The present invention relates to turbine engines, and more particularly to an inflatable bleed valve for a low pressure compressor for a turbine engine, such as a tip turbine engine.
An aircraft gas turbine engine of the conventional turbofan type generally includes a forward bypass fan, a low pressure compressor, a middle core engine, and an aft low pressure turbine, all located along a common longitudinal axis. A high pressure compressor and a high pressure turbine of the core engine are interconnected by a high pressure shaft. The high pressure compressor is rotatably driven to compress air entering the core engine to a relatively high pressure. This high pressure air is then mixed with fuel in a combustor, where it is ignited to form a high energy gas stream. The gas stream flows axially aft to rotatably drive the high pressure turbine, which rotatably drives the high pressure compressor via the high pressure shaft. The gas stream leaving the high pressure turbine is expanded through the low pressure turbine, which rotatably drives the bypass fan and low pressure compressor via a low pressure shaft.
Although highly efficient, conventional turbofan engines operate in an axial flow relationship. The axial flow relationship results in a relatively complicated elongated engine structure of considerable length relative to the engine diameter. This elongated shape may complicate or prevent packaging of the engine into particular applications.
A recent development in gas turbine engines is the tip turbine engine. Tip turbine engines may include a low pressure axial compressor directing core airflow into hollow fan blades. The hollow fan blades operate as a centrifugal compressor when rotating. Compressed core airflow from the hollow fan blades is mixed with fuel in an annular combustor, where it is ignited to form a high energy gas stream which drives the turbine that is integrated onto the tips of the hollow bypass fan blades for rotation therewith as generally disclosed in U.S. Patent Application Publication Nos.: 20030192303; 20030192304; and 20040025490. The tip turbine engine provides a thrust-to-weight ratio equivalent to or greater than conventional turbofan engines of the same class, but within a package of significantly shorter length.
The compressors for turbine engines are designed at the maximum power point. When operating at partial power points it sometimes becomes necessary to bleed air form the back of the compressor for stage matching reasons. At times, the rear compressor stages cannot handle the amount of flow that the front stages are pumping. To match flow, some air is bled off to reduce the flow entering the rear stages. Turbine engines may also use bleed air internally for accessory functions. Some bleed air may be discharged radially out through some of the turbine blades or stators for cooling purposes.
The compressor of a conventional turbine engine includes a bleed valve assembly including a rotating and translating ring with linkages. A large hydraulic actuator is disposed immediately proximate the bleed valve for selectively opening and closing the bleed valve. These bleed valve assemblies are large, heavy and complex. Moreover, these bleed valve assemblies are not easily packaged into the low pressure axial compressors for tip turbine engines. Conventional bleed valves like this are also radially inward of the bypass flow; however, the low compressor in conventional engines dips radially inward at the aft end of providing the room needed for the bleed valve. This is not true on the tip turbine engine.
In a turbine engine according to the present invention, a compressor for a turbine engine includes an inflatable bleed valve that selectively bleeds core airflow from the compressor. The bleed valve has an inlet leading from the compressor and a passageway leading from the inlet. An inflatable valve includes an expandable member that selectively obstructs the passageway based upon a controlled supply of high pressure air to the inflatable valve. The supply of high pressure air may be compressed core airflow from an area downstream of the inlet to the bleed valve.
In a tip turbine engine, the inflatable bleed valve may be located radially inwardly of the bypass airflow. The inflatable bleed valve is small enough to fit within the cavity defined by the splitter and the compressor case in a tip turbine engine. Although the inflatable bleed valve is particularly beneficial for a tip turbine engine, it could also be used in conventional turbine engines.
Other advantages of the present invention can be understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
A nosecone 20 is preferably located along the engine centerline A to improve airflow into an axial compressor 22, which is mounted about the engine centerline A behind the nosecone 20.
A fan-turbine rotor assembly 24 is mounted for rotation about the engine centerline A aft of the axial compressor 22. The fan-turbine rotor assembly 24 includes a plurality of hollow fan blades 28 to provide internal, centrifugal compression of the compressed airflow from the axial compressor 22 for distribution to an annular combustor 30 located within the rotationally fixed static outer support structure 14.
