1. Field of the Invention
The present invention relates to accessories for firearms, or accessories for hunters and shooters, and more specifically to devices that dampen the recoil effects of a discharging firearm.
2. Background Information
When a firearm is discharged, there is a “kick,” or recoil. Recoil is the backward kick or force produced by a gun upon discharge. The inevitable recoil is equal to the derivative of the backward momentum resulting upon discharge.
Recoil of a firearm has been associated with poor shooting ability because of flinching. In other words, the way in which the shooter anticipates, perceives and compensates the shock or pain of recoil can have a significant impact on the shooter's experience and performance. It may also lead to a loss of the desire to shoot larger firearms, which may be more effective for certain purposes. So, if a gun “kicks like a mule,” then the shooter may approach a firearm with too much caution, as he or she will anticipate the recoil and overcompensate as the shot is being fired. This overcompensation may manifest as a jerking motion that can disturb the alignment of the gun and result in a miss.
This perception of recoil is related to the momentum associated with a particular gun. The total force of recoil is associated with the momentum of a gun. This momentum is the product of the firearm's mass and the backwards (recoil) velocity of the gun. Therefore, for a given load, a heavier firearm, i.e., a gun with more mass, will have less momentum upon firing and be directly perceived as having a smaller recoil. Reducing the initial jolt, the rate and/or extent of rearward displacement, and/or any internal impacts in the operating parts of a firearm can reduce the shooter's perception of recoil and may also work to extend the life of the mechanism and its parts.
In an attempt to control or lessen the felt recoil, manufacturers employ different techniques and technologies. A recoil buffer or arrestor is a factory-installed or aftermarket component of firearms, which serves to reduce the velocity of and/or cushion the impact of recoiling parts of a firearm. The simplest form is just a type or variation of resilient/deformable material, like leather pads, gel pads, closed cell foam pads, the rubber butt pad of a shotgun, recoil pads mounted on stocks, or the newer “Navcom” (Noise and Vibration Control Material) shoulder pads. With closed cell foam systems the recoil simply “imprints” the pads in a very localized area, and although the recoil is softened, it still results in “felt recoil” in a very confined region. The gel, leather and Navcom pads have similar problems reducing recoil, and are still inadequate in dissipating the recoil energy as they cannot effectively disperse it broadly.
Another means to control or lessen the felt recoil is via muzzle breaks on the end of a barrel, which can increase the harmful decibel levels by approximately 30%. Such a dramatic acoustic concussion can cause hearing loss to the shooter and to those in the vicinity. In fact, a PH or Guide would prefer that a hunter not arrive in camp with a recoil arrestor on the barrel, which can cause tinnitus, if not permanent hearing loss.
3. Background Art
Current devices or pads are inadequate at effectively dampening recoil, or widely dispersing the recoil, or limited in their scope of application. U.S. Pat. No. 6,257,562, entitled “Liquid filled vibration isolating device” and issued to Takashima on Jul. 10, 2001, is a liquid filled vibration isolating device which is mainly used for supporting a vibration generating body. Significantly, the '562 patent uses a liquid filled device to support an engine or other vibrating part of the automobile, in order to separate the vibration from other components such as the transmission or body of the vehicle.
U.S. Patent Appln. Pub. No. 2006/0254112, entitled “Double air valve recoil dampener for firearms” and filed by Snoderly on May 13, 2005, is a device that uses a dual piston system mounted on the butt section of a firearm. As the gun discharges, the recoil allows air to escape from the holes in the bottom of each cylinder. Significantly, the proposed invention is not mounted on the stock, but worn on the body and utilizes a different method of dissipation of the energy force. In the Snoderly application, the force is still directly in line with the butt section of the stock dampener.
U.S. Pat. No. 7,152,356 (“the '356 patent”), entitled “Recoil reducing accessories for firearms” and issued to Sims on Dec. 26, 2006, is a firearm accessory that uses a pad on the shoulder of the shooter made of a viscoelastic material and a complementary component mounted on the butt section of the stock of the gun. It also utilizes a mushroom-like configuration defined by a head and stem, which can move in 360 degrees to dampen the recoil. Their “pneumatic compression” is in sealed compartments and are not adjustable. The elastomeric pad on the shoulder only cushions the impact by elastic compression of small stems, which are free to move 360 degrees. One major drawback of this type of design is that it maintains the impact still in line with the butt section of the stock. In other words, it will imprint the recoil in line with the stock on the shooter's shoulder.
