Inflatable bag with burst control envelope and gas generator

Information

  • Patent Grant
  • 9574858
  • Patent Number
    9,574,858
  • Date Filed
    Wednesday, March 2, 2016
    8 years ago
  • Date Issued
    Tuesday, February 21, 2017
    7 years ago
Abstract
A rupturable bag assembly including a balloon, an outer wall, an inlet port, and a heat resistant shield. The balloon is fabricated from an elastic material. The outer wall is disposed around the balloon, the outer wall having a perimeter seam which parts abruptly at a predetermined tension. The inlet port passes through the outer wall into the balloon for inflating the balloon to produce the predetermined tension. The heat resistant shield is disposed within the balloon opposite the inlet port. The outer wall is constructed of a relatively inelastic material in comparison to the material used to construct the balloon. There is a dispersible medium disposed within the outer wall and/or the balloon.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The field relates to inflatable devices such as air bags and more particularly to an air bag having a burst point control envelope with particular application to stun grenades.


2. Description of the Related Art


U.S. Pat. No. 8,117,966 taught a non-pyrotechnic stun grenade for generating loud, explosive sound by inflation to rupture of an inflatable bag. To make the point of rupture consistent from bag to bag and to achieve target noise levels within a limited time period the '966 patent proposed to construct a single layer inflatable bag with a rupture seam. Upon inflation the rupture seam parted abruptly at a particular and predetermined degree of tension on the seam. The rupture seam parted at a design volume of the bag and pressure within the bag to produce an N-wave. The explosive sound produced consistently met a minimum target volume level. Although the '966 patent provided for a non-pyrotechnic, compressed air, inflation source the patent suggests that pyrotechnic gas generation more readily produced high gas flow rates than compressed gas sources.


The use of chemical reactions to generate gas generators for inflation of automotive air bags is known. One issue addressed during the development of such air bags was the type of gas generator to use. Among the concerns was the byproducts produced by the chemical reactions or combustion of the fuel source used to generate the gas.


A popular contemporary gas generator for automotive applications is a mixture of sodium azide (NaN3), potassium nitrate (KNO3) and silicon dioxide (SiO2). An exothermic (heat producing) decomposition of sodium azide into nitrogen gas and sodium can be initiated by exposure of the compound to 300° C. The free nitrogen gas inflates the bag while the potassium nitrate reacts with the sodium in a second reaction to produce potassium oxide (K2O), sodium oxide (Na2O) and more free nitrogen (N2). A final reaction translates the reactive potassium oxide and sodium oxide compounds into more stable byproducts by a reaction with the silicon dioxide to produce potassium silacate and sodium silicate (K2O3Si and Na2O3Si). These are chemically stable compounds which pose no known environmental and health threat. See Gas Laws Save Lives: The Chemistry Behind Airbags, Casiday, R. and Frey, R. (2000). In addition, the initiating materials are not hygroscopic as water absorption can slow or stop gas generating reactions limiting the shelf life of units. Alternative pyrotechnic formulations for a gas generator may make use of potassium nitrite (KNO2). Such fuel sources result in reactions which are highly exothermic and can produce higher temperatures than the reaction based on sodium azide.


Construction of an inflatable bag which ruptures at a consistent degree of inflation to produce predictable noise levels using an exothermic chemical reaction to produce the inflation gas poses issues not present when a compressed air source is used. In contrast, where a compressed gas source is used for inflation the temperature of compressed gas falls upon expansion.


SUMMARY OF THE INVENTION

A rupturable bag assembly including a balloon, an outer wall, an inlet port, and a heat resistant shield. The balloon is fabricated from an elastic material. The outer wall is disposed around the balloon, the outer wall having a perimeter seam which parts abruptly at a predetermined tension. The inlet port passes through the outer wall into the balloon for inflating the balloon to produce the predetermined tension. The heat resistant shield is disposed within the balloon opposite the inlet port. The outer wall is constructed of a relatively inelastic material in comparison to the material used to construct the balloon. There is a dispersible medium disposed within the outer wall and/or the balloon.


An inflation port is provided from outside into the rupturable bag through the first sections of the outer and inner walls to deliver gas into the rupturable bag and against the heat resistant shield.


An inflation gas generator and flow arrester assembly is fitted to the inflation port outside of the rupturable bag.





BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a perspective view of a rupturable bag assembly for a stun grenade.



FIG. 2 is a perspective view of a rupturable bag.



FIG. 3 is a side elevation of the rupturable bag of FIG. 2.



FIG. 4 is a cross section view of the rupturable bag of FIGS. 2 and 3.



FIG. 5 is an exploded perspective view of the rupturable bag.



FIG. 6 is an exploded side view of the rupturable bag.



FIG. 7A is a cross sectional view of mating of an air inlet with the rupturable bag.



FIG. 7B is a detail view of clamping the bag with the air inlet.



FIG. 7C is detail of the rupturable bag upper wall.



FIGS. 8A and 8B are exploded perspective and side views of the rupturable bag assembly.



FIG. 9 is a perspective view of the pressurization gas arrester for the rupturable bag assembly.



FIG. 10 is a top view of the gas arrester.



FIG. 11 is a cross-sectional view of the gas arrester taken along section lines 11-11 of FIG. 10.



FIGS. 12A, B and C are detail views of a assembly washer for the gas arrester.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrate embodiments of the invention and such exemplifications are not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION OF THE INVENTION

In the following detailed description, like reference numerals and characters may be used to designate identical, corresponding, or similar components in differing drawing figures. Furthermore, example sizes/models/values/ranges may be given with respect to specific embodiments but are not to be considered generally limiting.


Referring now to the figures and in particular to FIG. 1, a self-inflating rupturable bag assembly 10 is shown. Rupturable bag assembly 10 may conceptually be divided into two sections, a rupturable bag 12 and an inflation gas generator assembly 14 which is mounted to bag inflation port 16. Rupturable bag 12 parts along a perimeter seam 18 upon inflation to a minimum pressure and tension on the seam. The rupturable bag assembly 10 may be used with a variety of stun grenades to generate an explosive sound. A pair of electrical studs 52 allow connection to an electrical circuit which may be used to ignite a fuel source located in the inflation gas generator assembly 14.


In FIG. 2 the rupturable bag 12 is shown with inflation gas generator assembly 14 detached to better show inflation port 16. The upper portion of inflation port 16 is threaded for attachment to the inflation gas generator assembly 14 and provides an inlet 20 disposed through its center. Inflation gas is introduced to rupturable bag 12 via inlet 20.


The details of construction of rupturable bag 12 are shown in FIGS. 3-6. Inflation port 16 is a multiple element assembly extending through an upper wall of rupturable bag 12. The inflation port 16 incorporates a conduit 34 which is flattened and thickened at one end to form an inner bulkhead 26. Conduit 34 extends through a first of two walls 13, 15 of rupturable bag 12 which places inner bulkhead between the two walls, inside an assembled an assembled rupturable bag 12.


Located between the inner bulkhead 26 and the first wall 13 is an inner collar 30. Outside of first wall 13 is an outer collar 28. Adjacent the outer collar 28 moving along conduit 34 is a washer 42. The collars 30, 28, clamp washer 22 and washer 42 are held in place by a nut 32 which is threaded onto the conduit 34.


The rupturable bag 12 comprises first and second walls 13, 15. The rupturable bag 12 also comprises an inner elastic balloon 38 and an outer reinforced envelope 36. The material of the outer envelope 36 is less elastic than the material used to construct the inner balloon 38. A nylon weave fabric would be suitable. Both the inner elastic balloon 38 and the outer reinforced envelop 36 are constructed from first and second layers, in the case of the inner elastic balloon, first and second layers 38A and 38B, and in the case of the outer reinforced envelope 36, first and second layers 36A and 36B. The halves of inner elastic balloon 38 are closed along seam 19. The halves of outer reinforced envelope 36 are closed along seam 18. Seam 18 is constructed to part upon application of pressure from within. Failure of seam 18 results in a cascade failure of inner elastic balloon 38. Seam 18 may be constructed in a number of ways. Where closed mesh, rip stop (a type of weave) nylon is used as a fabric from which outer reinforced envelop 36 is constructed. The seam 18 may be formed using braided nylon or polyester with a typical strength range of 20 to 50 lbs. tensile strength stitching the two halves together. A zig-zag stitch allows the use of lower tensile strength materials for the burst envelope and the seam than a straight stitch allows. The inner elastic balloon may be made with vinyl with the halves welded together. Welding may be done a number of ways, for example, sonically, chemically or radio frequency welded. Adhesives and heat bonding are also possible. In this way a volumetrically small envelope can be constructed which can be inflated to a target burst pressure of 375 psi. A bag having a diameter of 5 inches on inflation producing a 180 dB peak over pressure shock wave on rupture can be built. Such a bag can be inflated to rupture in 20 to 30 milliseconds using a sodium azide or similar gas source.