A turbine 32 includes a plurality of tip turbine blades 34 (two stages shown) which rotatably drive the hollow fan blades 28 relative a plurality of tip turbine stators 36 which extend radially inwardly from the rotationally fixed static outer support structure 14. The annular combustor 30 is disposed axially forward of the turbine 32 and communicates with the turbine 32.
Referring to
The axial compressor 22 includes the axial compressor rotor 46, which is mounted for rotation upon the static inner support housing 42 through an aft bearing assembly 47 and a forward bearing assembly 48. A plurality of compressor blades 52a-c extend radially outwardly from the axial compressor rotor 46 within a fixed compressor case 50. A plurality of compressor vanes 54a-c extend radially inwardly from the compressor case 50 between stages of the compressor blades 52a-c. The compressor blades 52a-c and compressor vanes 54a-c are arranged circumferentially about the axial compressor rotor 46 in stages (three stages of compressor blades 52a-c and compressor vanes 54a-c are shown in this example).
A bleed valve 57 mounted between the compressor case 50 and the splitter 40 has an inlet 58 through the compressor case 50 between the last compressor vanes 54c and the last compressor blades 52c. The bleed valve 57 includes an outlet 60 between the compressor case 50 and the splitter 40. The bleed valve 57 selectively bleeds air out from the axial compressor 22 to control the amount of compressed core airflow into the hollow fan blades 28, depending upon the requirements of the tip turbine engine 10 at the time. A valve 61 obtains high pressure air from a conduit 62 leading from the combustor 30 and selectively supplies the high pressure air to the bleed valve 57 to controllably close the bleed valve 57 a selected amount. The valve 61 also selectively releases air from the bleed valve 57 through an outlet 63 into the cavity between the compressor case 50 and splitter 40 to selectively open the bleed valve 57 a selected amount. Air flowing through the bleed valve 57 from the axial compressor 22 is released in the cavity between the compressor case 50 and the splitter 40, where it may pass through the inlet guide vane 18 and discharge at an outer diameter of the nacelle 12. The valve 61 could be mounted in a variety of locations and connected via conduit to the bleed valve 57. For example, the valve 61 could be located in the nacelle 12 adjacent the combustor 30.
The fan-turbine rotor assembly 24 includes a fan hub 64 that supports a plurality of the hollow fan blades 28. Each fan blade 28 includes an inducer section 66, a hollow fan blade section 72 and a diffuser section 74. The inducer section 66 receives airflow from the axial compressor 22 generally parallel to the engine centerline A and turns the airflow from an axial airflow direction toward a radial airflow direction. The airflow is radially communicated through a core airflow passage 80 within the fan blade section 72 where the airflow is centrifugally compressed. From the core airflow passage 80, the airflow is diffused and turned once again by the diffuser section 74 toward an axial airflow direction toward the annular combustor 30. Preferably, the airflow is diffused axially forward in the engine 10, however, the airflow may alternatively be communicated in another direction.
The tip turbine engine 10 may optionally include a gearbox assembly 90 aft of the fan-turbine rotor assembly 24, such that the fan-turbine rotor assembly 24 rotatably drives the axial compressor 22 via the gearbox assembly 90. In the embodiment shown, the gearbox assembly 90 provides a speed increase at a 3.34-to-one ratio. The gearbox assembly 90 may be an epicyclic gearbox, such as a planetary gearbox as shown, that is mounted for rotation between the static inner support housing 42 and the static outer support housing 44. The gearbox assembly 90 includes a sun gear 92, which rotates the axial compressor rotor 46, and a planet carrier 94, which rotates with the fan-turbine rotor assembly 24. A plurality of planet gears 93 each engage the sun gear 92 and a rotationally fixed ring gear 95. The planet gears 93 are mounted to the planet carrier 94. The gearbox assembly 90 is mounted for rotation between the sun gear 92 and the static outer support housing 44 through a gearbox forward bearing 96 and a gearbox rear bearing 98. The gearbox assembly 90 may alternatively, or additionally, reverse the direction of rotation and/or may provide a decrease in rotation speed.
