul 2003 | A1 |
20030135316 | Kawamura et al. | Jul 2003 | A1 |
20030144105 | O'Hora | Jul 2003 | A1 |
20030160420 | Fukuda | Aug 2003 | A1 |
20030216216 | Inoue et al. | Nov 2003 | A1 |
20030221892 | Matsumoto et al. | Dec 2003 | A1 |
20040038772 | McIndoe et al. | Feb 2004 | A1 |
20040058772 | Inoue et al. | Mar 2004 | A1 |
20040067816 | Taketsuna et al. | Apr 2004 | A1 |
20040082421 | Wafzig | Apr 2004 | A1 |
20040092359 | Imanishi et al. | May 2004 | A1 |
20040119345 | Takano | Jun 2004 | A1 |
20040171457 | Fuller | Sep 2004 | A1 |
20040204283 | Inoue | Oct 2004 | A1 |
20040231331 | Iwanami et al. | Nov 2004 | A1 |
20040254047 | Frank et al. | Dec 2004 | A1 |
20050037876 | Unno et al. | Feb 2005 | A1 |
20050064986 | Ginglas | Mar 2005 | A1 |
20050085979 | Carlson et al. | Apr 2005 | A1 |
20050181905 | Ali et al. | Aug 2005 | A1 |
20050184580 | Kuan et al. | Aug 2005 | A1 |
20050227809 | Bitzer et al. | Oct 2005 | A1 |
20050229731 | Parks et al. | Oct 2005 | A1 |
20050233846 | Green et al. | Oct 2005 | A1 |
20060000684 | Agner | Jan 2006 | A1 |
20060006008 | Brunemann et al. | Jan 2006 | A1 |
20060052204 | Eckert et al. | Mar 2006 | A1 |
20060054422 | Dimsey et al. | Mar 2006 | A1 |
20060108956 | Clark | May 2006 | A1 |
20060111212 | Ai et al. | May 2006 | A9 |
20060154775 | Ali et al. | Jul 2006 | A1 |
20060172829 | Ishio | Aug 2006 | A1 |
20060180363 | Uchisasai | Aug 2006 | A1 |
20060223667 | Nakazeki | Oct 2006 | A1 |
20060234822 | Morscheck et al. | Oct 2006 | A1 |
20060234826 | Moehlmann et al. | Oct 2006 | A1 |
20060276299 | Imanishi | Dec 2006 | A1 |
20070004552 | Matsudaira et al. | Jan 2007 | A1 |
20070004556 | Rohs et al. | Jan 2007 | A1 |
20070099753 | Matsui et al. | May 2007 | A1 |
20070149342 | Guenter et al. | Jun 2007 | A1 |
20070155552 | De Cloe | Jul 2007 | A1 |
20070155567 | Miller et al. | Jul 2007 | A1 |
20070193391 | Armstrong et al. | Aug 2007 | A1 |
20070228687 | Parker | Oct 2007 | A1 |
20080009389 | Jacobs | Jan 2008 | A1 |
20080032852 | Smithson et al. | Feb 2008 | A1 |
20080032854 | Smithson et al. | Feb 2008 | A1 |
20080039269 | Smithson et al. | Feb 2008 | A1 |
20080039273 | Smithson et al. | Feb 2008 | A1 |
20080081728 | Faulring et al. | Apr 2008 | A1 |
20080139363 | Williams | Jun 2008 | A1 |
20080149407 | Shibata et al. | Jun 2008 | A1 |
20080183358 | Thomson et al. | Jul 2008 | A1 |
20080200300 | Smithson et al. | Aug 2008 | A1 |
20080228362 | Muller et al. | Sep 2008 | A1 |
20080284170 | Cory | Nov 2008 | A1 |
20080305920 | Nishii et al. | Dec 2008 | A1 |
20090023545 | Beaudoin | Jan 2009 | A1 |
20090082169 | Kolstrup | Mar 2009 | A1 |
20090107454 | Hiyoshi et al. | Apr 2009 | A1 |
20090251013 | Vollmer et al. | Oct 2009 | A1 |
20100145573 | Vasilescu | Jun 2010 | A1 |