U.S. Pat. No. 7,055,277 B2, entitled “Recoil reducing accessories for firearms” and issued to Sims on Jun. 6, 2006, is similar to the '356 patent. Also, U.S. Pat. No. 6,976,333, entitled “Recoil reducing accessories for firearms” and issued to Sims on Dec. 20, 2005 is similar to the '356 patent.
U.S. Pat. No. 6,758,466 (“the '466 patent”) is entitled “Fluid-elastomeric damper assembly including internal pumping mechanism” and issued to Russell on Jul. 6, 2004. The mechanical properties, materials, and intent for use of the '466 patent are different than the proposed invention. The '466 patent uses fluid to reduce motion between two structures, such as the moveable rotor and body of an aircraft.
U.S. Pat. No. 6,684,547, entitled “Firearm recoil dampening assembly” and issued to Poff on Feb. 3, 2004, uses a recoil reduction system related to the bolt and stock. It specifically utilizes shock absorbers and spacers between the bolt and stock. It is therefore not worn like the proposed invention and utilizes a totally different technology.
U.S. Pat. No. 5,461,813 (“the '813 patent”), entitled “Air coil” and issued to Mazzola on Oct. 31, 1995, is a recoil pad for a shoulder gun such as a rifle or shotgun having a compressible pad on the butt of the stock to absorb and cushion the shock to the shooter when the gun is fired. Specifically, this patent utilizes a recoil pad attached to the butt section of the stock and uses elastomeric material and a closed-cell-foam containing an air, fluid, or gas. One embodiment includes a bladder and pump for inflation of the recoil pad at the will of the shooter. However, the pad of this '813 patent will still “imprint” the shoulder in the dimensions of the stock as it contacts the skin.
U.S. Pat. No. 7,232,118, entitled “Fluid filled vibration damping device” and issued to Maeno on Jun. 19, 2007, is a fluid filled vibration-damping device that includes an elastic body disposed between a first mounting member and a second mounting member and partially defines a fluid chamber having a non-compressible fluid sealed therein. This patent exhibits vibration damping action on the basis of flow action of the non-compressible fluid created within the fluid chamber during vibration input.
U.S. Pat. No. 4,922,641, entitled “Recoil pad” and issued to Johnson on May 8, 1990, is an improved recoil pad for attachment to the butt end of a firearm's stock. A series of springs, preferably helical, are utilized to reduce the transfer of recoil energy to the shooter. Interior air is released through air channels to reduce the forces opposing compression of the recoil pad. Further, the pad utilizes compressible foam to aid in overall compressibility.
U.S. Pat. No. 5,265,366, entitled “Foam recoil pad for firearms” and issued to Thompson on Nov. 30, 1993, is a recoil pad for attachment to a firearm buttstock of the type having a retaining sleeve and an end wall that communicate to form a unitary boot. The sleeve and wall are constructed of similar density foam material, so as to absorb recoil upon the discharge of the firearm. The predetermined exterior dimension of the unitary boot is substantially larger than the dimension of rifle buttstock. This increased area allows the pad to disperse recoil impact more effectively.
U.S. Pat. No. 1,774,060 (“the '060 patent”), entitled “Firearm cushion” and issued to Hodge on Aug. 26, 1930, is a firearm cushion adapted to function as a shock absorber. Significantly, the '060 patent uses a cap or sleeve attached to the butt section of a firearm stock. There is a pneumatic chamber in the sleeve which allows air to be inserted with a needle. Upon withdrawal of the needle the opening formed automatically closes.
U.S. Pat. No. 6,834,456, entitled “Recoil pad device” and issued to Murello on Dec. 28, 2004, is a recoil pad device that includes a pad having a working surface that increases by more than approximately 15% when moving from a first condition in which the pad is pressed against a shooter and a second condition when the firearm is fired.
