Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor

Information

  • Patent Grant
  • 10066712
  • Patent Number
    10,066,712
  • Date Filed
    Friday, June 3, 2016
    8 years ago
  • Date Issued
    Tuesday, September 4, 2018
    6 years ago
Abstract
Inventive embodiments are directed to components, subassemblies, systems, and/or methods for infinitely variable transmissions (IVT). In one embodiment, a control system is adapted to facilitate a change in the ratio of an IVT. In another embodiment, a control system includes a carrier member configured to have a number of radially offset slots. Various inventive carrier members and carrier drivers can be used to facilitate shifting the ratio of an IVT. In some embodiments, the traction planet assemblies include planet axles configured to cooperate with the carrier members. In one embodiment, the carrier member is configured to rotate and apply a skew condition to each of the planet axles. In some embodiments, a carrier member is operably coupled to a carrier driver. In some embodiments, the carrier member is configured to couple to a source of rotational power. Among other things, shift control interfaces for an IVT are disclosed.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


The field of the invention relates generally to transmissions, and more particularly the inventive embodiments related to continuously variable transmissions (CVTs) and infinitely variable transmissions (IVTs).


Description of the Related Art


In certain systems, power is characterized by torque and rotational speed. More specifically, power in these systems is generally defined as the product of torque and rotational speed. Typically, a transmission couples to a power input that provides an input torque at an input speed. The transmission also couples to a load that demands an output torque and output speed, which may differ from the input torque and the input speed. Typically, and generalizing, a prime mover provides the power input to the transmission, and a driven device or load receives the power output from the transmission. A primary function of the transmission is to modulate the power input in such a way to deliver a power output to the driven device at a desired ratio of input speed to output speed (“speed ratio”).


Some mechanical drives include transmissions of the type known as stepped, discrete, or fixed ratio. These transmissions are configured to provide speed ratios that are discrete or stepped in a given speed ratio range. For example, such a transmission may provide for a speed ratio of 1:2, 1:1, or 2:1, but such a transmission cannot deliver intermediate speed ratios such as 1:1.5, 1:1.75, 1.5:1, or 1.75:1, for example. Other drives include a type of transmission generally known as a continuously variable transmission (or “CVT”), which includes a continuously variable variator. A CVT, in contrast to a stepped transmission, is configured to provide every fractional ratio in a given speed ratio range. For example, in the speed ratio range mentioned above, a CVT is generally capable of delivering any desired speed ratio between 1:2 and 2:1, which would include speed ratios such as 1:1.9, 1:1.1, 1.3:1, 1.7:1, etc. Yet other drives employ an infinitely variable transmission (or “IVT”). An IVT, like a CVT, is capable of producing every speed ratio in a given ratio range. However, in contrast to a CVT, the IVT is configured to deliver a zero output speed (a “powered zero” state) with a steady input speed. Hence, given the definition of speed ratio as the ratio of input speed to output speed, the IVT is capable of delivering an infinite set of speed ratios, and consequently, the IVT is not limited to a given ratio range. It should be noted that some transmissions use a continuously variable variator coupled to other gearing and/or clutches in a split powered arrangement to produce IVT functionality. However, as used here, the term IVT is primarily understood as comprehending an infinitely variable variator which produces IVT functionality without being necessarily coupled to additional gearing and/or clutches.


The field of mechanical power transmission is cognizant of continuous or infinitely variable variators of several types. For example, one well known class of continuous variators is the belt-and-variable-radius-pulley variator. Other known variators include hydrostatic, toroidal, and cone-and-ring variators. In some cases, these variators couple to other gearing to provide IVT functionality. Some hydromechanical variators can provide infinite ratio variability without additional gearing. Some variators, continuously and/or infinitely variable, are classified as frictional or traction variators because they rely on dry friction or elastohydrodynamic traction, respectively, to transfer torque across the variator. One example of a traction variator is a ball variator in which spherical elements are clamped between torque transfer elements and a thin layer of elastohydrodynamic fluid serves as the torque transfer conduit between the spherical and the torque transfer elements. It is to this latter class of variators that the inventive embodiments disclosed here are most related.


There is a continuing need in the CVT/IVT industry for transmission and variator improvements in increasing efficiency and packaging flexibility, simplifying operation, and reducing cost, size, and complexity, among other things. The inventive embodiments of the CVT and/or IVT methods, systems, subassemblies, components, etc., disclosed below address some or all of the aspects of this need.


SUMMARY OF THE INVENTION

The systems and methods herein described have several features, no single one of which is solely responsible for its desirable attributes. Without limiting the scope as expressed by the claims that follow, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Inventive Embodiments” one will understand how the features of the system and methods provide several advantages over traditional systems and methods.


One aspect of the invention relates to a shifting mechanism for an infinitely variable transmission (IVT) having a longitudinal axis and a set of traction planet assemblies arranged angularly about the longitudinal axis. In one embodiment, the shifting mechanism has a first carrier member coupled to each of the traction planet assemblies. The first carrier member is configured to guide the traction planet assemblies. The shifting mechanism has a second carrier member coupled to each of the traction planet assemblies. The second carrier member is configured to guide the traction planet assemblies. The first carrier member is capable of rotating with respect to the second carrier member. A carrier driver nut is coupled to the first carrier member. The carrier driver nut is adapted to translate axially. An axial translation of the carrier driver nut corresponds to a rotation of the first carrier member with respect to the second carrier member.


One aspect of the invention relates to an infinitely variable transmission (IVT) having a longitudinal axis. In one embodiment, the IVT has a number of traction planet assemblies arranged angularly about the longitudinal axis. The IVT is provided with a first carrier member coupled to each of the traction planet assemblies. The first carrier member is provided with a number of radially off-set slots. The first carrier member is configured to guide the traction planet assemblies. The IVT can include a second carrier member coupled to each of the traction planet assemblies. The second carrier member is provided with a number of radial slots. The first and second carrier members are configured to receive a rotational power input. In one embodiment, the first carrier member is capable of rotating with respect to the second carrier member. The IVT also includes a carrier driver nut coupled to the first carrier member. The carrier driver nut is adapted to translate axially. An axial translation of the carrier driver nut corresponds to a rotation of the first carrier member with respect to the second carrier member. In an alternative embodiment, the IVT has a main shaft positioned along the longitudinal axis. The main shaft is operably coupled to the first and second carrier members. The main shaft can have a set of helical splines that are configured to couple to a carrier driver nut. In yet another alternative embodiment, the carrier driver nut is adapted to translate axially along the main shaft. An axial translation of the carrier driver nut corresponds to a rotation of the carrier driver nut. In some embodiments, the IVT has a first traction ring coupled to each traction planet assembly. The first traction ring is substantially non-rotatable about the longitudinal axis. The IVT can be provided with a second traction ring coupled to each traction planet assembly. The second traction ring is adapted to provide a power output from the IVT. In an alternative embodiment, the first and second carrier members are adapted to receive the rotational power from the main shaft. In one embodiment, the IVT has a shift fork operably coupled to the carrier driver nut. The shift fork can have a pivot axis that is off-set from the longitudinal axis. A pivoting of the shift fork corresponds to an axial translation of the carrier driver nut. The axial translation of the carrier driver nut corresponds to a rotation of the carrier driver about the longitudinal axis. In an alternative embodiment, the IVT is provided with a pump operably coupled to the main shaft. In yet another embodiment, the IVT has a ground ring coupled to the first traction ring. The ground ring is coupled to a housing of the IVT.


Another aspect of the invention concerns an infinitely variable transmission (IVT) having a longitudinal axis. The IVT includes a main shaft arranged along the longitudinal axis. The main shaft is provided with a set of helical splines. The IVT has a group of traction planet assemblies arranged angularly about the longitudinal axis. In one embodiment, the IVT has a first carrier member coupled to each of the traction planet assemblies. The first carrier member is provided with a number of radially off-set slots. The first carrier member is configured to guide the traction planet assemblies. The IVT includes a second carrier member coupled to each of the traction planet assemblies. The second carrier member is provided with a number of radial slots. The first and second carrier members are coupled to a rotational power source. In one embodiment, the IVT includes a shifting mechanism having a shift fork. The shift fork has a pivot pin off-set from the longitudinal axis. The shifting mechanism includes a carrier driver nut operably coupled to the shift fork. The carrier driver nut has an inner bore configured to engage the helical splines of the main shaft. The carrier driver nut is configured to rotate about the longitudinal axis. In one embodiment, a movement of the shift fork about the pivot pin corresponds to an axial movement of the carrier driver nut. An axial movement of the carrier driver nut corresponds to a rotation of the first carrier member with respect to the second carrier member. In some embodiments, the IVT has a first traction ring in contact with each traction planet assembly. The first traction ring is substantially non-rotatable about the main shaft. The IVT can have a second traction ring in contact with each traction planet assembly. The second traction ring is adapted to provide a power output from the IVT. In some embodiments, an output shaft is operably coupled to the second traction ring. In an alternative embodiment, a disengagement mechanism is operably coupled to the output shaft. In yet another embodiment, a torque limiter is coupled to the second carrier member. The torque limiter can also be coupled to the main shaft. In some embodiments, the torque limiter includes a number of springs coupled to the second carrier member and the main shaft.


One aspect of the invention concerns a shifting mechanism for an infinitely variable transmission (IVT) having a main shaft arranged along a longitudinal axis of the IVT and a group of traction planet assemblies arranged angularly about the main shaft. The traction planet assemblies are coupled to first and second carrier members. The first carrier member is provided with a number of radially off-set guide slots. The first and second carrier members are adapted to receive a rotational power. In one embodiment, the shifting mechanism includes a shift fork. The shift fork has a pivot pin off-set from the longitudinal axis. The shifting mechanism has a carrier driver nut operably coupled to the shift fork. The carrier driver nut has an inner bore configured to engage a number of helical splines formed on the main shaft. The carrier driver nut is configured to rotate about the longitudinal axis. The carrier driver nut is adapted to axially translate along the longitudinal axis. A movement of the shift fork about the pivot pin corresponds to an axial movement of the carrier driver nut. An axial movement of the carrier driver nut corresponds to a rotation of the first carrier member with respect to the second carrier member. In an alternate embodiment, the shifting mechanism includes a shift collar operably coupled to the shift fork. A bearing can be coupled to the shift collar and be adapted to couple to the carrier driver nut. In yet another embodiment, the shifting mechanism has a rocker arm coupled to the shift fork.


Another aspect of the invention concerns an infinitely variable transmission (IVT) having a longitudinal axis. The IVT has a group of traction planets arranged angularly about the longitudinal axis. The IVT includes a first carrier member coupled to each of the traction planet assemblies. The first carrier member is provided with a number of radially off-set slots. The first carrier member is configured to guide the traction planet assemblies. The IVT has a second carrier member coupled to each of the traction planet assemblies. The second carrier member is provided with a group of radial slots. The first and second carrier members are coupled to a rotational power source. In one embodiment, the IVT has a carrier driver positioned radially outward of the first and second carrier members. The carrier driver has a number of longitudinal grooves. At least one groove is aligned parallel with the longitudinal axis, and said groove is coupled to the first carrier member. In one embodiment, at least one groove is angled with respect to the longitudinal axis, and said groove is coupled to the second carrier member. In other embodiments, the carrier driver is adapted to translate axially. In some embodiments, the axial translation of the carrier driver corresponds to a rotation of the first carrier member with respect to the second carrier member. In still other embodiments, the IVT has a pump coupled to the first carrier member.


Another aspect of the invention relates to an infinitely variable transmission (IVT) having a longitudinal axis. In one embodiment, the IVT has a number of traction planets arranged angularly about the longitudinal axis. The IVT is provided with a first carrier member coupled to each of the traction planet assemblies. The first carrier member is provided with a number of radially off-set slots. The radially off-set slots are configured to guide the traction planet assemblies. The first carrier member is provided with a number of longitudinal guide slots, and said longitudinal guide slots are formed at an angle with respect to the longitudinal axis. In one embodiment, the IVT has a second carrier member coupled to each of the traction planet assemblies. The second carrier member is provided with a number of radial slots. The radial slots are configured to guide the traction planet assemblies. The second carrier member is provided with a number of longitudinal guide slots, and said longitudinal guide slots are arranged parallel to the longitudinal axis. In one embodiment, the first and second carrier members are configured to couple to a rotational power source. The IVT also has a carrier driver coupled to the first and second carrier members. The carrier driver is adapted to rotate about the longitudinal axis. The carrier driver is adapted to translate axially. In one embodiment, an axial translation of the carrier driver corresponds to a rotation of the first carrier member with respect to the second carrier member. In some embodiments, the carrier driver has a set of shift pins extending radially outward from a central cylindrical hub. The cylindrical hub is coaxial with the longitudinal axis. In other embodiments, the IVT has a spring coupled to the carrier driver. In yet other embodiments, an axial translation of the carrier driver corresponds to a change in the transmission ratio of the IVT.