Applied to the inner face of second layer 38B of inner elastic balloon 38 is a heat shield layer 40, which may be constructed of aluminum foil of mylar. Heat shield layer 40 is used to prevent premature failure of rupturable bag 12 due to ejection of hot gas from inlet 20.



FIGS. 7A-C illustrate of the juncture between inlet port assembly 16 and the first wall 13 of rupturable bag 12 and of the second wall 15 of the rupturable bag. The clamp washer 22 carries an annular dimple 44 on one face displaced outwardly from the conduit 24. Annular dimple 44 aligns on and is shaped to conform to an annular depression 46 on the adjacent face of inner bulkhead 26. The first wall 13 of the rupturable bag 12 is pinched between the inner bulkhead 26 and the clamp washer 22. Adhesive layers may be used between wall elements in the area of the clamp washer 22 to improve sealing.



FIGS. 8-12 illustrate construction of the inflation gas generator assembly 14. Gas arrester assembly 14 includes a housing/body 50 which is essentially a tube which is open on one end, closed at the other. The open end of the body 50 is mated with a connector 48 fitted between the inflation gas generator assembly 14 and the inflation port 16. Connecter 48 is fitted to conduit 24 outside nut 32 on the exposed end of the conduit relative to the rupture bag 12. The remaining elements of the inflation gas generator assembly 14, excluding a pair of electrical studs 52, are located in the housing 50. The electrical studs 52 pass through the housing to allow application of an electrical trigger signal from outside the housing to a fuel source 54 located in the housing 50.


Combustion of fuel source 54, which may be a dry, packed blend of sodium azide, silicon dioxide and potassium nitrate, results in a jet of high temperature gas being ejected from the open end of the inflation gas generator assembly 14 into a connector 48 between the assembly 14 and the inlet 20 of the inflation port 16. Fuel source 54 is shaped a ring with a plurality of radial connecting rods 64 aimed inwardly on the ring for connection to the electrical studs 52 by wires (not shown). As an alternative to a fuel source including sodium azide, more conventional pyrotechnic fuel sources may be used, typically incorporating potassium nitrite. To protect the elastomeric and fabric layers of the rupturable bag 12 from the full force and heat of gas ejected from the gas generator assembly 14 the path from fuel source 54 to connector 48, while axial, is not direct. A variety of trigger mechanisms may be used, particularly where an electronic trigger signal is provided.


Upon assembly of inflation gas generator assembly 14 the fuel source 54 is located deepest in the housing 50, proximate to the closed end of the housing and distal to its open end. Moving toward the open end of housing 50 a lower washer 58B is located having a central annular opening through which gas is ejected. Next in line is a lower spacing washer 56B which defines openings between its perimeter edge and the inner wall of the housing 58B. Spacing elements are constructed into the lower spacing washer 56B so that gas can pass from the central annular opening of washer 58B to the perimeter openings. This cycle is repeated once with an upper washer 58A and an upper spacing washer 56A. The lower and upper spacing washers 56B and 56A are illustrated in detail in FIGS. 12A-C generally at reference numeral 56. Washers 58A, 58B, 56A and 56B, along with top cap 60, provide a flame arresting function the fuel source 54 and the inlet port 20. A more extensive flame arresting system incorporating additional washers of alternating types may be employed for pyrotechnic devices as the target temperature range in the rupture envelope is below 100 to 125 degrees Celsius.


Gas is ejected from housing 50 through a perforated top cap 60. Top cap 60 is retained in housing 50 using a spring spacing ring 62 which fits in an annular slot 66 in the inner wall of the housing proximate to the open end of the housing.