U.S. Pat. No. 2,438,142, entitled “Air cushion for gun stocks” and issued to Brower on Mar. 23, 1948, uses a pad placed on the butt section of a firearm stock. Air is compressed out of the tubes or “valves” as the gun recoils.
U.S. Pat. No. 5,375,360, entitled “Cushioned shoulder pad for rifle or shotgun” and issued to Vatterott on Dec. 27, 1994, uses a recoil pad fitted to the butt section of a firearm and another pad pressed against a shoulder of the shooter. The pads “interfit” with each other. When the gun discharges, a seal is effected between the pads and the air is compressed. This causes a cushioning effect, compressing the springs. Eventually the pad members return to their original position after the recoil.
However, to date, no pad or device both effectively dampens the recoil and widely disperses the recoil via a device that can be readily inflated into the pad to any desired degree. There is a need in the art for a recoil suppressor that can be utilized and adjusted for a variety of recoil-sensitive users, types or calibers of firearms, and frequency and type of shooting.
In view of the foregoing, it is an object of the present invention to provide an improved firearm accessory.
It is another object of the present invention to provide an improved air recoil suppressor that is inflatable.
It is another object of the present invention to provide an improved air recoil suppressor using an outer low density polyethylene material and middle inflatable air system.
It is another object of the present invention to provide an improved air recoil suppressor that can have variable inflation or deflation, depending on the need.
It is another object of the present invention to provide an improved, inflatable and adjustable air recoil suppressor that both dampens recoil associated with a firearm discharge and disperses the recoil.
It is another object of the present invention to provide a single, improved, inflatable and adjustable air recoil suppressor that can accommodate recoil sensitivity for a variety of users.
It is another object of the present invention to provide a single, improved, inflatable and adjustable air recoil suppressor that can accommodate a variety of calibers or weapon selections.
It is another object of the present invention to provide a single, improved, inflatable and adjustable air recoil suppressor that can accommodate the user volume and type of shooting.
It is another object of the present invention to provide a single, improved, inflatable and adjustable air recoil suppressor that can be fitted into any vest, shirt, jacket, or vest-like garment.
It is another object of the present invention to provide a single, improved, inflatable and adjustable air recoil suppressor that can help the shooter avoid flinching.
It is another object of the present invention to provide a single, improved, inflatable and adjustable air recoil suppressor that can improve shot placement.
In one aspect of the present technology, the internal circular material, which is very rigid and made of a low density polyethylene material with “memory,” makes contact with each other at the apex or top of the opposing circle to spread the impact 360 degrees from the point of the impact. Thus, this inflatable air system can be utilized and adjusted for a variety of recoil-sensitive users, the type of caliber or weapon selection, and the user volume and type of shooting.
The inflatable air recoil suppressor of the present invention uses a uniquely designed outer low density polyethylene material and middle inflatable air system, which can be varied by the amount of air in the system depending on the need. The design and construction of the outer shell provide some rigidity and disperses the recoil by the internal dimples or circles, which if contacted with the opposing apex of the other internal dimple, will spread the recoil. It also has some “memory” and will return to its preformed shape after the recoil occurs. Specifically, by inflating the device with air or deflating some of the air in the device, the shooter or user can make the necessary adjustments with air pressure of his or her preference. The present invention not only dampens the recoil, but also widely disperses the recoil compared to the other products. The air can be inflated into the pad to the necessary degree, depending on the recoil sensitivity of the user, the caliber or weapon selection, volume or type of shooting.
Referring principally to
In the depicted embodiment, pump 14 is shown as the type most commonly seen in use with a sphygmomanometer (blood pressure cuff). However, it should be understood that alternative pumps may be substituted. Alternatives include (but are not limited to) other, manual pumps, such as is integrated into modern day basket balls, and which “pop up” for inflating operations, but which recesses into the ball between uses. Also, electric, preferably battery-powered air pumps may be used.
Referring to
Shell member 16 is, in the depicted embodiment, made from two complimentary, front and rear shell halves 20 and 22 (joined at their respective peripheries by mechanical, thermal or chemical means). It should be noted, however, that shell member 16 may be injection or blow-molded in alternative embodiments, so long as provisions are made for defining the interior space for, and encasing the embedded, to-be-discussed internal air bladder 24 therein.