A plurality of exit guide vanes 108 are located between the static outer support housing 44 and the rotationally fixed exhaust case 106 to guide the combined airflow out of the engine 10 and provide forward thrust. An exhaust mixer 110 mixes the airflow from the turbine blades 34 with the bypass airflow through the fan blades 28.
The bleed valve 57 is shown in more detail in
Referring to
The high-energy gas stream is expanded over the plurality of tip turbine blades 34 mounted about the outer periphery of the fan-turbine rotor assembly 24 to drive the fan-turbine rotor assembly 24, which in turn rotatably drives the axial compressor 22 either directly or via the optional gearbox assembly 90. The fan-turbine rotor assembly 24 discharges fan bypass air axially aft to merge with the core airflow from the turbine 32 in the exhaust case 106.
In accordance with the provisions of the patent statutes and jurisprudence, exemplary configurations described above are considered to represent a preferred embodiment of the invention. However, it should be noted that the invention can be practiced otherwise than as specifically illustrated and described without departing from its spirit or scope.
This invention was conceived in performance of U.S. Air Force contract F33657-03-C-2044. The government may have rights in this invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2004/039989 | 12/1/2004 | WO | 00 | 5/22/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/110122 | 10/19/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1544318 | Hodgkinson | Jun 1925 | A |
2221685 | Smith | Nov 1940 | A |
2414410 | Griffith | Jan 1947 | A |
2499831 | Palmatier | Mar 1950 | A |
2548975 | Hawthorne | Apr 1951 | A |
2611241 | Schulz | Sep 1952 | A |
2620554 | Mochel et al. | Dec 1952 | A |
2698711 | Newcomb | Jan 1955 | A |
2801789 | Moss | Aug 1957 | A |
2830754 | Stalker | Apr 1958 | A |
2874926 | Gaubatz | Feb 1959 | A |
2989848 | Paiement | Jun 1961 | A |
3009630 | Busquet | Nov 1961 | A |
3037742 | Dent et al. | Jun 1962 | A |
3042349 | Pirtle et al. | Jul 1962 | A |
3081597 | Kosin et al. | Mar 1963 | A |
3132842 | Tharp | May 1964 | A |
3204401 | Serriades | Sep 1965 | A |
3216455 | Cornell et al. | Nov 1965 | A |
3267667 | Erwin | Aug 1966 | A |
3269120 | Sabatiuk | Aug 1966 | A |
3283509 | Nitsch | Nov 1966 | A |
3286461 | Johnson | Nov 1966 | A |
3302397 | Davidovic | Feb 1967 | A |
3363419 | Wilde | Jan 1968 | A |
3404831 | Campbell | Oct 1968 | A |
3465526 | Emerick | Sep 1969 | A |
3496725 | Ferri et al. | Feb 1970 | A |
3505819 | Wilde | Apr 1970 | A |
3616616 | Flatt | Nov 1971 | A |
3684857 | Morley et al. | Aug 1972 | A |
3703081 | Krebs et al. | Nov 1972 | A |
3705775 | Rioux | Dec 1972 | A |
3720060 | Davies et al. | Mar 1973 | A |
3729957 | Petrie et al. | May 1973 | A |
3735593 | Howell | May 1973 | A |
3811273 | Martin | May 1974 | A |
3818695 | Rylewski | Jun 1974 | A |
3836279 | Lee | Sep 1974 | A |
3861822 | Wanger | Jan 1975 | A |
3932813 | Gallant | Jan 1976 | A |