The rupturable bag assembly 10 includes balloon 38 fabricated from an elastic material. There is an outer wall of envelope 36 that is disposed around balloon 38, the outer wall 36 having a perimeter seam 18 which parts abruptly at a predetermined tension. The inlet port 20 through the outer wall 36 into the balloon 38 inflates the balloon 38 to produce the predetermined tension. The heat resistant shield 40 is disposed within the balloon 38 opposite the inlet port 20. The outer wall 36 is constructed of a relatively inelastic material in comparison to the material used to construct the balloon 38. As seen in FIG. 4 a dispersible medium 100 is disposed within the outer wall 36 and between the outer wall 36 and the balloon 38. The invention also contemplates that a dispersible medium 102 is located inside of balloon 38. The dispersible medium 100 and/or 102 may be singularly present in either location or in both. Also dispersible medium 100 and 102 may be the same or different mediums.


Dispersible mediums 100 and 102 may interact to cause a secondary reaction after the rupture of balloon 38 and envelope 36. For example, the mediums 100 and 102 may chemically react with each other to result in another event, or to cause the two mediums 100 and 102 to combine to have an effect on the surrounding area or organisms proximate to rupturable bag assembly 10.


The mediums 100 and 102 can be a powder or an aerosol liquid, or some other medium. Once rupturable bag assembly 10 ruptures an acoustic shockwave is produced, as the perimeter seam 18 parts abruptly, the acoustic shockwave being primarily responsible for a dispersement of the dispersible medium 100 and/or 102. Once the dispersible medium 100 and/or 102 has dispersed or is dispersing it may provide a visual effect, an olfactory effect, a secondary acoustic effect, and/or a biological effect to an organism. For example, the medium 100 and/or 102 can include a paint that is distributed in the vicinity thereby being a visual effect. The medium 100 and/or 102 can cause a smell to be distributed in the area. Additionally, a secondary acoustic effect may take place if the medium 100 and/or 102 is ignited, or self ignites causing an explosion, which can also include visual and olfactory results as well. The dispersal of medium 100 and/or 102 can also result in a reaction of organisms in the area, such as an irritant that will cause the organisms to leave the area. Also, the medium 100 and/or 102 may be a cleansing agent to attack chemicals or germs in the area.


The triggerable chemical gas source can be configured to cause a dispersement of the dispersible medium 100 and/or 102 within the rupturable bag assembly before the balloon 38 ruptures.


While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.

Claims
  • 1. A rupturable bag assembly comprising: a balloon fabricated from an elastic material;an outer wall disposed around the balloon, the outer wall having a perimeter seam which parts abruptly at a predetermined tension;an inlet port through the outer wall into the balloon for inflating the balloon to produce the predetermined tension;a heat resistant shield disposed within the balloon opposite the inlet port;the outer wall being constructed of a relatively inelastic material in comparison to the material used to construct the balloon; anda dispersible medium disposed within at least one of the outer wall and the balloon.
  • 2. The rupturable bag assembly of claim 1, wherein the dispersible medium is a powder.
  • 3. The rupturable bag assembly of claim 1, wherein the dispersible medium is an aerosol liquid.
  • 4. The rupturable bag assembly of claim 1, wherein an acoustic shockwave is produced when the perimeter seam parts abruptly, the acoustic shockwave being primarily responsible for a dispersement of the dispersible medium.
  • 5. The rupturable bag assembly of claim 4, wherein the dispersible medium once dispersed provides at least one of a visual effect, an olfactory effect, a secondary acoustic effect, and a biological effect to an organism.
  • 6. The rupturable bag assembly of claim 1, further comprising an inflation assembly including a triggerable chemical gas source coupled to the inlet port.
  • 7. The rupturable bag assembly of claim 6, further comprising a configurable flame arrester located between the triggerable chemical gas source and the inlet port.
  • 8. The rupturable bag assembly of claim 6, wherein the triggerable chemical gas source is a pyrotechnic.
  • 9. The rupturable bag assembly of claim 6, wherein the triggerable chemical gas source includes sodium azide, potassium nitrate and silicon dioxide.
  • 10. The rupturable bag assembly of claim 6, wherein the triggerable chemical gas source is configured to cause a dispersement of the dispersible medium within the rupturable bag assembly before the balloon ruptures.
  • 11. A grenade assembly, comprising: a gas source; anda rupturable bag assembly coupled to the gas source, the rupturable bag assembly including: a balloon fabricated from an elastic material;an outer wall disposed around the balloon, the outer wall having a perimeter seam which parts abruptly at a predetermined tension;an inlet port through the outer wall into the balloon for inflating the balloon to produce the predetermined tension;a heat resistant shield disposed within the balloon opposite the inlet port;the outer wall being constructed of a relatively inelastic material in comparison to the material used to construct the balloon; anda dispersible medium disposed within at least one of the outer wall and the balloon.
  • 12. The grenade assembly of claim 11, wherein the dispersible medium is a powder.
  • 13. The grenade assembly of claim 11, wherein the dispersible medium is an aerosol liquid.
  • 14. The grenade assembly of claim 11, wherein an acoustic shockwave is produced when the perimeter seam parts abruptly, the acoustic shockwave being primarily responsible for a dispersement of the dispersible medium.
  • 15. The grenade assembly of claim 14, wherein the dispersible medium once dispersed provides at least one of a visual effect, an olfactory effect, a secondary acoustic effect, and a biological effect to an organism.
  • 16. The grenade assembly of claim 11, wherein the gas source is a triggerable chemical gas source coupled to the inlet port.
  • 17. The grenade assembly of claim 16, further comprising a configurable flame arrester located between the triggerable chemical gas source and the inlet port.
  • 18. The grenade assembly of claim 16, wherein the triggerable chemical gas source is a pyrotechnic.
  • 19. The grenade assembly of claim 16, wherein the triggerable chemical gas source includes sodium azide, potassium nitrate and silicon dioxide.
  • 20. The grenade assembly of claim 16, wherein the triggerable chemical gas source is configured to cause a dispersement of the dispersible medium within the rupturable bag assembly before the balloon ruptures.
CROSS REFERENCE TO RELATED APPLICATIONS