20100181130 | Chou | Jul 2010 | A1 |
20110127096 | Schneidewind | Jun 2011 | A1 |
20110230297 | Shiina et al. | Sep 2011 | A1 |
20110237385 | Andre Parise | Sep 2011 | A1 |
20110291507 | Post | Dec 2011 | A1 |
20110319222 | Ogawa et al. | Dec 2011 | A1 |
20120035011 | Menachem et al. | Feb 2012 | A1 |
20120035015 | Ogawa et al. | Feb 2012 | A1 |
20120258839 | Smithson et al. | Oct 2012 | A1 |
20130035200 | Noji et al. | Feb 2013 | A1 |
20130053211 | Fukuda et al. | Feb 2013 | A1 |
20130190123 | Pohl et al. | Jul 2013 | A1 |
20130288848 | Carter et al. | Oct 2013 | A1 |
20130337971 | Kostrup | Dec 2013 | A1 |
20140148303 | Nichols et al. | May 2014 | A1 |
20140179479 | Nichols et al. | Jun 2014 | A1 |
20140206499 | Lohr | Jul 2014 | A1 |
20140248988 | Lohr et al. | Sep 2014 | A1 |
20140257650 | Carter et al. | Sep 2014 | A1 |
20140274536 | Versteyhe | Sep 2014 | A1 |
20140323260 | Miller et al. | Oct 2014 | A1 |
20140329637 | Thomassy et al. | Nov 2014 | A1 |
20140335991 | Lohr et al. | Nov 2014 | A1 |
20140365059 | Keilers et al. | Dec 2014 | A1 |
20150018154 | Thomassy | Jan 2015 | A1 |
20150039195 | Pohl et al. | Feb 2015 | A1 |
20150051801 | Quinn et al. | Feb 2015 | A1 |
20150072827 | Lohr et al. | Mar 2015 | A1 |
20150080165 | Pohl et al. | Mar 2015 | A1 |
20150226323 | Pohl et al. | Aug 2015 | A1 |
20150233473 | Miller et al. | Aug 2015 | A1 |
20150260284 | Miller et al. | Sep 2015 | A1 |
20150337928 | Smithson | Nov 2015 | A1 |
20150345599 | Ogawa | Dec 2015 | A1 |
20150369348 | Nichols et al. | Dec 2015 | A1 |
20150377305 | Nichols et al. | Dec 2015 | A1 |
20160003349 | Kimura et al. | Jan 2016 | A1 |
20160031526 | Watarai | Feb 2016 | A1 |
20160040763 | Nichols et al. | Feb 2016 | A1 |
20160061301 | Bazyn et al. | Mar 2016 | A1 |
20160146342 | Vasiliotis et al. | May 2016 | A1 |
20160178037 | Pohl | Jun 2016 | A1 |
20160186847 | Nichols et al. | Jun 2016 | A1 |
20160201772 | Lohr et al. | Jul 2016 | A1 |
20160244063 | Carter et al. | Aug 2016 | A1 |
20160273627 | Miller et al. | Sep 2016 | A1 |
20160281825 | Lohr et al. | Sep 2016 | A1 |
20160290451 | Lohr | Oct 2016 | A1 |
20160298740 | Carter et al. | Oct 2016 | A1 |
20160347411 | Yamamoto et al. | Dec 2016 | A1 |
20160362108 | Keilers et al. | Dec 2016 | A1 |
20170072782 | Miller et al. | Mar 2017 | A1 |
20170082049 | David et al. | Mar 2017 | A1 |
20170103053 | Nichols et al. | Apr 2017 | A1 |
20170159812 | Pohl et al. | Jun 2017 | A1 |
20170163138 | Pohl | Jun 2017 | A1 |
20170204948 | Thomassy et al. | Jul 2017 | A1 |
20170204969 | Thomassy et al. | Jul 2017 | A1 |
20170211698 | Lohr | Jul 2017 | A1 |
20170268638 | Nichols et al. | Sep 2017 | A1 |
20170276217 | Nichols et al. | Sep 2017 | A1 |
