Inflatable bleed valve for a turbine engine

Information

  • Patent Grant
  • 7976272
  • Patent Number
    7,976,272
  • Date Filed
    Wednesday, December 1, 2004
    20 years ago
  • Date Issued
    Tuesday, July 12, 2011
    13 years ago
Abstract
A compressor for a turbine engine includes an inflatable bleed valve that selectively bleeds core airflow from the compressor. The bleed valve has an inlet leading from the compressor and a passageway leading from the inlet. An inflatable valve selectively obstructs the passageway based upon a controlled supply of high pressure air to the inflatable valve. The supply of high pressure air may be compressed core airflow from an area downstream of the inlet to the bleed valve.
Description
BACKGROUND OF THE INVENTION

The present invention relates to turbine engines, and more particularly to an inflatable bleed valve for a low pressure compressor for a turbine engine, such as a tip turbine engine.


An aircraft gas turbine engine of the conventional turbofan type generally includes a forward bypass fan, a low pressure compressor, a middle core engine, and an aft low pressure turbine, all located along a common longitudinal axis. A high pressure compressor and a high pressure turbine of the core engine are interconnected by a high pressure shaft. The high pressure compressor is rotatably driven to compress air entering the core engine to a relatively high pressure. This high pressure air is then mixed with fuel in a combustor, where it is ignited to form a high energy gas stream. The gas stream flows axially aft to rotatably drive the high pressure turbine, which rotatably drives the high pressure compressor via the high pressure shaft. The gas stream leaving the high pressure turbine is expanded through the low pressure turbine, which rotatably drives the bypass fan and low pressure compressor via a low pressure shaft.


Although highly efficient, conventional turbofan engines operate in an axial flow relationship. The axial flow relationship results in a relatively complicated elongated engine structure of considerable length relative to the engine diameter. This elongated shape may complicate or prevent packaging of the engine into particular applications.


A recent development in gas turbine engines is the tip turbine engine. Tip turbine engines may include a low pressure axial compressor directing core airflow into hollow fan blades. The hollow fan blades operate as a centrifugal compressor when rotating. Compressed core airflow from the hollow fan blades is mixed with fuel in an annular combustor, where it is ignited to form a high energy gas stream which drives the turbine that is integrated onto the tips of the hollow bypass fan blades for rotation therewith as generally disclosed in U.S. Patent Application Publication Nos.: 20030192303; 20030192304; and 20040025490. The tip turbine engine provides a thrust-to-weight ratio equivalent to or greater than conventional turbofan engines of the same class, but within a package of significantly shorter length.


The compressors for turbine engines are designed at the maximum power point. When operating at partial power points it sometimes becomes necessary to bleed air form the back of the compressor for stage matching reasons. At times, the rear compressor stages cannot handle the amount of flow that the front stages are pumping. To match flow, some air is bled off to reduce the flow entering the rear stages. Turbine engines may also use bleed air internally for accessory functions. Some bleed air may be discharged radially out through some of the turbine blades or stators for cooling purposes.


The compressor of a conventional turbine engine includes a bleed valve assembly including a rotating and translating ring with linkages. A large hydraulic actuator is disposed immediately proximate the bleed valve for selectively opening and closing the bleed valve. These bleed valve assemblies are large, heavy and complex. Moreover, these bleed valve assemblies are not easily packaged into the low pressure axial compressors for tip turbine engines. Conventional bleed valves like this are also radially inward of the bypass flow; however, the low compressor in conventional engines dips radially inward at the aft end of providing the room needed for the bleed valve. This is not true on the tip turbine engine.


SUMMARY OF THE INVENTION

In a turbine engine according to the present invention, a compressor for a turbine engine includes an inflatable bleed valve that selectively bleeds core airflow from the compressor. The bleed valve has an inlet leading from the compressor and a passageway leading from the inlet. An inflatable valve includes an expandable member that selectively obstructs the passageway based upon a controlled supply of high pressure air to the inflatable valve. The supply of high pressure air may be compressed core airflow from an area downstream of the inlet to the bleed valve.