This is a continuation-in-part of U.S. patent application Ser. No. 14/543,490, entitled “INFLATABLE BAG WITH BURST CONTROL ENVELOPE AND GAS GENERATOR”, filed Nov. 17, 2014, which is incorporated herein by reference, which is a divisional of U.S. patent application Ser. No. 13/529,489, entitled “INFLATABLE BAG WITH BURST CONTROL ENVELOPE AND GAS GENERATOR”, filed Jun. 21, 2012, now issued as U.S. Pat. No. 8,887,639.

US Referenced Citations (33)
Number Name Date Kind
1300640 Pasternak Apr 1919 A
1356817 Gregory Oct 1920 A
3039559 Ellsworth Jun 1962 A
3528662 Engle Sep 1970 A
4213267 Curtis Jul 1980 A
4634395 Burchett Jan 1987 A
4781645 Kato Nov 1988 A
4834382 Spector May 1989 A
4857029 Dierick et al. Aug 1989 A
5035426 Spector Jul 1991 A
5041046 Nakamura et al. Aug 1991 A
5249527 Schwind Oct 1993 A
5370161 Shafer Dec 1994 A
5522757 Ostrowski Jun 1996 A
5997422 Cooper Dec 1999 A
6093077 Spector Jul 2000 A
6302171 Watts Oct 2001 B1
6324955 Andersson et al. Dec 2001 B1
6373384 Ferguson et al. Apr 2002 B1
6477979 Sanchez Nov 2002 B1
6488557 Elliott et al. Dec 2002 B1
6490978 Perotto et al. Dec 2002 B1
6545092 Parker Apr 2003 B2
6688555 Kneisl Feb 2004 B1
7013810 Brydges-Price Mar 2006 B1
7412929 Walsh Aug 2008 B2
7958827 Brock Jun 2011 B1
8117966 Graber Feb 2012 B1
20060043712 Hakki et al. Mar 2006 A1
20060166171 Preston et al. Jul 2006 A1
20070169658 Brock Jul 2007 A1
20100269966 Butler Oct 2010 A1
20120288830 Van Zuilen et al. Nov 2012 A1
Non-Patent Literature Citations (1)
Entry
Casidy et al., Gas Laws Save Lives: The Chemistry Behind Airbags, Oct. 2000, http://www.chemistry.wustl.edu/˜edudev/LabTutorials/Airbags/airbags.html.
Related Publications (1)
Number Date Country
20160178337 A1 Jun 2016 US
Divisions (1)
Number Date Country
Parent 13529489 Jun 2012 US
Child 14543490 US
Continuation in Parts (1)
Number Date Country
Parent 14543490 Nov 2014 US
Child 15058848 US