20170284519 | Kolstrup | Oct 2017 | A1 |
20170284520 | Lohr et al. | Oct 2017 | A1 |
20170314655 | Miller et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
118064 | Dec 1926 | CH |
1054340 | Sep 1991 | CN |
2245830 | Jan 1997 | CN |
1157379 | Aug 1997 | CN |
1167221 | Dec 1997 | CN |
1178573 | Apr 1998 | CN |
1178751 | Apr 1998 | CN |
1204991 | Jan 1999 | CN |
1283258 | Feb 2001 | CN |
1300355 | Jun 2001 | CN |
1412033 | Apr 2003 | CN |
1434229 | Aug 2003 | CN |
1474917 | Feb 2004 | CN |
1483235 | Mar 2004 | CN |
1568407 | Jan 2005 | CN |
1654858 | Aug 2005 | CN |
2714896 | Aug 2005 | CN |
1736791 | Feb 2006 | CN |
1847702 | Oct 2006 | CN |
1860315 | Nov 2006 | CN |
1940348 | Apr 2007 | CN |
101016076 | Aug 2007 | CN |
498 701 | May 1930 | DE |
1171692 | Jun 1964 | DE |
2021027 | Dec 1970 | DE |
2 310880 | Sep 1974 | DE |
2 136 243 | Jan 1975 | DE |
2436496 | Feb 1975 | DE |
39 40 919 | Jun 1991 | DE |
19851738 | May 2000 | DE |
10155372 | May 2003 | DE |
102011016672 | Oct 2012 | DE |
102012023551 | Jun 2014 | DE |
102014007271 | Dec 2014 | DE |
0 432 742 | Dec 1990 | EP |
0 528 381 | Feb 1993 | EP |
0 528 382 | Feb 1993 | EP |
0 635 639 | Jan 1995 | EP |
0 638 741 | Feb 1995 | EP |
0 831 249 | Mar 1998 | EP |
0 832 816 | Apr 1998 | EP |
0 976 956 | Feb 2000 | EP |
1 136 724 | Sep 2001 | EP |
1 251 294 | Oct 2002 | EP |
1 366 978 | Mar 2003 | EP |
1 433 641 | Jun 2004 | EP |
1 624 230 | Feb 2006 | EP |
2 893 219 | Jul 2015 | EP |
620375 | Apr 1927 | FR |
2460427 | Jan 1981 | FR |
2590638 | May 1987 | FR |
391448 | Apr 1933 | GB |
592320 | Sep 1947 | GB |
906002 | Sep 1962 | GB |
919430 | Feb 1963 | GB |
1132473 | Nov 1968 | GB |
1165545 | Oct 1969 | GB |
1376057 | Dec 1974 | GB |
2031822 | Apr 1980 | GB |
2035481 | Jun 1980 | GB |
2035482 | Jun 1980 | GB |
2080452 | Aug 1982 | GB |
38-025315 | Nov 1963 | JP |
41-3126 | Feb 1966 | JP |
42-2843 | Feb 1967 | JP |
42-2844 | Feb 1967 | JP |
44-1098 | Jan 1969 | JP |
47-000448 | Jan 1972 | JP |
47-000449 | Jan 1972 | JP |
47-207 | Jun 1972 | JP |
47-20535 | Jun 1972 | JP |
47-00962 | Nov 1972 | JP |
47-29762 | Nov 1972 | JP |
48-54371 | Jul 1973 | JP |
49-12742 | Mar 1974 | JP |
49-012742 | Mar 1974 | JP |
49-013823 | Apr 1974 | JP |
49-041536 | Nov 1974 | JP |
50-114581 | Sep 1975 | JP |
51-25903 | Aug 1976 | JP |
51-150380 | Dec 1976 | JP |
52-35481 | Mar 1977 | JP |
53-048166 | Jan 1978 | JP |
55-135259 | Oct 1980 | JP |
56-24251 | Mar 1981 | JP |
56-047231 | Apr 1981 | JP |
56-101448 | Aug 1981 | JP |
56-127852 | Oct 1981 | JP |
58-065361 | Apr 1983 | JP |
59-069565 | Apr 1984 | JP |
59-144826 | Aug 1984 | JP |
59-190557 | Oct 1984 | JP |
60-247011 | Dec 1985 | JP |
61-031754 | Feb 1986 | JP |
61-053423 | Mar 1986 | JP |
61-144466 | Jul 1986 | JP |