In a tip turbine engine, the inflatable bleed valve may be located radially inwardly of the bypass airflow. The inflatable bleed valve is small enough to fit within the cavity defined by the splitter and the compressor case in a tip turbine engine. Although the inflatable bleed valve is particularly beneficial for a tip turbine engine, it could also be used in conventional turbine engines.





BRIEF DESCRIPTION OF THE DRAWINGS

Other advantages of the present invention can be understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:



FIG. 1 is a partial sectional perspective view of a tip turbine engine.



FIG. 2 is a longitudinal sectional view of the tip turbine engine of FIG. 1 along an engine centerline.



FIG. 3 is an enlarged view of the inflatable bleed valve of FIG. 2.



FIG. 4 is a view, similar to that of FIG. 3, of an alterative inflatable bleed valve.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 1 illustrates a general perspective partial sectional view of a tip turbine engine (TTE) type gas turbine engine 10. The engine 10 includes an outer nacelle 12, a rotationally fixed static outer support structure 14 and a rotationally fixed static inner support structure 16. A plurality of fan inlet guide vanes 18 are mounted between the static outer support structure 14 and the static inner support structure 16. Each inlet guide vane preferably includes a variable trailing edge 18A.


A nosecone 20 is preferably located along the engine centerline A to improve airflow into an axial compressor 22, which is mounted about the engine centerline A behind the nosecone 20.


A fan-turbine rotor assembly 24 is mounted for rotation about the engine centerline A aft of the axial compressor 22. The fan-turbine rotor assembly 24 includes a plurality of hollow fan blades 28 to provide internal, centrifugal compression of the compressed airflow from the axial compressor 22 for distribution to an annular combustor 30 located within the rotationally fixed static outer support structure 14.


A turbine 32 includes a plurality of tip turbine blades 34 (two stages shown) which rotatably drive the hollow fan blades 28 relative a plurality of tip turbine stators 36 which extend radially inwardly from the rotationally fixed static outer support structure 14. The annular combustor 30 is disposed axially forward of the turbine 32 and communicates with the turbine 32.


Referring to FIG. 2, the rotationally fixed static inner support structure 16 includes a splitter 40, a static inner support housing 42 and a static outer support housing 44 located coaxial to said engine centerline A.


The axial compressor 22 includes the axial compressor rotor 46, which is mounted for rotation upon the static inner support housing 42 through an aft bearing assembly 47 and a forward bearing assembly 48. A plurality of compressor blades 52a-c extend radially outwardly from the axial compressor rotor 46 within a fixed compressor case 50. A plurality of compressor vanes 54a-c extend radially inwardly from the compressor case 50 between stages of the compressor blades 52a-c. The compressor blades 52a-c and compressor vanes 54a-c are arranged circumferentially about the axial compressor rotor 46 in stages (three stages of compressor blades 52a-c and compressor vanes 54a-c are shown in this example).


A bleed valve 57 mounted between the compressor case 50 and the splitter 40 has an inlet 58 through the compressor case 50 between the last compressor vanes 54c and the last compressor blades 52c. The bleed valve 57 includes an outlet 60 between the compressor case 50 and the splitter 40. The bleed valve 57 selectively bleeds air out from the axial compressor 22 to control the amount of compressed core airflow into the hollow fan blades 28, depending upon the requirements of the tip turbine engine 10 at the time. A valve 61 obtains high pressure air from a conduit 62 leading from the combustor 30 and selectively supplies the high pressure air to the bleed valve 57 to controllably close the bleed valve 57 a selected amount. The valve 61 also selectively releases air from the bleed valve 57 through an outlet 63 into the cavity between the compressor case 50 and splitter 40 to selectively open the bleed valve 57 a selected amount. Air flowing through the bleed valve 57 from the axial compressor 22 is released in the cavity between the compressor case 50 and the splitter 40, where it may pass through the inlet guide vane 18 and discharge at an outer diameter of the nacelle 12. The valve 61 could be mounted in a variety of locations and connected via conduit to the bleed valve 57. For example, the valve 61 could be located in the nacelle 12 adjacent the combustor 30.