Another aspect of the invention concerns a shifting mechanism for an infinitely variable transmission (IVT) having a group of traction planet assemblies. In one embodiment, the shifting mechanism has a first carrier member having a number of radially off-set guide slots. The radially off-set guide slots are arranged to guide the traction planet assemblies. The first carrier member has a number of longitudinal slots, and said longitudinal slots angled with respect to the longitudinal axis. The shifting mechanism includes a second carrier member has a number of guide slots arranged about the longitudinal axis. The guide slots are arranged to guide the traction planet assemblies. The second carrier member has a number of longitudinal slots, and said longitudinal slots parallel to the longitudinal axis. The shifting mechanism has a carrier driver coupled to the first and second carrier members. The carrier driver has a number of shift pins extending from a central hub. The shift pins engage the longitudinal slots formed on the first and second carrier members. An axial translation of the carrier driver corresponds to a rotation of the first carrier member with respect to the second carrier member. In some embodiments, the carrier driver, the first carrier member, and the second carrier member are configured to rotate about the longitudinal axis at a speed substantially equal to an input speed of a power source coupled to the IVT. In other embodiments, the shifting mechanism has a shift roller coupled to each shift pin. The shift roller is in contact with the longitudinal slots of the first carrier member.


Another aspect of the invention relates to a method of controlling an infinitely variable transmission (IVT) having a longitudinal axis. The method includes the step of providing a group of traction planet assemblies arranged angularly about the longitudinal axis. The method can include providing a first carrier member coupled to each traction planet assembly. The first carrier member has a number of radially off-set guide slots arranged to guide the traction planet assemblies. In one embodiment, the method includes the step of providing a second carrier member coupled to each traction planet assembly. The second carrier member has a number of radial guide slots arranged to guide the traction planet assemblies. The method can include the step of coupling the first and second carrier members to a rotational power source. The method includes providing a carrier driver nut coupled to the first carrier member. The method also includes the step of translating the carrier driver nut along the longitudinal axis. In an alternative embodiment, the step of translating the carrier driver nut includes the step of rotating the first carrier member with respect to the second carrier member. In some embodiments, the method includes the step of operably coupled the carrier driver nut to a shift fork. In some embodiments, the method includes the step of coupling a toque limiter to the second carrier member. In yet other embodiments, the method includes coupling the torque limiter to the rotational source of power. In some embodiments, the method includes the step of sensing a torque applied to the second carrier member. The method can also include the step of rotating the second carrier member based at least in part on the sensed torque. Rotating the second carrier member can include the step of adjusting the transmission ratio.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a cross-sectional view of a ball planetary infinitely variable transmission (IVT) having a skew-based control system.



FIG. 2 is a partially cross-sectioned exploded view of the IVT of FIG. 1.



FIG. 3 is a perspective view of internal components of the IVT of FIG. 1.



FIG. 4 is a plan view of internal components of the IVT of FIG. 1.



FIG. 5 is an exploded view of shifting components that can be used with the IVT of FIG. 1.



FIG. 6 is a plan view of an embodiment of first and second carrier members that can be used in the IVT of FIG. 1.



FIG. 7 is a cross-sectional view of an infinitely variable transmission (IVT) having a skew-based control system.



FIG. 8 is a cross-sectional perspective view of the IVT of FIG. 7.



FIG. 9 is a cross-sectional view of an embodiment of a carrier driver ring that can be used with the IVT of FIG. 7.



FIG. 10 is a perspective view of the carrier driver ring of FIG. 9.



FIG. 11 is a cross-sectional plan view of the carrier driver ring of FIG. 9.



FIG. 12 is a cross-sectional plan view of one embodiment of a carrier driver ring that can be used in the IVT of FIG. 7.



FIG. 13 is a cross-sectional plan view of another embodiment of a carrier driver ring that can be used in the IVT of FIG. 7.



FIG. 14 is a cross-sectional view of an IVT having a skew-based control system and a carrier driver ring.



FIG. 15 is a schematic view of an embodiment of an IVT having a skew-based control system and a linearly actuated carrier driver.



FIG. 16 is a cross-sectional view of one embodiment of an IVT having a skew-based control system and a linearly actuated carrier driver.



FIG. 17 is a partially cross-sectioned perspective view of certain internal shifting components of the IVT of FIG. 16.



FIG. 18 is a plan view of the internal shifting components of FIG. 17.



FIG. 19 is a plan view A-A of the internal shifting components of FIG. 18.



FIG. 20 is a partially cross-sectioned perspective view of one embodiment of an IVT having a skew-based control system.



FIG. 21 is a cross-sectional view of the IVT of FIG. 20.



FIG. 22 is an exploded, cross-sectioned view of the IVT of FIG. 20.



FIG. 23 is an exploded view of certain internal components of the IVT of FIG. 20.



FIG. 24 is a cross-sectional view of a torque limiter that can be used with the IVT of FIG. 20.



FIG. 25 is an exploded view of the torque limiter of FIG. 24.



FIG. 26 is partially cross-sectioned view of a disengagement mechanism that can be used with the IVT of FIG. 20.



FIG. 27 is a cross-sectional view of the disengagement mechanism of FIG. 26.



FIG. 28 is another cross-sectional view of the disengagement mechanism of FIG. 26.



FIG. 29 is a cross-sectional view of an embodiment of a disengagement mechanism that can be used with the IVT of FIG. 1 or 20.



FIG. 30 is another cross-sectional view of the disengagement mechanism of FIG. 29.



FIG. 31 is a perspective view of a disengagement mechanism that can be used with the IVT of FIG. 20.



FIG. 32 is a cross-sectional view of the disengagement mechanism of FIG. 31.



FIG. 33 is another perspective view of the disengagement mechanism of FIG. 31.



FIG. 34 is yet another cross-sectional view of the disengagement mechanism of FIG. 31.



FIG. 35 is a schematic depicting a hydraulic system that can be used with the IVT of FIG. 20.



FIG. 36 is a cross-sectional view of one embodiment of an IVT having a skew-based control system.



FIG. 37 is a plan view B-B of certain components of the IVT of FIG. 36.



FIG. 38 is a plan view of a carrier that can be used with the IVT of FIG. 36.





DETAILED DESCRIPTION OF CERTAIN INVENTIVE EMBODIMENTS

The preferred embodiments will be described now with reference to the accompanying figures, wherein like numerals refer to like elements throughout. The terminology used in the descriptions below is not to be interpreted in any limited or restrictive manner simply because it is used in conjunction with detailed descriptions of certain specific embodiments of the invention. Furthermore, embodiments of the invention can include several inventive features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the inventions described. Certain continuously variable transmission (CVT) and infinitely variable transmission (IVT) embodiments described here are generally related to the type disclosed in U.S. Pat. Nos. 6,241,636; 6,419,608; 6,689,012; 7,011,600; 7,166,052; U.S. patent application Ser. Nos. 11/243,484 and 11/543,311; and Patent Cooperation Treaty patent applications PCT/IB2006/054911, PCT/US2008/068929, PCT/US2007/023315, PCT/US2008/074496, and PCT/US2008/079879. The entire disclosure of each of these patents and patent applications is hereby incorporated herein by reference.


As used here, the terms “operationally connected,” “operationally coupled”, “operationally linked”, “operably connected”, “operably coupled”, “operably linked,” and like terms, refer to a relationship (mechanical, linkage, coupling, etc.) between elements whereby operation of one element results in a corresponding, following, or simultaneous operation or actuation of a second element. It is noted that in using said terms to describe inventive embodiments, specific structures or mechanisms that link or couple the elements are typically described. However, unless otherwise specifically stated, when one of said terms is used, the term indicates that the actual linkage or coupling may take a variety of forms, which in certain instances will be readily apparent to a person of ordinary skill in the relevant technology.


For description purposes, the term “radial” is used here to indicate a direction or position that is perpendicular relative to a longitudinal axis of a transmission or variator. The term “axial” as used here refers to a direction or position along an axis that is parallel to a main or longitudinal axis of a transmission or variator. For clarity and conciseness, at times similar components labeled similarly.


It should be noted that reference herein to “traction” does not exclude applications where the dominant or exclusive mode of power transfer is through “friction.” Without attempting to establish a categorical difference between traction and friction drives here, generally these may be understood as different regimes of power transfer. Traction drives usually involve the transfer of power between two elements by shear forces in a thin fluid layer trapped between the elements. The fluids used in these applications usually exhibit traction coefficients greater than conventional mineral oils. The traction coefficient (μ) represents the maximum available traction forces which would be available at the interfaces of the contacting components and is a measure of the maximum available drive torque. Typically, friction drives generally relate to transferring power between two elements by frictional forces between the elements. For the purposes of this disclosure, it should be understood that the IVTs described here may operate in both tractive and frictional applications. For example, in the embodiment where an IVT is used for a bicycle application, the IVT can operate at times as a friction drive and at other times as a traction drive, depending on the torque and speed conditions present during operation.


Embodiments of the invention disclosed here are related to the control of a variator and/or an IVT using generally spherical planets each having a tiltable axis of rotation (sometimes referred to here as a “planet axis of rotation”) that can be adjusted to achieve a desired ratio of input speed to output speed during operation. In some embodiments, adjustment of said axis of rotation involves angular misalignment of the planet axis in a first plane in order to achieve an angular adjustment of the planet axis of rotation in a second plane, thereby adjusting the speed ratio of the variator. The angular misalignment in the first plane is referred to here as “skew” or “skew angle”. This type of variator control is generally described in U.S. patent application Ser. Nos. 12/198,402 and 12/251,325, the entire disclosure of each of these patent applications is hereby incorporated herein by reference. In one embodiment, a control system coordinates the use of a skew angle to generate forces between certain contacting components in the variator that will tilt the planet axis of rotation in the second plane. The tilting of the planet axis of rotation adjusts the speed ratio of the variator. Embodiments of skew control systems (sometimes referred to here as “skew based control systems”) and skew angle actuation devices for attaining a desired speed ratio of a variator will be discussed.


Embodiments of an infinitely variable transmission (IVT), and components and subassemblies thereof, will be described now with reference to FIGS. 1-38. Embodiments of shifting mechanisms for controlling the relative angular position between two disc-like transmission members will be described as well. These shifting mechanisms can improve control for many different types of infinitely variable transmissions, and are shown in certain embodiments here for illustrative purposes. FIG. 1 shows an IVT 100 that can be used in many applications including, but not limited to, human powered vehicles (for example, bicycles), light electrical vehicles, hybrid human-, electric-, or internal combustion powered vehicles, industrial equipment, wind turbines, etc. Any technical application that requires modulation of mechanical power transfer between a power input and a power sink (for example, a load) can implement embodiments of the IVT 100 in its power train.


Referring now to FIGS. 1 and 2, in one embodiment the IVT 100 includes a housing 102 coupled to a housing cap 104. The housing 102 and the housing cap 104 support a power input interface such as a pulley 106 and a control interface such as an actuator coupling 108. The pulley 106 can be coupled to a drive belt driven by a source of rotational power such as an internal combustion engine (not shown). In one embodiment, the IVT 100 is provided with a main shaft 110 that substantially defines a longitudinal axis of the IVT 100. The main shaft 110 couples to the pulley 106. The main shaft 110 is supported by a bearing 112 in the housing cap 104. The IVT 100 includes a plurality of traction planet assemblies 114 arranged angularly about the main shaft 110. Each traction planet assembly 114 is coupled to first and second carrier members 116, 118, respectively. The main shaft 110 couples to the first carrier member 116. The first and second carrier members 116, 118 are coaxial with the main shaft 110. In one embodiment, each traction planet assembly 114 is coupled to first and second traction rings 120, 122, respectively. Each traction planet assembly 114 is in contact with an idler assembly 121 at a radially inward location. The first traction ring 120 couples to a first axial force generator assembly 124. The first traction ring 120 and the first axial force generator assembly 124 is substantially non-rotatable with respect to the housing 102. In one embodiment, the first axial force generator assembly 124 is coupled to a ground ring 125. The ground ring 125 attaches to a shoulder 123 extending from the housing cap 104. The second traction ring 122 is coupled to a second axial force generator 126. The second traction ring 122 and the second axial force generator 126 is coupled to an output power interface 128. The output power interface 128 can be coupled to a load (not shown). In one embodiment, the output power interface 128 includes a disengagement mechanism 130 configured to mechanically decouple the second traction ring 122 from the load.


Referring now to FIGS. 1-4, in one embodiment the IVT 100 can be used with a shift control mechanism 140. The shift control mechanism 140 can be used other types of transmissions, and is shown here with the IVT 100 as an example. The shift control mechanism 140 can include the actuator coupling 108 coupled to a rocker arm 142. The rocker arm 142 couples to a shift fork 144 that is configured to rotate about a pivot pin 146. In one embodiment, the pivot pin 146 is offset from the longitudinal axis. The shift fork 144 couples to a shift collar 148. The shift collar 148 supports a bearing 150. The bearing 150 couples to a carrier driver nut 152. The carrier driver nut 152 is coupled to the main shaft 110 and the first carrier member 116.