An air bladder member 24 resides within, and substantially fills the interior space of shell member 16. Bladder member 24 is in sealed fluid communication with pump 14 by way of conduit 18. A valve 17 allows the user to manually adjust the bladder air pressure, as needed or desired.
The shallow (back) shell half 22 of shell member 16 is a thin flexible piece that is to be placed in contact with a user's shoulder area (or other bodily structure that is to be protected from recoil trauma). The deep (front) shell half 20 of shell member 16 provides the interior volume needed to define the shell's interior face for housing air bladder member 24 (if the air bladder is included, as in the preferred embodiment).
Shell member 16 is molded to include structural ribbing 19 which maintains shell member 16's somewhat rigid shape and defines the edges of the shock (rifle recoil) absorbing area 26.
When, as an example, recoil suppression system 10 is used with a rifle or shotgun, the shock absorbing area 26 of shell member 16 contacts the firearm's stock when it is in position for firing. This area 26 deflects to absorb and dampen shock (which is also transmitted to bladder member 24—to be discussed in more detail below).
Referring also to
Referring to
Referring to
With the rigidity and resilience provided by the use of low density polyethylene, the felt pressure imparted by a firearm stock during recoil is effectively spread and dampened. The absorbing dimples 28 have a “memory” quality wherein the dimples 28 automatically reform to their original shape after collapsing to absorb the shock or recoil.
Referring principally to
The slope at the top of unit 12 is parallel with the user's collar, which allows the user to turn his or her head and neck freely. In the preferred embodiment, there is also a slight extension over shoulder (like that pictured in
Referring to
Referring to
Referring to
Referring to
It should be understood that, while use of the present recoil suppression system has been discussed in the context of firearm recoil suppressions, alternative uses and embodiments will fall within the scope of the present invention. Because the present design and structure of shock absorption until unit 12 is, in an extraordinarily economical fashion, uniquely capable of dispersing “jarring” forces, of which firearm (rifle or shotgun) recoil is only one example, the potential, beneficial implementations of the present invention are wide and varied. Even within the firearms context, alternative embodiments may involve use in a glove, for recoil suppression for hand guns. Further still, however, embodiments of the invention may be incorporated into systems for protecting delicate items during shipping, for protecting trauma patients during transport, for protecting delicate instruments or equipment during use aboard moving vehicles or aircraft, and so on, and even for use in sports protective or industrial protection pads, helmets and devices. Therefore, although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limited sense. It is contemplated that the appended claims will cover such modifications that fall within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
1587946 | Gibson | Jun 1926 | A |
1774060 | Hodge | Aug 1930 | A |
2438142 | Brower | Mar 1948 | A |
3257666 | Hoffman | Jun 1966 | A |
3872511 | Nichols | Mar 1975 | A |
4353133 | Williams | Oct 1982 | A |
4375108 | Gooding | Mar 1983 | A |
4493115 | Maier et al. | Jan 1985 | A |
4922641 | Johnson | May 1990 | A |
5095545 | Lane | Mar 1992 | A |
5265366 | Thompson | Nov 1993 | A |
5375360 | Vatterott | Dec 1994 | A |
5461813 | Mazzola | Oct 1995 | A |
6257562 | Takashima et al. | Jul 2001 | B1 |
6453477 | Bainbridge et al. | Sep 2002 | B1 |
6588023 | Wright | Jul 2003 | B1 |
6684547 | Poff, Jr. | Feb 2004 | B2 |
6758466 | Russell | Jul 2004 | B2 |
6834456 | Murello | Dec 2004 | B2 |
6976333 | Sims | Dec 2005 | B2 |
7055277 | Sims | Jun 2006 | B2 |
7082621 | Fratesi | Aug 2006 | B1 |
7152356 | Sims | Dec 2006 | B2 |
7168104 | Tobergte | Jan 2007 | B2 |
7232118 | Maeno et al. | Jun 2007 | B2 |
7376978 | Godshaw | May 2008 | B2 |
20060254112 | Snoderly | Nov 2006 | A1 |