3979087 | Boris et al. | Sep 1976 | A |
4005575 | Scott et al. | Feb 1977 | A |
4130379 | Partington | Dec 1978 | A |
4147035 | Moore et al. | Apr 1979 | A |
4251185 | Karstensen | Feb 1981 | A |
4251987 | Adamson | Feb 1981 | A |
4265646 | Weinstein et al. | May 1981 | A |
4271674 | Marshall et al. | Jun 1981 | A |
4298090 | Chapman | Nov 1981 | A |
4326682 | Nightingale | Apr 1982 | A |
4452038 | Soligny | Jun 1984 | A |
4463553 | Boudigues | Aug 1984 | A |
4561257 | Kwan et al. | Dec 1985 | A |
4563875 | Howald | Jan 1986 | A |
4631092 | Ruckle et al. | Dec 1986 | A |
4751816 | Perry | Jun 1988 | A |
4785625 | Stryker et al. | Nov 1988 | A |
4817382 | Rudolph et al. | Apr 1989 | A |
4834614 | Davids et al. | May 1989 | A |
4883404 | Sherman | Nov 1989 | A |
4887424 | Geidel et al. | Dec 1989 | A |
4904160 | Partington | Feb 1990 | A |
4912927 | Billington | Apr 1990 | A |
4965994 | Ciokajlo et al. | Oct 1990 | A |
4999994 | Rud et al. | Mar 1991 | A |
5010729 | Adamson et al. | Apr 1991 | A |
5012640 | Mirville | May 1991 | A |
5014508 | Lifka | May 1991 | A |
5088742 | Catlow | Feb 1992 | A |
5107676 | Hadaway et al. | Apr 1992 | A |
5157915 | Bart | Oct 1992 | A |
5182906 | Gilchrist et al. | Feb 1993 | A |
5224339 | Hayes | Jul 1993 | A |
5232333 | Girault | Aug 1993 | A |
5267397 | Wilcox | Dec 1993 | A |
5269139 | Klees | Dec 1993 | A |
5275536 | Stephens et al. | Jan 1994 | A |
5315821 | Dunbar et al. | May 1994 | A |
5328324 | Dodd | Jul 1994 | A |
5443590 | Ciokajlo et al. | Aug 1995 | A |
5466198 | McKibbin et al. | Nov 1995 | A |
5497961 | Newton | Mar 1996 | A |
5501575 | Eldredge et al. | Mar 1996 | A |
5537814 | Nastuk et al. | Jul 1996 | A |
5584660 | Carter et al. | Dec 1996 | A |
5628621 | Toborg | May 1997 | A |
5746391 | Rodgers et al. | May 1998 | A |
5769317 | Sokhey et al. | Jun 1998 | A |
6004095 | Waitz et al. | Dec 1999 | A |
6095750 | Ross et al. | Aug 2000 | A |
6102361 | Riikonen | Aug 2000 | A |
6158207 | Polenick et al. | Dec 2000 | A |
6223616 | Sheridan | May 2001 | B1 |
6244539 | Lifson et al. | Jun 2001 | B1 |
6364805 | Stegherr | Apr 2002 | B1 |
6381948 | Klingels | May 2002 | B1 |
6382915 | Aschermann et al. | May 2002 | B1 |
6384494 | Avidano et al. | May 2002 | B1 |
6430917 | Platts | Aug 2002 | B1 |
6454535 | Goshorn et al. | Sep 2002 | B1 |
6471474 | Mielke et al. | Oct 2002 | B1 |
RE37900 | Partington | Nov 2002 | E |
6513334 | Varney | Feb 2003 | B2 |
6619030 | Seda et al. | Sep 2003 | B1 |
6851264 | Kirtley et al. | Feb 2005 | B2 |
6883303 | Seda | Apr 2005 | B1 |
6899513 | Eleftheriou | May 2005 | B2 |
6910854 | Joslin | Jun 2005 | B2 |
7021042 | Law | Apr 2006 | B2 |
7214157 | Flamang et al. | May 2007 | B2 |
20020190139 | Morrison | Dec 2002 | A1 |
20030031556 | Mulcaire et al. | Feb 2003 | A1 |
20030131602 | Ingistov | Jul 2003 | A1 |
20030131607 | Daggett | Jul 2003 | A1 |
20030192304 | Paul | Oct 2003 | A1 |
20040025490 | Paul | Feb 2004 | A1 |
20040070211 | Franchet et al. | Apr 2004 | A1 |