Referring now to FIG. 5 and still referring to FIGS. 1-4, in one embodiment the rocker arm 142 rotatably couples to a pivot 143. The pivot 143 can be a dowel attached to the shift fork 144. The shift fork 144 can have a set of slots 154. The slots 154 guide a set of engagement dowels 156 attached to the shift collar 148. In one embodiment, the shift collar 148 is provided with four engagement dowels 156. In some embodiments, two engagement dowels 156 are positioned to ride in the slots 154 while two engagement dowels 156 are positioned to ride in a set of slots 155 (FIG. 2) formed in the shoulder 123 of the housing cap 104. In one embodiment, the carrier driver nut 152 has an inner bore 158 formed with helical splines. The inner bore 158 couples to mating helical splines 160 formed on the main shaft 110. The carrier driver nut 152 is provided with a number of guide surfaces 162 extending radially outward from the inner bore 158. The guide surfaces 162 couple to mating guide surfaces 164 formed on the first carrier member 116.


Turning now to FIG. 6, in one embodiment the second carrier member 118 can be provided with a number of guide slots 170 arranged angularly about a central bore 171. The guide slots 170 are aligned with a radial construction line 76 when viewed in the plane of the page of FIG. 6. The guide slots 170 are adapted to receive one end of a planet axle 115 (FIG. 1). In some embodiments, a radially inward portion 172 of the guide slots 170 are formed with curved profiles sized to accommodate the traction planet axle 115. In one embodiment, the first carrier member 116 is provided with a number of radially off-set guide slots 174 arranged angularly about a central bore 175. Each radially off-set guide slot 174 is sized to accommodate the coupling of the first carrier member 116 to the planet axle 115. The radially off-set guide slots 174 are angularly offset from the radial construction line 76 when viewed in the plane of the page of FIG. 6. The angular offset can be approximated by an angle 88. The angle 88 is formed between the radial construction line 76 and a construction line 90. The construction line 90 substantially bisects the radially off-set guide slot 174 when viewed in the plane of the page of FIG. 6. In some embodiments, the angle 88 is between 3 degrees and 45 degrees. A low angle 88 produces a highly responsive transmission ratio change but potentially more difficult to control or stabilize, while a high angle can be less responsive in transmission ratio change but easy to control by comparison. In some embodiments, where it is desirable to have high speed, fast shift rates, the angle 88 can be, for example, 10 degrees. In other embodiments, where it is desirable to have slower speed, precise control of transmission ratio, the angle 88 can be about 30 degrees. However, the said values of the angle 88 are provided as an illustrative example, and the angle 88 can be varied in any manner a designer desires. In some embodiments, the angle 88 can be any angle in the range of 10 to 25 degrees including any angle in between or fractions thereof. For example, the angle 88 can be 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or any portion thereof. In other embodiments, the angle 88 can be 20 degrees. In one embodiment, the radially off-set guide slots 174 can be arranged so that the construction line 90 is radially offset from a construction line 91 by a distance 92. The construction line 91 is parallel to the construction line 90 and intersects the center of the first carrier member 116.


During operation of the IVT 100, a change in transmission ratio is achieved by rotating the actuator coupling 108. In some embodiments, the actuator coupling 108 is attached to a user control (not shown) that can be a mechanical linkage actuated with a user's hand. In other embodiments, the actuator coupling 108 can be coupled to an electrical or hydraulic actuator that can impart a rotary motion to the actuator coupling 108 that is indicative of the desired transmission ratio for IVT 100. Since the actuator coupling 108 is axially fixed with respect to the longitudinal axis, a rotation of the actuator coupling 108 tends to rotate the rocker arm 142 to thereby rotate and axially translate the pivot 143. Movement of the pivot 143 tends to rotate the shift fork 144 about the pivot pin 146. The pivot pin 146 is off-set from the main shaft 110 so that a rotation of the shift fork 144 about the pivot pin 146 corresponds to an axial translation of the slots 154. The axial movement of the slots 154 tends to axially move the shift collar 148 with respect to the main shaft 110. Since the carrier driver nut 152 is operably coupled to the shift collar 148, an axial translation of the shift collar 148 corresponds to an axial translation of the carrier driver nut 152. The carrier driver nut 152 couples to the helical splines 160 of the main shaft 110. An axial translation of the carrier driver nut 152 facilitates a relative rotation of the carrier driver nut 152 with respect to the main shaft 110. Since the carrier driver nut 152 engages the guide surfaces 164 of the first carrier member 116, a rotation of the carrier driver nut 152 with respect to the main shaft 110 corresponds to a rotation of the first carrier member 116 with respect to the main shaft 110. A rotation of the first carrier member 116 with respect to the second carrier member 118 tends to change the transmission ratio of the IVT 100.


It should be noted that a designer can configure the position of the rocker 142, the pivot 143, and the pivot pin 146 relative to the slots 154 to achieve a desired relationship between a rotation applied to the actuator coupling 108 and the axial displacement of the carrier driver nut 152. In some embodiments, a designer may select the position of the rocker 142, the pivot 143, and the pivot pin 146 to provide a desired force or torque applied to the actuator coupling 108 to achieve a change in transmission ratio. Likewise, a designer can select the pitch and lead of the helical splines 160 to achieve a desired relationship between an axial displacement of the carrier driver nut 152 and a rotation of the first carrier member 116.


Referring again to FIGS. 5 and 6, in one embodiment the IVT 100 can be provided with a pump assembly 180. The pump assembly 180 includes a pump driver 182 that couples to a lobe 184 formed on the first carrier member 116. The pump assembly 180 includes a pump plunger 186 attached to the pump driver 182. The pump plunger 186 surrounds a valve body 188 and a valve plunger 190. In one embodiment, the lobe 184 has a center 191 (FIG. 6) that is off-set from a center 192 of the first carrier member 116. In some embodiments, the lobe 184 can be formed on main shaft 110 or on a retaining nut 193, and likewise, the pump assembly 180 is appropriately located axially so that the pump driver 182 can engage the lobe 184. During operation of the IVT 100, the main shaft 110 rotates about the longitudinal axis and thereby drives the first carrier member 116. The lobe 184 drives the pump driver 182 in a reciprocating motion as the first carrier member 116 rotates about the longitudinal axis. In one embodiment, the ground ring 125 is provided with a guide groove 194 that is adapted to receive the pump driver 182. The ground ring 125 can also be provided with a number of clearance reliefs 196 that are appropriately sized to provide clearance to the engagement dowels 156 and the shift fork 144.


Passing now to FIGS. 7-10, an IVT 200 can include a number of traction planet assemblies 202 arranged angularly about a longitudinal axis 204. For clarity, the housing and some internal components of the IVT 200 are not shown. Each traction planet assembly 202 is provided with a ball axle 206. The ball axles 206 are operably coupled to first and second carrier members 208, 210, respectively. The first and second carrier members 208, 210 can be substantially similar to the first and second carrier members 116, 118, respectively. In one embodiment, the first and second carrier members 208, 210 couple to a rotational power source (not shown). The IVT 200 is provided with a carrier driver ring 212 located radially outward of each of the traction planet assemblies 202. The carrier driver ring 212 is couple to a shift clevis 214 by a set of bearings 215. The bearing 215 can be rotationally constrained to the carrier drive ring 212 with a plurality of dowels 217, for example. In one embodiment, the shift clevis 214 is provided with a threaded bore 213. The threaded bore 213 is generally parallel to the longitudinal axis 204. The threaded bore 213 can couple to a threaded shift rod (not shown) to facilitate the axial translation of the shift clevis 214.


Referring specifically to FIGS. 9 and 10, the carrier driver ring 212 has a set of longitudinal grooves 220 formed on an inner circumference of the carrier driver ring 212. The longitudinal grooves 220 are substantially parallel to the longitudinal axis 204. The carrier driver ring 212 has a set of off-set longitudinal grooves 222 formed on the inner circumference. The off-set longitudinal grooves 222 are angled with respect to the longitudinal axis 204. The off-set longitudinal grooves 222 form an angle 224 with respect to the longitudinal axis 204 when viewed in the plane of FIG. 9. In some embodiments, the angle 224 can be any angle in the range of 0 to 30 degrees including any angle in between or fractions thereof. For example, the angle 224 can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or any portion thereof. In one embodiment, the first carrier member 208 is provided with a number of dowels 228. The dowels 228 couple to, and are guided by, the longitudinal grooves 220. The second carrier member 210 is provided with a number of dowels 230. The dowels 230 couple to, and are guided by, the off-set longitudinal grooves 222.


During operation of the IVT 200, a change in transmission ratio can be achieved by axially translating the shift clevis 214. An axial translation of the shift clevis 214 tends to axially translate the carrier driver ring 212. An axial translation of the carrier driver ring 212 tends to guide the dowels 228, 230 in the grooves 220, 222, respectively. Since the first and second carrier members 208, 210 are substantially fixed in the axial direction, the first and second carrier members 208, 210 rotate relative to each other as the dowels 228, 230 travel axially in the grooves 220, 222, respectively.


Referring specifically now to FIGS. 11-13, the longitudinal grooves formed on the carrier driver ring 212 can take many forms in order to provide the desired relative rotation of the first carrier member 208 with respect to the second carrier member 210. For example, FIG. 11 shows the longitudinal groove 220 and the off-set longitudinal groove 222. On one side of the carrier driver ring 212 the grooves 220, 222 are separated by a distance 232. On the opposite side of the carrier driver ring 212, the grooves 220, 222 are separated by a distance 234. In the embodiment illustrated in FIG. 12, the carrier driver ring 212 is provided with the longitudinal grooves 220 and a set of curved groove 236. In the embodiment illustrated in FIG. 13, the carrier driver ring 212 is provided with a set of positively off-set longitudinal grooves 238 and a set of negatively off-set longitudinal grooves 240. It should be noted that the embodiments described here are for illustrative purposes and the shape and dimensions of the grooves formed on the carrier ring 212 can be configured by a designer to achieve a desired shift performance. For example, the 232 distance between the longitudinal grooves 220 and the off-set longitudinal grooves 222 can be less than the distance 234 on an opposite side of the carrier driver ring 212. The difference between the distances 232, 234 can be configured to produce a desired rotation of the first carrier member 208 with respect to the second carrier member 210 over an axial displacement of the carrier driver ring 212 along the longitudinal axis 204.


Passing now to FIG. 14, in one embodiment an IVT 300 can be substantially similar to the IVT 200. The IVT 300 can include a housing 302 configured to substantially enclose internal components of the IVT 300. The IVT 300 can be provided with a carrier driver ring 304. The carrier driver ring 304 can be coupled to the first and second carrier members 208, 210 in a similar manner as the carrier driver ring 212. The carrier driver ring 304 can be configured to translate axially by an actuator such as a motor (not shown). In one embodiment, the carrier driver ring 304 is radially supported on an output ring 306. The output ring 306 is operably coupled to each of the traction planet assemblies 202.


Turning now to FIG. 15, in one embodiment an IVT 400 can have a number of traction planet assemblies 402 arranged angularly about a main shaft 404. Each traction planet assembly 402 couples to first and second traction rings 406, 408, respectively. Each traction planet assembly 402 couples to an idler assembly 410. The idler assembly 410 is located radially inward of each traction planet assembly 402. In one embodiment, each traction planet assembly 402 is coupled to first and second carrier members 412, 414. The first and second carrier members 412, 414 can be substantially similar to the first and second carrier members 116, 118, respectively. In one embodiment, the first carrier member 412 is rigidly attached to the main shaft 404. The first and second carrier members 412, 414 and the main shaft 404 can be adapted to operably couple to a source for rotational power (not shown). The second carrier member 414 is adapted to rotate with respect to the first carrier member 412. In one embodiment, the second carrier 414 is coupled to a torsion plate 416. The torsion plate 416 is coaxial with the second carrier 414 and can be rigidly attached to the second carrier plate 414 with splines, weld, or other appropriate fastening means. In one embodiment, the torsion plate 416 is rigid or stiff in a rotational direction but has a degree of flexibility in the axial direction, as is common among torsion plates. This degree of flexibility in the axial direction provides a spring-like compliance to the torsion plate 416. The torsion plate 416 is coupled to a carrier driver nut 418 at a radially inward location. The carrier driver nut 418 has an inner bore formed with helical splines 420 that are arranged to engage mating helical splines formed on the main shaft 404. The carrier driver nut 418 is operably coupled to an actuator coupling 422. In one embodiment, the actuator coupling 422 is coupled to a linear actuator such as a servo motor or manual lever (not shown) that produces a force depicted as a vector 424 in FIG. 15. In one embodiment, the actuator coupling 422 is substantially non-rotatable about the main shaft 404.


During operation of the IVT 400, a change in transmission ratio is achieved by axially translating actuator coupling 422. An axial translation of the actuator coupling 422 tends to axially translate the carrier driver nut 418. Since the carrier driver nut 418 engages the main shaft 404 on helical splines 420, an axial translation of the carrier driver nut 418 with respect to the main shaft 404 tends to facilitate a relative rotation between the carrier driver nut 418 and the main shaft 404. The torsion plate 416 rotates as the carrier driver nut 418 rotates, which tends to rotate the second carrier member 414 with respect to the first carrier member 412.