The fan-turbine rotor assembly 24 includes a fan hub 64 that supports a plurality of the hollow fan blades 28. Each fan blade 28 includes an inducer section 66, a hollow fan blade section 72 and a diffuser section 74. The inducer section 66 receives airflow from the axial compressor 22 generally parallel to the engine centerline A and turns the airflow from an axial airflow direction toward a radial airflow direction. The airflow is radially communicated through a core airflow passage 80 within the fan blade section 72 where the airflow is centrifugally compressed. From the core airflow passage 80, the airflow is diffused and turned once again by the diffuser section 74 toward an axial airflow direction toward the annular combustor 30. Preferably, the airflow is diffused axially forward in the engine 10, however, the airflow may alternatively be communicated in another direction.


The tip turbine engine 10 may optionally include a gearbox assembly 90 aft of the fan-turbine rotor assembly 24, such that the fan-turbine rotor assembly 24 rotatably drives the axial compressor 22 via the gearbox assembly 90. In the embodiment shown, the gearbox assembly 90 provides a speed increase at a 3.34-to-one ratio. The gearbox assembly 90 may be an epicyclic gearbox, such as a planetary gearbox as shown, that is mounted for rotation between the static inner support housing 42 and the static outer support housing 44. The gearbox assembly 90 includes a sun gear 92, which rotates the axial compressor rotor 46, and a planet carrier 94, which rotates with the fan-turbine rotor assembly 24. A plurality of planet gears 93 each engage the sun gear 92 and a rotationally fixed ring gear 95. The planet gears 93 are mounted to the planet carrier 94. The gearbox assembly 90 is mounted for rotation between the sun gear 92 and the static outer support housing 44 through a gearbox forward bearing 96 and a gearbox rear bearing 98. The gearbox assembly 90 may alternatively, or additionally, reverse the direction of rotation and/or may provide a decrease in rotation speed.


A plurality of exit guide vanes 108 are located between the static outer support housing 44 and the rotationally fixed exhaust case 106 to guide the combined airflow out of the engine 10 and provide forward thrust. An exhaust mixer 110 mixes the airflow from the turbine blades 34 with the bypass airflow through the fan blades 28.


The bleed valve 57 is shown in more detail in FIG. 3. The bleed valve 57 includes a passageway 112 between the inlet 58 and the outlet 60. In this embodiment, the passageway 112 extends generally axially forward, such that the inlet 58 is located aft of the outlet 60, however, alternative orientations could be used. An opening 114 is formed on the outer diameter of the passageway 112 and an inflatable, annular valve 116 is mounted over the opening 114. The valve 116 includes a rigid outer annular ring 118 to which is mounted a seal 120. A flexible, expandable ring 122, radially inward of the seal 120, defines an inflatable interior 124 between the ring 122 and the seal 120. The valve 61 (FIG. 2) selectively supplies high pressure air to the interior 124, thereby selectively causing the ring 122 to expand through the opening 114 and obstruct the passageway 112 by a controlled amount. The ring 122 can selectively be expanded any amount between an uninflated, fully retracted position, as shown, and a fully expanded, filly inflated position where the passageway 112 is completely closed. Air flowing through the bleed valve 57 from the axial compressor 22 is released in the cavity between the compressor case 50 and the splitter 40 or may be used for accessory functions, thereby reducing the amount of core airflow into the inducer 66 and the hollow fan blades 28.



FIG. 4 shows a bleed valve 157 according to a second embodiment of the present invention, which could also be used in the tip turbine engine 10 of FIGS. 1-2. In this embodiment, the passageway 212 of the bleed valve 157 extends radially outwardly, such that the outlet 160 is substantially radially aligned with the inlet 158. The flexible ring 222 is similarly selectively expandable to control the amount of core airflow bled from the axial compressor 22. In FIG. 4, the flexible ring 222 is shown in the uninflated, open position as reference numeral 222 and in the inflated, closed position as 222′. Again, it is noted that the flexible ring 222 is also selectively adjustable to any point between fully open and filly closed.