61-173722 | Oct 1986 | JP |
61-270552 | Nov 1986 | JP |
62-075170 | Apr 1987 | JP |
63-125854 | May 1988 | JP |
63-219953 | Sep 1988 | JP |
63-160465 | Oct 1988 | JP |
01-039865 | Nov 1989 | JP |
01-286750 | Nov 1989 | JP |
01-308142 | Dec 1989 | JP |
02-130224 | May 1990 | JP |
02-157483 | Jun 1990 | JP |
02-271142 | Jun 1990 | JP |
02-182593 | Jul 1990 | JP |
03-149442 | Jun 1991 | JP |
03-223555 | Oct 1991 | JP |
04-166619 | Jun 1992 | JP |
04-272553 | Sep 1992 | JP |
04-327055 | Nov 1992 | JP |
04-351361 | Dec 1992 | JP |
05-087154 | Apr 1993 | JP |
06-050169 | Feb 1994 | JP |
06-050358 | Feb 1994 | JP |
07-42799 | Feb 1995 | JP |
07-133857 | May 1995 | JP |
07-139600 | May 1995 | JP |
07-259950 | Oct 1995 | JP |
08-135748 | May 1996 | JP |
08-170706 | Jul 1996 | JP |
08-247245 | Sep 1996 | JP |
08-270772 | Oct 1996 | JP |
09-024743 | Jan 1997 | JP |
09-089064 | Mar 1997 | JP |
10-061739 | Mar 1998 | JP |
10-078094 | Mar 1998 | JP |
10-089435 | Apr 1998 | JP |
10-115355 | May 1998 | JP |
10-115356 | May 1998 | JP |
10-194186 | Jul 1998 | JP |
10-225053 | Aug 1998 | JP |
10-511621 | Nov 1998 | JP |
11-063130 | Mar 1999 | JP |
11-091411 | Apr 1999 | JP |
11-210850 | Aug 1999 | JP |
11-240481 | Sep 1999 | JP |
11-257479 | Sep 1999 | JP |
2000-6877 | Jan 2000 | JP |
2000-46135 | Feb 2000 | JP |
2000-177673 | Jun 2000 | JP |
2001-027298 | Jan 2001 | JP |
2001-071986 | Mar 2001 | JP |
2001-107827 | Apr 2001 | JP |
2001-165296 | Jun 2001 | JP |
2001-234999 | Aug 2001 | JP |
2001-328466 | Nov 2001 | JP |
2002-147558 | May 2002 | JP |
2002-250421 | Jun 2002 | JP |
2002-307956 | Oct 2002 | JP |
2002-533626 | Oct 2002 | JP |
2002-372114 | Dec 2002 | JP |
2003-028257 | Jan 2003 | JP |
2003-56662 | Feb 2003 | JP |
2003-161357 | Jun 2003 | JP |
2003 194206 | Jul 2003 | JP |
2003-194207 | Jul 2003 | JP |
2003-320987 | Nov 2003 | JP |
2003-336732 | Nov 2003 | JP |
2004-011834 | Jan 2004 | JP |
2004-38722 | Feb 2004 | JP |
2004-162652 | Jun 2004 | JP |
2004-189222 | Jul 2004 | JP |
2004-526917 | Sep 2004 | JP |
2004-301251 | Oct 2004 | JP |
2005-003063 | Jan 2005 | JP |
2005-096537 | Apr 2005 | JP |
2005-188694 | Jul 2005 | JP |
2005-240928 | Sep 2005 | JP |
2005-312121 | Nov 2005 | JP |
2006-015025 | Jan 2006 | JP |
2006-283900 | Oct 2006 | JP |
2006-300241 | Nov 2006 | JP |
2007-085404 | Apr 2007 | JP |
2007-321931 | Dec 2007 | JP |
2008-002687 | Jan 2008 | JP |
2008-133896 | Jun 2008 | JP |
2010-069005 | Apr 2010 | JP |
2012-225390 | Nov 2012 | JP |
2015-227690 | Dec 2015 | JP |
2015-227691 | Dec 2015 | JP |
2002 0054126 | Jul 2002 | KR |
10-2002-0071699 | Sep 2002 | KR |
98467 | Jul 1961 | NE |
74007 | Jan 1984 | TW |
175100 | Dec 1991 | TW |
218909 | Jan 1994 | TW |
227206 | Jul 1994 | TW |
275872 | May 1996 | TW |