Referring now to FIGS. 16-19, in one embodiment an IVT 500 can be provided with a number of traction planet assemblies 502 in contact with, and radially outward of an idler assembly 504. Each traction planet assembly 502 is in contact with first and second traction rings 506, 508, respectively. In one embodiment, the first traction ring 506 is substantially non-rotatable. The IVT 500 can be provided with an output shaft 510. The output shaft 510 couples to a common axial force generator coupling 512, which is configured to engage the second traction ring 508. Each traction planet assembly 502 is guided and supported by first and second carrier members 514, 516, respectively. The first and second carrier members 514, 516 are provided with guide slots 513, 515, respectively. In one embodiment, the guide slots 513, 515 are substantially similar to guide slots 170, 174, respectively. The first and second carrier members 514, 516 are adapted to receive a power input from a rotational power source (not shown). In one embodiment, an input shaft 518 can be coupled to a drive gear 520 that engages a carrier gear 522. The carrier gear 522 facilitates the transfer of power to the first and second carrier members 514, 516. The output shaft 510 can be supported by a bearing, for example, on the housing 524. In one embodiment, the housing 524 is formed with two parts that are fastened together to substantially enclose the internal components of the IVT 500.


In one embodiment, the IVT 500 is provided with a center shaft 526 that substantially defines a longitudinal axis of the IVT 500. The center shaft 526 can be configured to support the first and second carrier members 514, 516. In some embodiments, the second carrier member 516 is rigidly attached to the center shaft 526. The first carrier member 514 can be piloted onto the center shaft 526 so that the first carrier member 514 can rotate with respect to the second carrier member 516. One end of the center shaft 526 can be configured to support an actuator coupling 528. In one embodiment, a bearing 529 supports the actuator coupling 528 on the center shaft 514. The bearing 529 is configured to allow axial translation of the actuator coupling 528 with respect to the center shaft 526. The actuator coupling 528 is attached to the housing 524 with splines and is substantially non-rotatable with respect to the center shaft 526. In one embodiment, the actuator coupling 528 is coupled to a linear actuator (not shown) to facilitate an axial translation of the actuator coupling 528. The actuator coupling 528 couples with a bearing 530 to a carrier driver hub 532. The carrier driver hub 532 couples to the first and second carrier members 514, 516.


Referring now specifically to FIGS. 17-19, the carrier driver hub 532 can be provided with a number of rods 534 extending from a substantially cylindrical body. Each of the rods 534 is provided with a roller 536. The rods 534 engage a number of longitudinal slots 538 formed on the second carrier member 516. The rollers 536 engage a number of longitudinal slots 540 formed on the first carrier member 514. The longitudinal slots 538 are substantially parallel with the longitudinal axis of IVT 500. The longitudinal slots 540 are angled with respect to the longitudinal axis of IVT 500 when viewed in the plane of the page of FIG. 19.


During operation of the IVT 500, a change in transmission ratio is achieved by axially translating the actuator coupling 528. The axial translation of the actuator coupling 528 tends to axially translate the carrier driver hub 532. As the carrier driver hub 532 translates axially, the rods 534 and rollers 536 axially translate along the longitudinal slots 538, 540, respectively. Since the longitudinal slots 540 are angled with respect to the longitudinal slots 540, an axial translation of the rods 534 and rollers 536 causes a relative rotation between the first carrier member 514 and the second carrier member 516, and thereby tends to change the ratio of the IVT 500. In some embodiments, the IVT 500 can be provided with a spring 542 configured to urge the carrier driver hub 532 to one axial end of the IVT 500.


Referring now to FIGS. 20 and 21, in one embodiment an IVT 600 includes a housing 602 coupled to a housing cap 604. The housing 602 and the housing cap 604 support a power input interface such as a pulley 606 and a shift actuator 608. The pulley 606 can be coupled to a drive belt driven by a source of rotational power such as an internal combustion engine (not shown). In one embodiment, the IVT 600 is provided with a main shaft 610 that substantially defines a longitudinal axis of the IVT 600. The main shaft 610 couples to the pulley 606. The IVT 600 includes a plurality of traction planet assemblies 614 coupled to first and second carrier members 616, 618, respectively. The first and second carrier members 616, 618 are provided with guide slots that are substantially similar to the guide slots 170 and the radially offset guide slots 174. In one embodiment, the first and second carrier members 616, 618 have a thin and substantially uniform cross-section when viewed in the plane of the page of FIG. 21, which allows various manufacturing techniques, such as sheet metal stamping, to be employed in the manufacture of the first and second carrier members 616, 618.


Still referring to FIGS. 20 and 21, in one embodiment, the main shaft 610 couples to the first carrier member 616. Each traction planet assembly 614 is in contact with first and second traction rings 620, 622, respectively. Each traction planet assembly 614 is in contact with an idler assembly 621 at a radially inward location. The second traction ring 622 couples to an axial force generator 624. The axial force generator 624 couples to an output driver 626. In one embodiment, the first traction ring 620 couples to a ground ring 625 and is substantially non-rotatable with respect to the housing 602. The IVT 600 has an output shaft 627 coupled to the output driver 626. The output shaft 627 delivers a rotational power from the IVT 600. In one embodiment, the output shaft 627 is supported in the housing 602 by an angular contact bearing 628 and a radial ball bearing 629 (see for example, FIG. 23). In some embodiments, a shaft seal 631 can be coupled to the output shaft 627 and the housing 602.


In some embodiments, the IVT 600 can be provided with a torque limiter 630 that couples to the second carrier member 618 and the main shaft 610. The IVT 600 can also be provided with a pump assembly 635 coupled to the main shaft 610 (see for example, FIG. 22). In one embodiment, the pump assembly 635 can use a gerotor type pump to pressurize transmission fluid and distribute it to internal components of the IVT 600. The pump assembly 635 can be appropriately equipped with hoses and/or lines to route transmission fluid. During operation of the IVT 600, the pump assembly 635 is driven by the main shaft 610.


Referring now to FIGS. 22 and 23, in one embodiment the IVT 600 is provided with a shift control mechanism 640. The shift control mechanism 640 can be used on other types of transmission and is shown here with the IVT 600 as an example. The shift control mechanism 640 can include an actuator linkage 642 coupled to the shift actuator 608. The shift actuator 608 can be coupled to a shift fork 644. In one embodiment, the shift actuator 608 is configured to pivot the shift fork 644 about an axis 646. In one embodiment, the axis 646 is offset from the longitudinal axis of the IVT 600. The shift fork 644 can be supported in the housing cap 604. The shift fork 644 can be coupled to a shift collar 648. The shift collar 648 supports a bearing 650. The shift fork 644 and the shift collar 648 can be coupled, for example, with pins 651. The shift fork 644 and the shift collar 648 are substantially non-rotatable about the longitudinal axis of the IVT 600. In one embodiment, the shift control mechanism 640 includes a carrier driver nut 652. The carrier driver nut 652 couples to the main shaft 610 through a set of helical splines 654. The carrier driver nut 652 couples to the first carrier member 616 through a carrier extension 656. In one embodiment the carrier extension 656 has a set of axial guide slots that are configured to engage the carrier driver nut 652.


During operation of the IVT 600, a shift in the transmission ratio can be achieved by moving the actuator linkage 642 to thereby rotate the shift actuator 608. A rotation of the shift actuator 608 corresponds to pivoting of the shift fork 644 about the axis 646. The pivoting of the shift fork 644 urges the shift collar 648 axially with respect to the main shaft 610. The shift collar 648 thereby axially translates the bearing 650 and carrier driver nut 652. The helical splines 654 tend to rotate the carrier driver nut 652 as the carrier driver nut 652 moves axially. The rotation of the carrier driver nut 652 is typically a small angle. The carrier extension 656, and consequently the first carrier member 616, is guided through a rotation by the carrier driver nut 652. As explained previously in reference to FIG. 6, a rotation of the first carrier member 616 with respect to the second carrier member 618 causes a shift in the transmission ratio of the IVT 600.


In one embodiment, the helical splines 654 have a lead in the range of 200-1000 mm. For some applications, the lead is in the range of 400-800 mm. The lead is related to how much friction is in the system that can counteract a phenomenon known as back torque shifting. The lead can be sized to reduce the input force on the carrier driver nut 652, the required rotation of the first carrier member 616 to shift through the ratio, and available package space. The sizing of the lead is subject to design requirements, and could also be impacted by testing results.


Turning now to FIGS. 24 and 25, in one embodiment the IVT 600 can be provided with a torque limiter 630 coupled to the second carrier member 618. The torque limiter 630 can be used with other types of transmissions and is shown here with the IVT 600 as an example. The second carrier member 618 is provided with a piloting shoulder 660 that is configured to pilot to the main shaft 610. The second carrier member 618 has a number of openings 662 arranged radially about the piloting shoulder 660. The openings 662 are sized appropriately to couple to a plurality of springs 664. In one embodiment, the springs 664 are coil springs having end caps 666. The torque limiter 630 includes a spring carrier 668. The springs 664 are coupled to the spring carrier 668. In some embodiments, a number of retaining dowels 670 are provided on the spring carrier 668 to mate with each end cap 666 in order to facilitate retaining the springs 664 on the spring carrier 668. The spring carrier 668 couples to the main shaft 610 with a splined inner bore 672.


In one embodiment, the torque limiter 630 includes a carrier cap 676 coupled to the second carrier member 618. In some embodiments, the spring carrier 668 is axially located between the second carrier member 618 and the carrier cap 676. The carrier cap 676 can be provided with a number of tabs 678 to facilitate attachment to the second carrier member 618 with, for example, rivets 679. The carrier cap 676 can be provided with a number of openings 680 arranged radially about a piloting shoulder 682. In one embodiment, the piloting shoulder 682 cooperates with a mating shoulder 684 formed on the spring carrier 668.


During operation of the IVT 600, torque can be limited to a predetermined value by using the torque limiter 630. The main shaft 610 is adapted to receive a rotational power from the pulley 606. The rotational power is transferred to the first carrier member 616 and the spring carrier 668. The spring carrier 668 transfers the rotational power to the second carrier member 618 via the springs 664. The springs 664 are sized appropriately so that the springs 664 deflect when an output torque is above a predetermined value or in the case when a torque on the second carrier member 618 is above a predetermined value. The deflection of springs 664 corresponds to a rotation of the second carrier member 618 with respect to the first carrier member 616 thereby shifting the transmission ratio. The shift in transmission ratio reduces the torque on the second carrier member 618.


Turning now to FIGS. 26-29, in one embodiment, the IVT 600 can be provided with a disengagement mechanism 700. The disengagement mechanism 700 can be used with other types of transmissions and is shown here with the IVT 600 as an example. In one embodiment, the disengagement mechanism 700 includes a outer ring 702 coupled to a coupling ring 704. The coupling ring 704 is attached to the traction ring 620. In some embodiments, the outer ring 702 and the coupling ring 704 replace the ground ring 625. The outer ring 702 couples to the housing 602 and housing cap 604. In some embodiments, an actuator (not shown) couples to the outer ring 702. For example, the actuator can be a lever (not shown) that extends through the housing 602 to thereby enable the outer ring 702 to be rotated. The outer ring 702 is provided with a number of ramps 706 about the inner circumference. The ramps 706 couple to a set of splines 708 formed on the outer periphery of the inner ring 704. During operation of the IVT 600, decoupling of the input from the output can be achieved by rotating the outer ring 706. The rotation of the outer ring 706 corresponds to an axial displacement of the traction ring 620 from the traction planet assemblies 614.


Passing now to FIGS. 29-30, in one embodiment, the IVT 600 can be provided with a disengagement mechanism 800. The disengagement mechanism 800 can be used with other types of transmissions and is shown here with the IVT 600 as an example. In some embodiments, the disengagement mechanism 800 has a drive shaft 802 that can be selectively coupled to an output shaft 804 using a coupling 806. Once assembled the drive shaft 802 and the output shaft 804 can be used in place of the output shaft 627. The coupling 806 is configured to engage a set of splines 808 formed on an inner diameter of the output shaft 804. In some embodiments, a spring (not shown) can be inserted between the coupling and the output shaft 804. The spring tends to bias the coupling 806 to the position depicted in FIG. 29, which is an engaged position. The coupling 806 is attached to a cable pull 810. The cable pull 810 can be supported on an internal bore of the coupling 806 by a bearing 812. The cable pull 810 can be attached to a push-pull cable (not shown). The cable can be coupled to an external linkage that can be actuated to tension the cable and move the coupling 806 axially. A cable guide 814 provides a path through which the cable can enter the inner bore of the output shaft 814 without interference. The cable guide 814 is supported with a bearing 816. During operation of the IVT 600, the output shaft 804 can be selectively coupled to an engaged position, as illustrated in FIG. 30, by tensioning the cable (not shown) and axially translating the coupling 806.