20040189108 | Dooley | Sep 2004 | A1 |
20040219024 | Soupizon et al. | Nov 2004 | A1 |
20050008476 | Eleftheriou | Jan 2005 | A1 |
20050127905 | Proctor et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
767704 | May 1953 | DE |
765809 | Nov 1954 | DE |
1173292 | Jul 1964 | DE |
1301634 | Aug 1969 | DE |
2361310 | Jun 1975 | DE |
2451059 | Apr 1976 | DE |
3333437 | Apr 1985 | DE |
3942042 | Jun 1991 | DE |
19519322 | Nov 1996 | DE |
19646601 | Apr 1997 | DE |
19644543 | Apr 1998 | DE |
0475771 | Mar 1992 | EP |
0661413 | Jul 1995 | EP |
1319896 | Jun 2003 | EP |
1033849 | Jul 1953 | FR |
1367893 | Jul 1964 | FR |
2274788 | Jan 1976 | FR |
2566835 | Jan 1986 | FR |
2599086 | Nov 1987 | FR |
716263 | Sep 1954 | GB |
766728 | Jan 1957 | GB |
785721 | Nov 1957 | GB |
905136 | Sep 1962 | GB |
907323 | Oct 1962 | GB |
958842 | May 1964 | GB |
1026102 | Apr 1966 | GB |
1046272 | Oct 1966 | GB |
1287223 | Aug 1972 | GB |
1338499 | Nov 1973 | GB |
1351000 | Apr 1974 | GB |
1357016 | Jun 1974 | GB |
1466613 | Mar 1977 | GB |
1503394 | Mar 1978 | GB |
2016597 | Sep 1979 | GB |
2026102 | Jan 1980 | GB |
2095755 | Oct 1982 | GB |
2191606 | Dec 1987 | GB |
2229230 | Sep 1990 | GB |
2265221 | Sep 1993 | GB |
2401655 | Nov 2004 | GB |
2410530 | Aug 2005 | GB |
10184305 | Jul 1998 | JP |
9902864 | Jan 1999 | WO |
0127534 | Apr 2001 | WO |
02081883 | Oct 2002 | WO |
2004011788 | Feb 2004 | WO |
2004022948 | Mar 2004 | WO |
2004092567 | Oct 2004 | WO |
2006059968 | Jun 2006 | WO |
2006059969 | Jun 2006 | WO |
2006059972 | Jun 2006 | WO |
2006059973 | Jun 2006 | WO |
2006059974 | Jun 2006 | WO |
2006059975 | Jun 2006 | WO |
2006059976 | Jun 2006 | WO |
2006059977 | Jun 2006 | WO |
2006059978 | Jun 2006 | WO |
2006059979 | Jun 2006 | WO |
2006059980 | Jun 2006 | WO |
2006059981 | Jun 2006 | WO |
2006059982 | Jun 2006 | WO |
2006059985 | Jun 2006 | WO |
2006059986 | Jun 2006 | WO |
2006059987 | Jun 2006 | WO |
2006059988 | Jun 2006 | WO |
2006059989 | Jun 2006 | WO |
2006059990 | Jun 2006 | WO |
2006059991 | Jun 2006 | WO |
2006059992 | Jun 2006 | WO |
2006059993 | Jun 2006 | WO |
2006059994 | Jun 2006 | WO |
2006059995 | Jun 2006 | WO |
2006059996 | Jun 2006 | WO |
2006059999 | Jun 2006 | WO |
2006060000 | Jun 2006 | WO |
2006060001 | Jun 2006 | WO |
2006060002 | Jun 2006 | WO |
2006060004 | Jun 2006 | WO |
2006060005 | Jun 2006 | WO |
2006060006 | Jun 2006 | WO |
2006060009 | Jun 2006 | WO |
2006060010 | Jun 2006 | WO |
2006060011 | Jun 2006 | WO |
2006060012 | Jun 2006 | WO |
2006060013 | Jun 2006 | WO |
2006060014 | Jun 2006 | WO |
2006062497 | Jun 2006 | WO |
2006059980 | Jun 2006 | WO |
2006059990 | Jun 2006 | WO |
2006060003 | Jun 2006 | WO |
2006059971 | Aug 2006 | WO |
2006059970 | Oct 2006 | WO |
2006110122 | Oct 2006 | WO |
2006059997 | Nov 2006 | WO |
2006110124 | Nov 2006 | WO |
2006110123 | Dec 2006 | WO |
2006112807 | Dec 2006 | WO |
2006110125 | Feb 2007 | WO |
2006060003 | Mar 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090110544 A1 | Apr 2009 | US |