360184 | Jun 1999 | TW |
366396 | Aug 1999 | TW |
401496 | Aug 2000 | TW |
510867 | Nov 2002 | TW |
512211 | Dec 2002 | TW |
582363 | Apr 2004 | TW |
590955 | Jun 2004 | TW |
I225129 | Dec 2004 | TW |
I225912 | Jan 2005 | TW |
I235214 | Jan 2005 | TW |
M294598 | Jul 2006 | TW |
200637745 | Nov 2006 | TW |
200821218 | May 2008 | TW |
WO 9908024 | Feb 1999 | WO |
WO 9920918 | Apr 1999 | WO |
WO 0173319 | Oct 2001 | WO |
WO 03100294 | Dec 2003 | WO |
WO 05083305 | Sep 2005 | WO |
WO 05108825 | Nov 2005 | WO |
WO 05111472 | Nov 2005 | WO |
WO 05121602 | Dec 2005 | WO |
WO 06091503 | Aug 2006 | WO |
WO 07077502 | Jul 2007 | WO |
WO 08078047 | Jul 2008 | WO |
WO 08100792 | Aug 2008 | WO |
WO 10135407 | Nov 2010 | WO |
WO 11064572 | Jun 2011 | WO |
WO 11101991 | Aug 2011 | WO |
WO 11121743 | Oct 2011 | WO |
WO 12030213 | Mar 2012 | WO |
WO 13042226 | Mar 2013 | WO |
WO 14186732 | Nov 2014 | WO |
WO 16062461 | Apr 2016 | WO |
Entry |
---|
Office Action dated Mar. 28, 2013 for U.S. Appl. No. 13/679,702. |
Chinese Office Action dated Feb. 5, 2013 for Chinese Patent Application No. 20088012412.X. |
First Office Action dated Mar. 26, 2015 in Chinese Patent Application No. 201310347988.4. |
Japanese Office Action dated Sep. 4, 2012 for Japanese Patent Application No. 2009-549718. |
Office Action dated Jun. 17, 2014 in Japanese Patent Application No. 2013-170342. |
Decision to Grant of Patent dated Mar. 3, 2015 for Japanese Patent Application No. 2013-170342. |
Preliminary Notice of First Office Action dated Jan. 14, 2014 in Taiwan patent application No. 097105172. |
International Search Report and Written Opinion dated Sep. 29, 2009 for PCT Application No. PCT/US2008/053951. |
Thomassy: An Engineering Approach to Simulating Traction EHL. CVT-Hybrid International Conference Mecc/Maastricht/The Netherlands, Nov. 17-19, 2010, p. 97. |
Office Action dated May 19, 2015 in U.S. Appl. No. 14/082,017. |
Second Office Action dated Dec. 16, 2015 in Chinese Patent Application No. 201310347988.4. |
Office Action dated Mar. 8, 2016 in Japanese Patent Application No. 2015-072623. |
Extended European Search Report dated Oct. 9, 2017 in EP Patent Application No. 13193655.1. |
First Examination Report dated Aug. 8, 2017 in Indian Patent Application No. 3285/KOLNP/2009. |
Office Action dated Dec. 5, 2017 in Japanese Patent Application No. 2016-235078. |
Number | Date | Country | |
---|---|---|---|
20160131231 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
60890438 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13679702 | Nov 2012 | US |
Child | 14082017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14082017 | Nov 2013 | US |
Child | 14997312 | US | |
Parent | 12527400 | US | |
Child | 13679702 | US |