Referring now to FIGS. 31-34, in one embodiment, the IVT 600 can be provided with a disengagement mechanism 900. The disengagement mechanism 900 can be used with other types of transmissions and is shown here with the IVT 600 as an example. In one embodiment, the disengagement mechanism 900 can replace the output shaft 627. The disengagement mechanism 900 can include an elongated shaft 902 suitably configured to be supported in the housing 602 by bearings 628, 629 and seal 630. The elongated shaft 902 can have a first end 901 and a second end 903. The first end 901 can be adapted to couple to an output load with, for example, a keyway or other fastening means. The second end 903 of the shaft 902 is provided with a number of retractable teeth 904. The retractable teeth 904 are positioned radially about the circumference of the end 903. The retractable teeth 904 can be inserted between, and retained by axial extensions 906 formed on the end 903. The retractable teeth 904 are operably coupled to a sliding member 908. The sliding member 908 is coupled to an actuator coupling 910. The sliding member 908 guides the retractable teeth 904 to either an engaged position or a disengaged position. In one embodiment, the retractable teeth can 904 can be coupled to a spring member (not shown) that is configured to bias the retractable teeth 904 to a position depicted in FIGS. 31 and 32. In said position, the retractable teeth 904 can engage, for example, the output driver 626. An actuator (not shown) can be configured to couple to the actuator coupling 910 through an inner bore of the shaft 902 to facilitate movement of the sliding member 908 and correspondingly move the teeth 904 to a second position depicted in FIGS. 33 and 34. In said position, the teeth 904 are displaced radially so that the output driver 626 is decoupled from the shaft 902.


Turning now to FIG. 35, in one embodiment, a hydraulic system 950 can be used with the IVT 100, the IVT 600, or other embodiments of transmissions. The hydraulic system 950 includes a sump 952 having a fill depth 954. In some embodiments, the sump 952 is formed into a lower portion of the housing 602, for example. For illustration purposes, rotating components of the IVT 600 are depicted as rotating components 955 in FIG. 35. The hydraulic system 950 includes a pump 956 that can be substantially similar to the pump assembly 635, for example. The pump 956 transports fluid from the sump 952 to a reservoir 958. In one embodiment, the reservoir 958 is provided with a first orifice 960 and a second orifice 962. The first orifice 960 is positioned above the second orifice 960. The reservoir 958 is located above the rotating components 955 and the sump 952. In one embodiment, the reservoir 958 can be formed on the housing 602, for example. In other embodiments, the reservoir 958 is attached to the outside of the housing 602 and configured to have fluid communication with the rotating components 958 and the sump 952.


During assembly of the IVT 600, for example, a fluid is added to the sump 952. In some embodiments, the volume of the sump 952 can be small, therefore variation in the fluid volume added to the sump 952 can have a significant influence on the fill depth 954. In some instances, the fill depth 954 can be high enough to cause fluid in the sump 952 to contact the rotating components 955. Contact between the fluid in the sump 952 and the rotating components 955 can create drag and windage, which are known to be problematic. However, in certain instances, it may be desirable to increase the volume of fluid added to the sump 952. For example, increasing the volume of fluid may improve thermal characteristics, durability, and maintenance. Therefore, the hydraulic system 952 can be implemented to facilitate the increase in fluid volume added to the sump 952 and maintain a fill depth 954 below the rotating components 955.


During operation of the IVT 600, for example fluid is drawn from the sump 952 by the pump 956, which lowers the fill depth 954. The fluid is pressurized and delivered by the pump 956 to the reservoir 958. The reservoir 958 receives pressurized fluid and fills the volume of the reservoir 958. The first and second orifices 960, 962 are sized appropriately so that once the reservoir 958 is under pressure, fluid can flow from the first orifice 960 while substantially no fluid flows from the second orifice 962. In some embodiments, the second orifice 962 can be a check valve that is configured to be open when the reservoir 958 is depressurized, and closed when the reservoir 958 is pressurized. The fluid flow from the first orifice 960 is directed to the rotating components 955 to provide lubrication and cooling. During operation of the IVT 600, for example, the reservoir 958 accumulates a volume of fluid. Once operation of the IVT 600 ceases, the accumulated volume drains from the reservoir 958 and returns to the sump 952.


Referring now to FIGS. 36-38, in one embodiment an IVT 1000 can be substantially similar to the IVT 100. For clarity, only certain internal components of the IVT 1000 are shown. In one embodiment, the IVT 1000 includes a number of balls 1001 arranged angularly about a longitudinal axis 1002. Each ball 1001 is configured to rotate about an axle 1003 that forms a tiltable axis. One end of the axle 1003 is provided with a spherical roller 1004. An opposite end of the axle 1003 is coupled to a guide block 1005 with, for example, a pin 1010. In one embodiment, the guide block 1005 has an extension 1006. The IVT 1000 can include a first carrier member 1007 that is substantially similar to the carrier member 118. The first carrier member 1007 is configured to couple to the spherical rollers 1004 to provide the axles 1003 with a suitable degree of freedom. The IVT 1000 can include a second carrier member 1008 that is configured to operably couple to the guide blocks 1005. The IVT 100 is provided with a shifting plate 1012 arranged coaxially with the first and second carrier members 1007, 1008. The shifting plate 1012 couples to the extensions 1006. In one embodiment, the shifting plate 1012 can be actuated with, for example, the shift control mechanism 140. The shifting plate 1012 is configured to rotate relative to the first and second carrier members 1007, 1008.


Referring specifically now to FIG. 38, in one embodiment, the shifting plate 1012 is provided with a number of slots 1014. The extensions 1006 couple to the slots 1014. For illustration purposes, only one of the slots 1014 is shown. The slot 1014 can be illustrated as having three portions: a first portion 1015, a middle portion 1016, and a third portion 1017. The middle portion 1016 can be defined as the arc length between a set of radial construction lines 1018, 1019, respectively. The first portion 1015 and the third portion 1017 are angularly off-set from the radial construction lines 1018, 1019, respectively, in a substantially similar way as the radially off-set slots guide slots 174 are offset from the radial construction line 76. During operation of the IVT 1000, a change in transmission ratio can be achieved by rotating the shifting plate 1012 with respect to the first and second carrier members 1007, 1008. The extensions 1006 are guided by the slots 1014. When the extension 1006 is positioned in the first portion 1015 of the slot 1014, the transmission ratio can be a forward or positive ratio. When the extension 1006 is positioned in the third portion 1017 of the slot 1014, the transmission ratio can be a reverse or negative ratio. When the extension 1006 is positioned in the middle portion 1016, the transmission ratio is in neutral or a condition referred to as “powered-zero.” The dimensions of the slot 1014 can be appropriately sized to accommodate a desired relationship between a change in the transmission ratio and a change in, for example, a change in an actuator position.


It should be noted that the description above has provided dimensions for certain components or subassemblies. The mentioned dimensions, or ranges of dimensions, are provided in order to comply as best as possible with certain legal requirements, such as best mode. However, the scope of the inventions described herein are to be determined solely by the language of the claims, and consequently, none of the mentioned dimensions is to be considered limiting on the inventive embodiments, except in so far as any one claim makes a specified dimension, or range of thereof, a feature of the claim.


The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated.

Claims
  • 1. A shifting mechanism for an infinitely variable transmission (IVT) having a longitudinal axis and a plurality of traction planet assemblies arranged angularly about the longitudinal axis, each traction planet assembly having a tiltable axle, the shifting mechanism comprising: a first carrier member having a first plurality of guide slots, the first carrier member configured to guide a first end of each tiltable axle of the traction planet assemblies;a second carrier member having a second plurality of guide slots, the second carrier member configured to guide a second end of each tiltable axle of the traction planet assemblies, wherein the first and second carrier members are rotatable about the longitudinal axis; anda carrier driver nut coupled to the first carrier member, the carrier driver nut adapted to translate axially to cause a rotation of the first carrier member with respect to the second carrier member.
  • 2. The shifting mechanism of claim 1, wherein the first plurality of guide slots are offset.
  • 3. The shifting mechanism of claim 2, further comprising a main shaft positioned along the longitudinal axis.
  • 4. The shifting mechanism of claim 3, wherein the main shaft is operably coupled to the first and second carrier members.
  • 5. The shifting mechanism of claim 4, wherein the carrier driver nut is adapted to translate axially along the main shaft.
  • 6. The shifting mechanism of claim 1, further comprising a shift fork operably coupled to the carrier driver nut, wherein the shift fork has a pivot axis that is offset from the longitudinal axis, wherein a pivoting of the shift fork corresponds to an axial translation of the carrier driver nut.
  • 7. An infinitely variable transmission (IVT) having a main shaft positioned along a longitudinal axis, the IVT comprising: a plurality of traction planet assemblies arranged angularly about the longitudinal axis, each traction planet assembly having a tiltable axle;a first carrier member having a first plurality of guide slots, the first carrier member configured to guide a first end of each tiltable axle of the traction planet assemblies;a second carrier member having a second plurality of guide slots, the second carrier member configured to guide a second end of each tiltable axle of the traction planet assemblies, wherein at least one of the first carrier member and the second carrier member receives a rotational power input from the main shaft, and wherein the first carrier member is capable of rotating with respect to the second carrier member, anda carrier driver nut coupled to the first carrier member, the carrier driver nut adapted to translate axially, wherein an axial translation of the carrier driver nut corresponds to a rotation of the first carrier member with respect to the second carrier member.
  • 8. The IVT of claim 7, wherein the main shaft is operably coupled to the first carrier member and the second carrier member.
  • 9. The IVT of claim 8, wherein the first and second carrier members receive the rotational power from the main shaft.
  • 10. The IVT of claim 7, wherein the carrier driver nut is adapted to translate axially along the main shaft.
  • 11. The IVT of claim 7, wherein an axial translation of the carrier driver nut corresponds to a rotation of the carrier driver nut.
  • 12. The IVT of claim 7, further comprising a first traction ring in contact with the plurality of traction planet assemblies, the first traction ring substantially non-rotatable about the longitudinal axis.
  • 13. The IVT of claim 7, further comprising a second traction ring in contact with the plurality of traction planet assemblies, the second traction ring adapted to provide a power output.
  • 14. The IVT of claim 13, further comprising a disengagement mechanism for mechanically decoupling the second traction ring from a load.
  • 15. The IVT of claim 7, further comprising a shift fork operably coupled to the carrier driver nut, wherein the shift fork has a pivot axis that is offset from the longitudinal axis, wherein a pivoting of the shift fork corresponds to an axial translation of the carrier driver nut.
  • 16. The IVT of claim 15, wherein the axial translation of the carrier driver nut corresponds to a rotation of the carrier driver nut about the longitudinal axis.
  • 17. The IVT of claim 7, wherein the first plurality of guide slots are offset.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/274,043, filed May 9, 2014 and scheduled to issue as U.S. Pat. No. 9,360,089 on Jun. 7, 2016, which is a continuation of U.S. patent application Ser. No. 13/970,035, filed Aug. 19, 2013 and issued as U.S. Pat. No. 8,721,485 on May 13, 2014, which is a continuation of U.S. patent application Ser. No. 13/035,683, filed Feb. 25, 2011 and issued as U.S. Pat. No. 8,512,195 on Aug. 20, 2013, which claims the benefit of U.S. Provisional Patent Application No. 61/310,224, filed Mar. 3, 2010. The disclosures of all of the above-referenced prior applications, publications, and patents are considered part of the disclosure of this application, and are incorporated by reference herein in their entirety.

