Inflammation resolution, neuroprotection, and brain repair to promote stroke recovery

Information

  • Research Project
  • 10261320
  • ApplicationId
    10261320
  • Core Project Number
    R01NS105430
  • Full Project Number
    5R01NS105430-04
  • Serial Number
    105430
  • FOA Number
    PA-16-160
  • Sub Project Id
  • Project Start Date
    8/15/2017 - 7 years ago
  • Project End Date
    5/31/2023 - a year ago
  • Program Officer Name
    BOSETTI, FRANCESCA
  • Budget Start Date
    6/1/2021 - 3 years ago
  • Budget End Date
    5/31/2022 - 2 years ago
  • Fiscal Year
    2021
  • Support Year
    04
  • Suffix
  • Award Notice Date
    9/16/2021 - 3 years ago

Inflammation resolution, neuroprotection, and brain repair to promote stroke recovery

Accumulating evidence implicates inflammation and immune responses in the pathophysiology of stroke. Immunomodulation has therefore emerged as a promising therapy for stroke. Regulatory lymphocytes, including CD4+CD25+ regulatory T cells (CD4+ Treg) and IL-10+ regulatory B cells (Bregs) are established modulators of immune responses in the injured brain. We recently discovered that another specialized T cell subpopulation?the CD8+CD122+CD49dhigh regulatory T cell?is among the first to enter the ischemic brain, even preceding the infiltration of CD4+ Tregs and Bregs. The primary function of CD8+ Tregs is to modulate the activities of other immune cells, especially effector T lymphocytes, and to maintain immune homeostasis. We found that selective depletion of circulating CD8+ Tregs exacerbated brain injury and functional outcomes at 3 and 7 days after stroke, and this could be reversed by the reconstitution of CD8+ Tregs. These exciting results suggest that CD8+ Tregs are natural defenders against ischemic brain injury. Further pilot studies discovered that: 1) CD8+ Treg-afforded early protection relies on their infiltration into the ischemic brain, as CD8+ Tregs lacking the ?brain targeting signal? CXCR3 do not infiltrate into the ischemic brain and lose their capacity to reduce brain infarction in CD8+ Treg-depleted mice. 2) The infiltrated CD8+ Tregs undergo genomic reprogramming upon brain infiltration and transcriptional upregulation of a group of genes that possess inflammation-resolving and/or neurorestorative functions, including the leukemia inhibitory factor (LIF) receptor and epidermal growth factor-like transforming growth factor (ETGF). 3) Post-stroke adoptive transfer of CD8+ Tregs significantly reduces brain infarct, enhances white matter integrity, and improves neurological functions up to 14d after tMCAO. 4) Adoptive transfer of ETGF-deficient CD8+ Treg fails to protect against tMCAO. The current proposal will further explore the effects of CD8+ Tregs in ischemic stroke and develop CD8+ Treg adoptive transfer as an immune therapeutic therapy for stroke. The novel central hypothesis to be tested is that brain infiltration of CD8+ Tregs promotes long-term neurological recovery after stroke through LIF/LIFR/ETGF-mediated neuroprotection, resolution of neuroinflammation, and neurorestorative mechanisms. Three specific aims are proposed. Aim 1. Establish post-stroke adoptive transfer of CD8+ Tregs as a clinically relevant treatment against acute ischemic brain infarct. Aim 2. Test the hypothesis that post-stroke adoptive transfer of CD8+ Tregs promotes long-term neurological recovery and neurorestoration after ischemic stroke. Aim 3. Test the hypothesis that LIF/LIFR-mediated release of ETGF is essential for CD8+ Treg-afforded neuroprotection and neurorestoration. This study will be the first to rigorously investigate the role of CD8+ Tregs in ischemic brain injury. The results will improve our understanding of stroke immunomodulation and shed light on CD8+ Treg transfer as a potential therapeutic strategy.

IC Name
NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE
  • Activity
    R01
  • Administering IC
    NS
  • Application Type
    5
  • Direct Cost Amount
    260906
  • Indirect Cost Amount
    147412
  • Total Cost
    408318
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    853
  • Ed Inst. Type
    SCHOOLS OF MEDICINE
  • Funding ICs
    NINDS:408318\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    UNIVERSITY OF PITTSBURGH AT PITTSBURGH
  • Organization Department
    NEUROLOGY
  • Organization DUNS
    004514360
  • Organization City
    PITTSBURGH
  • Organization State
    PA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    152133203
  • Organization District
    UNITED STATES