US Referenced Citations (652)
Number Name Date Kind
719595 Huss Feb 1903 A
1121210 Techel Dec 1914 A
1175677 Barnes Mar 1916 A
1207985 Null et al. Dec 1916 A
1380006 Nielsen May 1921 A
1390971 Samian Sep 1921 A
1558222 Beetow Oct 1925 A
1629902 Arter et al. May 1927 A
1686446 Gilman Oct 1928 A
1774254 Daukus Aug 1930 A
1793571 Vaughn Feb 1931 A
1847027 Thomsen et al. Feb 1932 A
1850189 Weiss Mar 1932 A
1858696 Weiss May 1932 A
1865102 Hayes Jun 1932 A
1978439 Sharpe Oct 1934 A
2030203 Gove et al. Feb 1936 A
2060884 Madle Nov 1936 A
2086491 Dodge Jul 1937 A
2100629 Chilton Nov 1937 A
2109845 Madle Mar 1938 A
2112763 Cloudsley Mar 1938 A
2131158 Almen et al. Sep 1938 A
2134225 Christiansen Oct 1938 A
2152796 Erban Apr 1939 A
2196064 Erban Apr 1940 A
2209254 Ahnger Jul 1940 A
2259933 Holloway Oct 1941 A
2269434 Brooks Jan 1942 A
2325502 Auguste Jul 1943 A
RE22761 Wemp May 1946 E
2461258 Brooks Feb 1949 A
2469653 Kopp May 1949 A
2480968 Ronal Sep 1949 A
2553465 Monge May 1951 A
2586725 Henry Feb 1952 A
2595367 Picanol May 1952 A
2596538 Dicke May 1952 A
2597849 Alfredeen May 1952 A
2675713 Acker Apr 1954 A
2696888 Chillson et al. Dec 1954 A
2868038 Billeter May 1955 A
2716357 Rennerfelt Aug 1955 A
2730904 Rennefelt Jan 1956 A
2748614 Weisel Jun 1956 A
2959070 Flinn Jan 1959 A
2873911 Perrine Feb 1959 A
2874592 Oehrli Feb 1959 A
2883883 Chillson Apr 1959 A
2891213 Kern Jun 1959 A
2901924 Banker Sep 1959 A
2913932 Oehrli Nov 1959 A
2931234 Hayward Apr 1960 A
2931235 Hayward Apr 1960 A
2949800 Neuschotz Aug 1960 A
2959063 Perry Nov 1960 A
2959972 Madson Nov 1960 A
2964959 Beck Dec 1960 A
3008061 Mims et al. Nov 1961 A
3035460 Guichard May 1962 A
3048056 Wolfram Aug 1962 A
3051020 Hartupee Aug 1962 A
3086704 Hurtt Apr 1963 A
3087348 Kraus Apr 1963 A
3154957 Kashihara Nov 1964 A
3163050 Kraus Dec 1964 A
3176542 Monch Apr 1965 A
3184983 Kraus May 1965 A
3204476 Rouverol Sep 1965 A
3209606 Yamamoto Oct 1965 A
3211364 Wentling et al. Oct 1965 A
3216283 General Nov 1965 A
3229538 Schlottler Jan 1966 A
3237468 Schlottler Mar 1966 A
3246531 Kashihara Apr 1966 A
3248960 Schottler May 1966 A
3273468 Allen Sep 1966 A
3280646 Lemieux Oct 1966 A
3283614 Hewko Nov 1966 A
3292443 Felix Dec 1966 A
3340895 Osgood, Jr. et al. Sep 1967 A
3407687 Hayashi Oct 1968 A
3430504 Dickenbrock Mar 1969 A
3439563 Petty Apr 1969 A
3440895 Fellows Apr 1969 A
3464281 Hiroshi et al. Sep 1969 A
3477315 Macks Nov 1969 A
3487726 Burnett Jan 1970 A
3487727 Gustafsson Jan 1970 A
3574289 Scheiter et al. Apr 1971 A
3581587 Dickenbrock Jun 1971 A
3661404 Bossaer May 1972 A
3695120 Titt Oct 1972 A
3707888 Schottler Jan 1973 A
3727473 Bayer Apr 1973 A
3727474 Fullerton Apr 1973 A
3736803 Horowitz et al. Jun 1973 A
3768715 Tout Oct 1973 A
3800607 Zurcher Apr 1974 A
3802284 Sharpe et al. Apr 1974 A
3810398 Kraus May 1974 A
3820416 Kraus Jun 1974 A
3866985 Whitehurst Feb 1975 A
3891235 Shelly Jun 1975 A
3934493 Hillyer Jan 1976 A
3954282 Hege May 1976 A
3987681 Keithley et al. Oct 1976 A
3996807 Adams Dec 1976 A
4023442 Woods et al. May 1977 A
4098146 McLarty Jul 1978 A
4103514 Grosse-Entrup Aug 1978 A
4159653 Koivunen Jul 1979 A
4169609 Zampedro Oct 1979 A
4177683 Moses Dec 1979 A
4227712 Dick Oct 1980 A
4314485 Adams Feb 1982 A
4345486 Olesen Aug 1982 A
4369667 Kemper Jan 1983 A
4382186 Cronin May 1983 A
4391156 Tibbals Jul 1983 A
4459873 Black Jul 1984 A
4464952 Stubbs Aug 1984 A
4468984 Castelli et al. Sep 1984 A
4494524 Wagner Jan 1985 A
4496051 Ortner Jan 1985 A
4501172 Kraus Feb 1985 A
4515040 Takeuchi et al. May 1985 A
4526255 Hennessey et al. Jul 1985 A
4546673 Shigematsu et al. Oct 1985 A
4560369 Hattori Dec 1985 A
4567781 Russ Feb 1986 A
4569670 McIntosh Feb 1986 A
4574649 Seol Mar 1986 A
4585429 Marier Apr 1986 A
4617838 Anderson Oct 1986 A
4630839 Seol Dec 1986 A
4631469 Tsuboi et al. Dec 1986 A
4651082 Kaneyuki Mar 1987 A
4663990 Itoh et al. May 1987 A
4700581 Tibbals, Jr. Oct 1987 A
4713976 Wilkes Dec 1987 A
4717368 Yamaguchi et al. Jan 1988 A
4735430 Tomkinson Apr 1988 A
4738164 Kaneyuki Apr 1988 A
4744261 Jacobson May 1988 A
4756211 Fellows Jul 1988 A
4781663 Reswick Nov 1988 A
4838122 Takamiya et al. Jun 1989 A
4856374 Kreuzer Aug 1989 A
4869130 Wiecko Sep 1989 A
4881925 Hattori Nov 1989 A
4900046 Aranceta-Angoitia Feb 1990 A
4909101 Terry Mar 1990 A
4918344 Chikamori et al. Apr 1990 A
4964312 Kraus Oct 1990 A
5006093 Itoh et al. Apr 1991 A
5020384 Kraus Jun 1991 A
5025685 Kobayashi et al. Jun 1991 A
5033322 Nakano Jul 1991 A
5033571 Morimoto Jul 1991 A
5037361 Takahashi Aug 1991 A
5044214 Barber Sep 1991 A
5059158 Bellio et al. Oct 1991 A
5069655 Schivelbusch Dec 1991 A
5083982 Sato Jan 1992 A
5099710 Nakano Mar 1992 A
5121654 Fasce Jun 1992 A
5125677 Ogilvie et al. Jun 1992 A
5138894 Kraus Aug 1992 A
5156412 Meguerditchian Oct 1992 A
5230258 Nakano Jul 1993 A
5236211 Meguerditchian Aug 1993 A
5236403 Schievelbusch Aug 1993 A
5267920 Hibi Dec 1993 A
5273501 Schievelbusch Dec 1993 A
5318486 Lutz Jun 1994 A
5319486 Vogel et al. Jun 1994 A
5330396 Lohr et al. Jul 1994 A
5355749 Obara et al. Oct 1994 A
5375865 Terry, Sr. Dec 1994 A
5379661 Nakano Jan 1995 A
5383677 Thomas Jan 1995 A
5387000 Sato Feb 1995 A
5401221 Fellows et al. Mar 1995 A
5451070 Lindsay et al. Sep 1995 A
5489003 Ohyama et al. Feb 1996 A
5508574 Vlock Apr 1996 A
5562564 Folino Oct 1996 A
5564998 Fellows Oct 1996 A
5601301 Liu Feb 1997 A
5607373 Ochiai et al. Mar 1997 A
5645507 Hathaway Jul 1997 A
5651750 Imanishi et al. Jul 1997 A
5664636 Ikuma et al. Sep 1997 A
5669845 Muramoto et al. Sep 1997 A
5690346 Keskitalo Nov 1997 A
5722502 Kubo Mar 1998 A
5746676 Kawase et al. May 1998 A
5755303 Yamamoto et al. May 1998 A
5799541 Arbeiter Sep 1998 A
5823052 Nobumoto Oct 1998 A
5846155 Taniguchi et al. Dec 1998 A
5888160 Miyata et al. Mar 1999 A
5895337 Fellows et al. Apr 1999 A
5899827 Nakano et al. May 1999 A
5902207 Sugihara May 1999 A
5967933 Valdenaire Oct 1999 A
5976054 Yasuoka Nov 1999 A
5984826 Nakano Nov 1999 A
5995895 Watt et al. Nov 1999 A
6000707 Miller Dec 1999 A
6003649 Fischer Dec 1999 A
6004239 Makino Dec 1999 A
6006151 Graf Dec 1999 A
6012538 Sonobe et al. Jan 2000 A
6015359 Kunii Jan 2000 A
6019701 Mori et al. Feb 2000 A
6029990 Busby Feb 2000 A
6042132 Suenaga et al. Mar 2000 A
6045477 Schmidt Apr 2000 A
6045481 Kumagai Apr 2000 A
6053833 Masaki Apr 2000 A
6053841 Koide et al. Apr 2000 A
6054844 Frank Apr 2000 A
6066067 Greenwood May 2000 A
6071210 Kato Jun 2000 A
6074320 Miyata et al. Jun 2000 A
6076846 Clardy Jun 2000 A
6079726 Busby Jun 2000 A
6083139 Deguchi Jul 2000 A
6086506 Petersmann et al. Jul 2000 A
6095940 Ai et al. Aug 2000 A
6099431 Hoge et al. Aug 2000 A
6101895 Yamane Aug 2000 A
6113513 Itoh et al. Sep 2000 A
6119539 Papanicolaou Sep 2000 A
6119800 McComber Sep 2000 A
6159126 Oshidari Dec 2000 A
6171210 Miyata et al. Jan 2001 B1
6174260 Tsukada et al. Jan 2001 B1
6186922 Bursal et al. Feb 2001 B1
6210297 Knight Apr 2001 B1
6217473 Ueda et al. Apr 2001 B1
6217478 Vohmann et al. Apr 2001 B1
6241636 Miller Jun 2001 B1
6243638 Abo et al. Jun 2001 B1
6251038 Ishikawa et al. Jun 2001 B1
6258003 Hirano et al. Jul 2001 B1
6261200 Miyata et al. Jul 2001 B1
6296593 Gotou Oct 2001 B1
6311113 Danz et al. Oct 2001 B1
6312358 Goi et al. Nov 2001 B1
6322475 Miller Nov 2001 B2
6325386 Shoge Dec 2001 B1
6358174 Folsom et al. Mar 2002 B1
6358178 Wittkopp Mar 2002 B1
6367833 Horiuchi Apr 2002 B1
6371878 Bowen Apr 2002 B1
6375412 Dial Apr 2002 B1
6390945 Young May 2002 B1
6390946 Hibi et al. May 2002 B1
6406399 Ai Jun 2002 B1
6414401 Kuroda et al. Jul 2002 B1
6419608 Miller Jul 2002 B1
6425838 Matsubara et al. Jul 2002 B1
6434960 Rousseau Aug 2002 B1
6440037 Takagi et al. Aug 2002 B2
6459978 Tamiguchi et al. Oct 2002 B2
6461268 Milner Oct 2002 B1
6482094 Kefes Nov 2002 B2
6492785 Kasten et al. Dec 2002 B1
6494805 Ooyama et al. Dec 2002 B2
6499373 Van Cor Dec 2002 B2
6514175 Taniguchi et al. Feb 2003 B2
6532890 Chen Mar 2003 B2
6551210 Miller Apr 2003 B2
6558285 Sieber May 2003 B1
6575047 Reik et al. Jun 2003 B2
6659901 Sakai et al. Dec 2003 B2
6672418 Makino Jan 2004 B1
6676559 Miller Jan 2004 B2
6679109 Gierling et al. Jan 2004 B2
6682432 Shinozuka Jan 2004 B1
6689012 Miller Feb 2004 B2
6721637 Abe et al. Apr 2004 B2
6723014 Shinso et al. Apr 2004 B2
6723016 Sumi Apr 2004 B2
6805654 Nishii Oct 2004 B2
6808053 Kirkwood et al. Oct 2004 B2
6839617 Mensler et al. Jan 2005 B2
6849020 Sumi Feb 2005 B2
6859709 Joe et al. Feb 2005 B2
6868949 Braford Mar 2005 B2
6931316 Joe et al. Aug 2005 B2
6932739 Miyata et al. Aug 2005 B2
6942593 Nishii et al. Sep 2005 B2
6945903 Miller Sep 2005 B2
6949049 Miller Sep 2005 B2
6958029 Inoue Oct 2005 B2
6991575 Inoue Jan 2006 B2
6991579 Kobayashi et al. Jan 2006 B2
7011600 Miller et al. Mar 2006 B2
7011601 Miller Mar 2006 B2
7014591 Miller Mar 2006 B2
7029418 Taketsuna et al. Apr 2006 B2
7032914 Miller Apr 2006 B2
7036620 Miller et al. May 2006 B2
7044884 Miller May 2006 B2
7063195 Berhan Jun 2006 B2
7063640 Miller Jun 2006 B2
7074007 Miller Jul 2006 B2
7074154 Miller Jul 2006 B2
7074155 Miller Jul 2006 B2
7077777 Miyata et al. Jul 2006 B2
7086979 Frenken Aug 2006 B2
7086981 Ali et al. Aug 2006 B2
7094171 Inoue Aug 2006 B2
7111860 Grimaldos Sep 2006 B1
7112158 Miller Sep 2006 B2
7112159 Miller et al. Sep 2006 B2
7125297 Miller et al. Oct 2006 B2
7131930 Miller et al. Nov 2006 B2
7140999 Miller Nov 2006 B2
7147586 Miller et al. Dec 2006 B2
7153233 Miller et al. Dec 2006 B2
7156770 Miller Jan 2007 B2
7160220 Shinojima et al. Jan 2007 B2
7160222 Miller Jan 2007 B2
7163485 Miller Jan 2007 B2
7163486 Miller et al. Jan 2007 B2
7166052 Miller et al. Jan 2007 B2
7166056 Miller et al. Jan 2007 B2
7166057 Miller et al. Jan 2007 B2
7166058 Miller et al. Jan 2007 B2
7169076 Miller et al. Jan 2007 B2
7172529 Miller et al. Feb 2007 B2
7175564 Miller Feb 2007 B2
7175565 Miller et al. Feb 2007 B2
7175566 Miller et al. Feb 2007 B2
7192381 Miller et al. Mar 2007 B2
7197915 Luh et al. Apr 2007 B2
7198582 Miller et al. Apr 2007 B2
7198583 Miller et al. Apr 2007 B2
7198584 Miller et al. Apr 2007 B2
7198585 Miller et al. Apr 2007 B2
7201693 Miller et al. Apr 2007 B2
7201694 Miller et al. Apr 2007 B2
7201695 Miller et al. Apr 2007 B2
7204777 Miller et al. Apr 2007 B2
7214159 Miller et al. May 2007 B2
7217215 Miller et al. May 2007 B2
7217216 Inoue May 2007 B2
7217219 Miller May 2007 B2
7217220 Careau et al. May 2007 B2
7232395 Miller et al. Jun 2007 B2
7234873 Kato et al. Jun 2007 B2
7235031 Miller et al. Jun 2007 B2
7238136 Miller et al. Jul 2007 B2
7238137 Miller et al. Jul 2007 B2
7238138 Miller et al. Jul 2007 B2
7238139 Roethler et al. Jul 2007 B2
7246672 Shirai et al. Jul 2007 B2
7250018 Miller et al. Jul 2007 B2
7261663 Miller et al. Aug 2007 B2
7275610 Kuang et al. Oct 2007 B2
7285068 Hosoi Oct 2007 B2
7288042 Miller et al. Oct 2007 B2
7288043 Shioiri et al. Oct 2007 B2
7320660 Miller Jan 2008 B2
7322901 Miller et al. Jan 2008 B2
7343236 Wilson Mar 2008 B2
7347801 Guenter et al. Mar 2008 B2
7383748 Rankin Jun 2008 B2
7383749 Rankin Jun 2008 B2
7384370 Miller Jun 2008 B2
7393300 Miller et al. Jul 2008 B2
7393302 Miller Jul 2008 B2
7393303 Miller Jul 2008 B2
7395731 Miller et al. Jul 2008 B2
7396209 Miller et al. Jul 2008 B2
7402122 Miller Jul 2008 B2
7410443 Miller Aug 2008 B2
7419451 Miller Sep 2008 B2
7422541 Miller Sep 2008 B2
7422546 Miller et al. Sep 2008 B2
7427253 Miller Sep 2008 B2
7431677 Miller et al. Oct 2008 B2
7452297 Miller et al. Nov 2008 B2
7455611 Miller et al. Nov 2008 B2
7455617 Miller et al. Nov 2008 B2
7462123 Miller et al. Dec 2008 B2
7462127 Miller et al. Dec 2008 B2
7470210 Miller et al. Dec 2008 B2
7478885 Urabe Jan 2009 B2
7481736 Miller et al. Jan 2009 B2
7510499 Miller et al. Mar 2009 B2
7540818 Miller et al. Jun 2009 B2
7547264 Usoro Jun 2009 B2
7574935 Rohs et al. Aug 2009 B2
7591755 Petrzik et al. Sep 2009 B2
7632203 Miller Dec 2009 B2
7651437 Miller et al. Jan 2010 B2
7654928 Miller et al. Feb 2010 B2
7670243 Miller Mar 2010 B2
7686729 Miller et al. Mar 2010 B2
7727101 Miller Jun 2010 B2
7727106 Maheu et al. Jun 2010 B2
7727107 Miller Jun 2010 B2
7727108 Miller et al. Jun 2010 B2
7727110 Miller et al. Jun 2010 B2
7727115 Serkh Jun 2010 B2
7731615 Miller et al. Jun 2010 B2
7762919 Smithson et al. Jul 2010 B2
7762920 Smithson et al. Jul 2010 B2
7785228 Smithson et al. Aug 2010 B2
7828685 Miller Nov 2010 B2
7837592 Miller Nov 2010 B2
7871353 Nichols et al. Jan 2011 B2
7882762 Armstrong et al. Feb 2011 B2
7883442 Miller et al. Feb 2011 B2
7885747 Miller et al. Feb 2011 B2
7887032 Malone Feb 2011 B2
7909723 Triller et al. Mar 2011 B2
7909727 Smithson et al. Mar 2011 B2
7914029 Miller et al. Mar 2011 B2
7959533 Nichols et al. Jun 2011 B2
7963880 Smithson et al. Jun 2011 B2
7967719 Smithson et al. Jun 2011 B2
7976426 Smithson et al. Jul 2011 B2
8066613 Smithson et al. Nov 2011 B2
8066614 Miller et al. Nov 2011 B2
8070635 Miller Dec 2011 B2
8087482 Miles et al. Jan 2012 B2
8123653 Smithson et al. Feb 2012 B2
8133149 Smithson et al. Mar 2012 B2
8142323 Tsuchiya et al. Mar 2012 B2
8167759 Pohl et al. May 2012 B2
8171636 Smithson et al. May 2012 B2
8230961 Schneidewind Jul 2012 B2
8262536 Nichols et al. Sep 2012 B2
8267829 Miller et al. Sep 2012 B2
8313404 Carter et al. Nov 2012 B2
8313405 Bazyn et al. Nov 2012 B2
8317650 Nichols et al. Nov 2012 B2
8317651 Lohr Nov 2012 B2
8321097 Vasiliotis et al. Nov 2012 B2
8342999 Miller Jan 2013 B2
8360917 Nichols et al. Jan 2013 B2
8376889 Hoffman et al. Feb 2013 B2
8376903 Pohl et al. Feb 2013 B2
8382631 Hoffman et al. Feb 2013 B2
8382637 Tange Feb 2013 B2
8393989 Pohl Mar 2013 B2
8398518 Nichols et al. Mar 2013 B2
8469853 Miller et al. Jun 2013 B2
8469856 Thomassy Jun 2013 B2
8480529 Pohl et al. Jul 2013 B2
8496554 Pohl et al. Jul 2013 B2
8506452 Pohl et al. Aug 2013 B2
8512195 Lohr Aug 2013 B2
8517888 Brookins Aug 2013 B1
8535199 Lohr et al. Sep 2013 B2
8550949 Miller Oct 2013 B2
8585528 Carter et al. Nov 2013 B2
8608609 Sherrill Dec 2013 B2
8622866 Bazyn et al. Jan 2014 B2
8626409 Vasiliotis et al. Jan 2014 B2
8628443 Miller et al. Jan 2014 B2
8641572 Nichols et al. Feb 2014 B2
8641577 Nichols et al. Feb 2014 B2
8663050 Nichols et al. Mar 2014 B2
8678974 Lohr Mar 2014 B2
8708360 Miller et al. Apr 2014 B2
8721485 Lohr May 2014 B2
8738255 Carter et al. May 2014 B2
8776633 Armstrong et al. Jul 2014 B2
8784248 Murakami et al. Jul 2014 B2
8790214 Lohr et al. Jul 2014 B2
8818661 Keilers et al. Aug 2014 B2
8827856 Younggren et al. Sep 2014 B1
8827864 Durack Sep 2014 B2
8845485 Smithson et al. Sep 2014 B2
8852050 Thomassy Oct 2014 B2
8870711 Pohl et al. Oct 2014 B2
8888643 Lohr et al. Nov 2014 B2
8900085 Pohl et al. Dec 2014 B2
8920285 Smithson et al. Dec 2014 B2
8924111 Fuller Dec 2014 B2
8961363 Shiina et al. Feb 2015 B2
8992376 Ogawa et al. Mar 2015 B2
8996263 Quinn et al. Mar 2015 B2
9017207 Pohl et al. Apr 2015 B2
9022889 Miller May 2015 B2
9046158 Miller et al. Jun 2015 B2
9074674 Nichols et al. Jul 2015 B2
9086145 Pohl et al. Jul 2015 B2
9121464 Nichols et al. Sep 2015 B2
9182018 Bazyn et al. Nov 2015 B2
9239099 Carter et al. Jan 2016 B2
9249880 Vasiliotis et al. Feb 2016 B2
9273760 Pohl et al. Mar 2016 B2
9279482 Nichols et al. Mar 2016 B2
9291251 Lohr et al. Mar 2016 B2
9328807 Carter et al. May 2016 B2
9360089 Lohr Jun 2016 B2
9371894 Carter et al. Jun 2016 B2
9574643 Pohl Feb 2017 B2
9656672 Schieffelin May 2017 B2
9878719 Carter et al. Jan 2018 B2
20010008192 Morisawa Jul 2001 A1
20010023217 Miyagawa et al. Sep 2001 A1
20010041644 Yasuoka et al. Nov 2001 A1
20010044358 Taniguchi Nov 2001 A1
20010044361 Taniguchi et al. Nov 2001 A1
20020019285 Henzler Feb 2002 A1
20020028722 Sakai et al. Mar 2002 A1
20020037786 Hirano et al. Mar 2002 A1
20020045511 Geiberger et al. Apr 2002 A1
20020049113 Watanabe et al. Apr 2002 A1
20020117860 Man et al. Aug 2002 A1
20020128107 Wakayama Sep 2002 A1
20020161503 Joe et al. Oct 2002 A1
20020169051 Oshidari Nov 2002 A1
20020179348 Tamai et al. Dec 2002 A1
20030015358 Abe et al. Jan 2003 A1
20030015874 Abe et al. Jan 2003 A1
20030022753 Mizuno et al. Jan 2003 A1
20030036456 Skrabs Feb 2003 A1
20030132051 Nishii et al. Jul 2003 A1
20030135316 Kawamura et al. Jul 2003 A1
20030144105 O'Hora Jul 2003 A1
20030160420 Fukuda Aug 2003 A1
20030216216 Inoue et al. Nov 2003 A1
20030221892 Matsumoto et al. Dec 2003 A1
20040038772 McIndoe et al. Feb 2004 A1
20040058772 Inoue et al. Mar 2004 A1
20040067816 Taketsuna et al. Apr 2004 A1
20040082421 Wafzig Apr 2004 A1
20040092359 Imanishi et al. May 2004 A1
20040119345 Takano Jun 2004 A1
20040171457 Fuller Sep 2004 A1
20040204283 Inoue Oct 2004 A1
20040231331 Iwanami et al. Nov 2004 A1
20040254047 Frank et al. Dec 2004 A1
20050037876 Unno et al. Feb 2005 A1
20050064986 Ginglas Mar 2005 A1
20050085979 Carlson et al. Apr 2005 A1
20050181905 Ali et al. Aug 2005 A1
20050184580 Kuan et al. Aug 2005 A1
20050227809 Bitzer et al. Oct 2005 A1
20050229731 Parks et al. Oct 2005 A1
20050233846 Green et al. Oct 2005 A1
20060000684 Agner Jan 2006 A1
20060006008 Brunemann et al. Jan 2006 A1
20060052204 Eckert et al. Mar 2006 A1
20060054422 Dimsey et al. Mar 2006 A1
20060108956 Clark May 2006 A1
20060111212 Ai et al. May 2006 A9
20060154775 Ali et al. Jul 2006 A1
20060172829 Ishio Aug 2006 A1
20060180363 Uchisasai Aug 2006 A1
20060223667 Nakazeki Oct 2006 A1
20060234822 Morscheck et al. Oct 2006 A1
20060234826 Moehlmann et al. Oct 2006 A1
20060276299 Imanishi Dec 2006 A1
20070004552 Matsudaira et al. Jan 2007 A1
20070004556 Rohs et al. Jan 2007 A1
20070099753 Matsui et al. May 2007 A1
20070149342 Guenter et al. Jun 2007 A1
20070155552 De Cloe Jul 2007 A1
20070155567 Miller et al. Jul 2007 A1
20070193391 Armstrong et al. Aug 2007 A1
20070228687 Parker Oct 2007 A1
20080009389 Jacobs Jan 2008 A1
20080032852 Smithson et al. Feb 2008 A1
20080032854 Smithson et al. Feb 2008 A1
20080039269 Smithson et al. Feb 2008 A1
20080039273 Smithson et al. Feb 2008 A1
20080039276 Smithson et al. Feb 2008 A1
20080081728 Faulring et al. Apr 2008 A1
20080139363 Williams Jun 2008 A1
20080149407 Shibata et al. Jun 2008 A1
20080183358 Thomson et al. Jul 2008 A1
20080200300 Smithson et al. Aug 2008 A1
20080228362 Muller et al. Sep 2008 A1
20080284170 Cory Nov 2008 A1
20080305920 Nishii et al. Dec 2008 A1
20090023545 Beaudoin Jan 2009 A1
20090082169 Kolstrup Mar 2009 A1
20090107454 Hiyoshi et al. Apr 2009 A1
20090251013 Vollmer et al. Oct 2009 A1
20100093479 Carter et al. Apr 2010 A1
20100145573 Vasilescu Jun 2010 A1
20100181130 Chou Jul 2010 A1
20110127096 Schneidewind Jun 2011 A1
20110230297 Shiina et al. Sep 2011 A1
20110237385 Andre Parise Sep 2011 A1
20110291507 Post Dec 2011 A1
20110319222 Ogawa et al. Dec 2011 A1
20120035011 Menachem et al. Feb 2012 A1
20120035015 Ogawa et al. Feb 2012 A1
20120258839 Smithson et al. Oct 2012 A1
20130035200 Noji et al. Feb 2013 A1
20130053211 Fukuda et al. Feb 2013 A1
20130288848 Carter et al. Oct 2013 A1
20130337971 Kostrup Dec 2013 A1
20140148303 Nichols et al. May 2014 A1
20140206499 Lohr Jul 2014 A1
20140248988 Lohr et al. Sep 2014 A1
20140274536 Versteyhe Sep 2014 A1
20140323260 Miller et al. Oct 2014 A1
20140329637 Thomassy et al. Nov 2014 A1
20140335991 Lohr et al. Nov 2014 A1
20140365059 Keilers et al. Dec 2014 A1
20150018154 Thomassy Jan 2015 A1
20150039195 Pohl et al. Feb 2015 A1
20150051801 Quinn et al. Feb 2015 A1
20150080165 Pohl et al. Mar 2015 A1
20150226323 Pohl et al. Aug 2015 A1
20150233473 Miller et al. Aug 2015 A1
20150260284 Miller et al. Sep 2015 A1
20150337928 Smithson Nov 2015 A1
20150345599 Ogawa Dec 2015 A1
20150369348 Nichols et al. Dec 2015 A1
20150377305 Nichols et al. Dec 2015 A1
20160003349 Kimura et al. Jan 2016 A1
20160031526 Watarai Feb 2016 A1
20160040763 Nichols et al. Feb 2016 A1
20160061301 Bazyn et al. Mar 2016 A1
20160131231 Carter et al. May 2016 A1
20160146342 Vasiliotis et al. May 2016 A1
20160186847 Nichols et al. Jun 2016 A1
20160201772 Lohr et al. Jul 2016 A1
20160244063 Carter et al. Aug 2016 A1
20160273627 Miller et al. Sep 2016 A1
20160290451 Lohr Oct 2016 A1
20160298740 Carter et al. Oct 2016 A1
20160347411 Yamamoto et al. Dec 2016 A1
20160362108 Keilers et al. Dec 2016 A1
20170072782 Miller et al. Mar 2017 A1
20170082049 David et al. Mar 2017 A1
20170103053 Nichols et al. Apr 2017 A1
20170159812 Pohl et al. Jun 2017 A1
20170163138 Pohl Jun 2017 A1
20170204948 Thomassy et al. Jul 2017 A1
20170204969 Thomassy et al. Jul 2017 A1
20170211698 Lohr Jul 2017 A1
20170268638 Nichols et al. Sep 2017 A1
20170276217 Nichols et al. Sep 2017 A1
20170284519 Kolstrup Oct 2017 A1
20170284520 Lohr et al. Oct 2017 A1
20170314655 Miller et al. Nov 2017 A1
Foreign Referenced Citations (223)
Number Date Country
118064 Dec 1926 CH
1054340 Sep 1991 CN
2245830 Jan 1997 CN
1157379 Aug 1997 CN
1167221 Dec 1997 CN
1178573 Apr 1998 CN
1178751 Apr 1998 CN
1204991 Jan 1999 CN
1283258 Feb 2001 CN
1300355 Jun 2001 CN
1412033 Apr 2003 CN
1434229 Aug 2003 CN
1474917 Feb 2004 CN
1483235 Mar 2004 CN
1568407 Jan 2005 CN
1654858 Aug 2005 CN
2714896 Aug 2005 CN
1736791 Feb 2006 CN
1847702 Oct 2006 CN
1860315 Nov 2006 CN
1940348 Apr 2007 CN
101016076 Aug 2007 CN
498 701 May 1930 DE
1171692 Jun 1964 DE
2021027 Dec 1970 DE
2 310880 Sep 1974 DE
2 136 243 Jan 1975 DE
2436496 Feb 1975 DE
39 40 919 Jun 1991 DE
19851738 May 2000 DE
10155372 May 2003 DE
102011016672 Oct 2012 DE
102012023551 Jun 2014 DE
102014007271 Dec 2014 DE
0 432 742 Dec 1990 EP
0 528 381 Feb 1993 EP
0 528 382 Feb 1993 EP
0 635 639 Jan 1995 EP
0 638 741 Feb 1995 EP
0 831 249 Mar 1998 EP
0 832 816 Apr 1998 EP
0 976 956 Feb 2000 EP
1 136 724 Sep 2001 EP
1 251 294 Oct 2002 EP
1 366 978 Mar 2003 EP
1 433 641 Jun 2004 EP
1 624 230 Feb 2006 EP
2 893 219 Jul 2015 EP
620375 Apr 1927 FR
2460427 Jan 1981 FR
2590638 May 1987 FR
391448 Apr 1933 GB
592320 Sep 1947 GB
906002 Sep 1962 GB
919430 Feb 1963 GB
1132473 Nov 1968 GB
1165545 Oct 1969 GB
1376057 Dec 1974 GB
2031822 Apr 1980 GB
2035481 Jun 1980 GB
2035482 Jun 1980 GB
2080452 Aug 1982 GB
38-025315 Nov 1963 JP
41-3126 Feb 1966 JP
42-2843 Feb 1967 JP
42-2844 Feb 1967 JP
44-1098 Jan 1969 JP
47-000448 Jan 1972 JP
47-207 Jun 1972 JP
47-20535 Jun 1972 JP
47-00962 Nov 1972 JP
47-29762 Nov 1972 JP
48-54371 Jul 1973 JP
49-12742 Mar 1974 JP
49-012742 Mar 1974 JP
49-013823 Apr 1974 JP
49-041536 Nov 1974 JP
50-114581 Sep 1975 JP
51-25903 Aug 1976 JP
51-150380 Dec 1976 JP
52-35481 Mar 1977 JP
53-048166 Jan 1978 JP
55-135259 Oct 1980 JP
56-24251 Mar 1981 JP
56-047231 Apr 1981 JP
56-101448 Aug 1981 JP
56-127852 Oct 1981 JP
58-065361 Apr 1983 JP
59-069565 Apr 1984 JP
59-144826 Aug 1984 JP
59-190557 Oct 1984 JP
60-247011 Dec 1985 JP
61-031754 Feb 1986 JP
61-053423 Mar 1986 JP
61-144466 Jul 1986 JP
61-173722 Oct 1986 JP
61-270552 Nov 1986 JP
62-075170 Apr 1987 JP
63-125854 May 1988 JP
63-219953 Sep 1988 JP
63-160465 Oct 1988 JP
01-039865 Nov 1989 JP
01-286750 Nov 1989 JP
01-308142 Dec 1989 JP
02-130224 May 1990 JP
02-157483 Jun 1990 JP
02-271142 Jun 1990 JP
02-182593 Jul 1990 JP
03-149442 Jun 1991 JP
03-223555 Oct 1991 JP
04-166619 Jun 1992 JP
04-272553 Sep 1992 JP
04-327055 Nov 1992 JP
04-351361 Dec 1992 JP
05-087154 Apr 1993 JP
06-050169 Feb 1994 JP
06-050358 Feb 1994 JP
07-42799 Feb 1995 JP
07-133857 May 1995 JP
07-139600 May 1995 JP
07-259950 Oct 1995 JP
08-135748 May 1996 JP
08-170706 Jul 1996 JP
08-247245 Sep 1996 JP
08-270772 Oct 1996 JP
09-024743 Jan 1997 JP
09-089064 Mar 1997 JP
10-061739 Mar 1998 JP
10-078094 Mar 1998 JP
10-089435 Apr 1998 JP
10-115355 May 1998 JP
10-115356 May 1998 JP
10-194186 Jul 1998 JP
10-225053 Aug 1998 JP
10-511621 Nov 1998 JP
11-063130 Mar 1999 JP
11-091411 Apr 1999 JP
11-210850 Aug 1999 JP
11-240481 Sep 1999 JP
11-257479 Sep 1999 JP
2000-6877 Jan 2000 JP
2000-46135 Feb 2000 JP
2000-177673 Jun 2000 JP
2001-027298 Jan 2001 JP
2001-071986 Mar 2001 JP
2001-107827 Apr 2001 JP
2001-165296 Jun 2001 JP
2001-234999 Aug 2001 JP
2001-328466 Nov 2001 JP
2002-147558 May 2002 JP
2002-250421 Jun 2002 JP
2002-307956 Oct 2002 JP
2002-533626 Oct 2002 JP
2002-372114 Dec 2002 JP
2003-028257 Jan 2003 JP
2003-56662 Feb 2003 JP
2003-161357 Jun 2003 JP
2003-194206 Jul 2003 JP
2003-194207 Jul 2003 JP
2003-320987 Nov 2003 JP
2003-336732 Nov 2003 JP
2004-011834 Jan 2004 JP
2004-38722 Feb 2004 JP
2004-162652 Jun 2004 JP
2004-189222 Jul 2004 JP
2004-526917 Sep 2004 JP
2004-301251 Oct 2004 JP
2005-003063 Jan 2005 JP
2005-096537 Apr 2005 JP
2005-188694 Jul 2005 JP
2005-240928 Sep 2005 JP
2005-312121 Nov 2005 JP
2006-015025 Jan 2006 JP
2006-283900 Oct 2006 JP
2006-300241 Nov 2006 JP
2007-085404 Apr 2007 JP
2007-321931 Dec 2007 JP
2008-002687 Jan 2008 JP
2008-133896 Jun 2008 JP
2010-069005 Apr 2010 JP
2012-225390 Nov 2012 JP
2015-227690 Dec 2015 JP
2015-227691 Dec 2015 JP
2002 0054126 Jul 2002 KR
10-2002-0071699 Sep 2002 KR
98467 Jul 1961 NE
74007 Jan 1984 TW
175100 Dec 1991 TW
218909 Jan 1994 TW
227206 Jul 1994 TW
275872 May 1996 TW
360184 Jun 1999 TW
366396 Aug 1999 TW
401496 Aug 2000 TW
510867 Nov 2002 TW
512211 Dec 2002 TW
582363 Apr 2004 TW
590955 Jun 2004 TW
I225129 Dec 2004 TW
I225912 Jan 2005 TW
I235214 Jan 2005 TW
M294598 Jul 2006 TW
200637745 Nov 2006 TW
200821218 May 2008 TW
WO 9908024 Feb 1999 WO
WO 9920918 Apr 1999 WO
WO 0173319 Oct 2001 WO
WO 03100294 Dec 2003 WO
WO 05083305 Sep 2005 WO
WO 05108825 Nov 2005 WO
WO 05111472 Nov 2005 WO
WO 06091503 Aug 2006 WO
WO 07077502 Jul 2007 WO
WO 08078047 Jul 2008 WO
WO 08100792 Aug 2008 WO
WO 10135407 Nov 2010 WO
WO 11064572 Jun 2011 WO
WO 11101991 Aug 2011 WO
WO 11121743 Oct 2011 WO
12030213 Mar 2012 WO
WO 13042226 Mar 2013 WO
WO 14186732 Nov 2014 WO
WO 16062461 Apr 2016 WO
Non-Patent Literature Citations (19)
Entry
Notification of Reasons for Rejection dated Aug. 23, 2016 in Japanese Patent Application No. 2015-193675.
Office Action dated Apr. 13, 2017 in Korean Patent Application No. 10-2012-7025783.
Office Action dated Feb. 8, 2013 for U.S. Appl. No. 13/035,683.
International Search Report and Written Opinion dated May 30, 2011 for PCT Application No. PCT/US2011/026756.
Examination Report dated Sep. 30, 2013 in European Patent Application No. 11709240.3.
Notification of the First Office Action dated Oct. 8, 2014 in Chinese Patent Application No. 201180020750.X.
Second Office Action dated Sep. 8, 2015 in Chinese Patent Application No. 201180020750.X.
Notification of Reasons for Rejection dated Oct. 21, 2014 in Japanese Patent Application No. 2012-556188.
Decision to Grant a Patent dated Sep. 1, 2015 in Japanese Patent Application No. 2012-556188.
Office Action dated Jul. 31, 2015 in Russian Patent Application No. 20122140712.
Thomassy: An Engineering Approach to Simulating Traction EHL. CVT-Hybrid International Conference Mecc/Maastricht/The Netherlands, Nov. 17-19, 2010; p. 97.
Office Action dated Apr. 15, 2015 in U.S. Appl. No. 14/274,043.
Office Action dated Sep. 30, 2015 in U.S. Appl. No. 14/274,043.
Extended European Search Report dated Mar. 30, 2016 in EP Patent Application No. 15195722.2.
Third Office Action dated Feb. 29, 2016 in Chinese Patent Application No. 201180020750.X.
Office Action dated Dec. 8, 2015 in Taiwan Patent Application No. 100106896.
First Office Action dated Feb. 14, 2018 in Chinese Patent Application No. 201610635634.3
Non Final Notification to Submit an Argument dated Jan. 4, 2018 in Korean Patent Application No. 10-2017-7030044.
Office Action dated Jul. 31, 2017 in Taiwan Patent Application No. 105139626.
Related Publications (1)
Number Date Country
20160281825 A1 Sep 2016 US
Provisional Applications (1)
Number Date Country
61310224 Mar 2010 US
Continuations (3)
Number Date Country
Parent 14274043 May 2014 US
Child 15172668 US
Parent 13970035 Aug 2013 US
Child 14274043 US
Parent 13035683 Feb 2011 US
Child 13970035 US