Referring to FIG. 2, in operation, core airflow enters the axial compressor 22, where it is compressed by the compressor blades 52a-c. To control the core airflow into the combustor 30, the bleed valve 57 (or, optionally bleed valve 157 from FIG. 4) is selectively opened or closed a selected amount. Bleed air is discharged through the inlet guide vane 18 and/or may be used for accessory functions. The compressed air from the axial compressor 22 that is not bled off enters the inducer section 66 in a direction generally parallel to the engine centerline A, and is then turned by the inducer section 66 radially outwardly through the core airflow passage 80 of the hollow fan blades 28. The airflow is further compressed centrifugally in the hollow fan blades 28 by rotation of the hollow fan blades 28. From the core airflow passage 80, the airflow is turned and diffused axially forward in the engine 10 by the diffuser section 74 into the annular combustor 30. The compressed core airflow from the hollow fan blades 28 is mixed with fuel in the annular combustor 30 and ignited to form a high-energy gas stream.


The high-energy gas stream is expanded over the plurality of tip turbine blades 34 mounted about the outer periphery of the fan-turbine rotor assembly 24 to drive the fan-turbine rotor assembly 24, which in turn rotatably drives the axial compressor 22 either directly or via the optional gearbox assembly 90. The fan-turbine rotor assembly 24 discharges fan bypass air axially aft to merge with the core airflow from the turbine 32 in the exhaust case 106.


In accordance with the provisions of the patent statutes and jurisprudence, exemplary configurations described above are considered to represent a preferred embodiment of the invention. However, it should be noted that the invention can be practiced otherwise than as specifically illustrated and described without departing from its spirit or scope.

Claims
  • 1. A turbine engine comprising: a fan having a plurality of fan blades, wherein at least one of the fan blades defines a compressor chamber extending radially therein; anda compressor having a compressor case and a bleed valve having an inlet leading from the compressor case, the bleed valve further including a passageway leading from the inlet and an inflatable valve selectively obstructing the passageway, the compressor compressing core airflow, wherein at least some of the core airflow from the compressor that does not enter the inlet of the bleed valve is sent to the compressor chamber in the at least one fan blade for further compression.
  • 2. The turbine engine of claim 1 wherein the inflatable valve selectively obstructs the passageway in a continuously variable manner between a fully open position and a fully closed position.
  • 3. The turbine engine of claim 1 wherein the inflatable valve increases its obstruction of the passageway as its inflation is increased.
  • 4. The turbine engine of claim 1 wherein the compressor includes a plurality of stages of compressor blades and a plurality of stages of compressor vanes within the compressor case, wherein the inlet is located between one of the stages of compressor blades and one of the stages of compressor vanes.
  • 5. The turbine engine of claim 1 wherein the bleed valve is radially outward of the compressor case.
  • 6. The turbine engine of claim 1 further including an actuation valve selectively supplying high pressure core airflow into the inflatable valve from an area after the compressor chamber to selectively open and close the inflatable valve.
  • 7. The compressor of claim 6, wherein the area is the combustor.
  • 8. The turbine engine of claim 1 wherein the bleed valve is radially inward of a bypass airflow path through the turbine engine.
  • 9. The compressor of claim 1, wherein a conduit from a combustor supplies pressurized air to the bleed valve.
  • 10. The compressor of claim 1, wherein the passageway extends in an axially forwards direction.
  • 11. The compressor of claim 1, wherein the passageway includes an outlet substantially radially aligned with the inlet.
  • 12. The compressor of claim 1, wherein the passageway is in direct fluid communication with the inlet.
  • 13. The compressor of claim 1, wherein the bleed valve is at least partially radially inward of a splitter, wherein the splitter is radially outward of the compressor case.
  • 14. The compressor of claim 13, wherein air flowing through the bleed valve is released into the passageway between the compressor case and the splitter.
  • 15. A bleed valve for a compressor for a turbine engine comprising: a first member at least partially defining a passageway from an inlet in direct fluid communication with the compressor; andan annular valve member adjacent a portion of the passageway, wherein the valve member is selectively moved into the passageway to selectively obstruct the passageway upon the introduction of a pressurized fluid to the bleed valve.
  • 16. The bleed valve of claim 15 wherein the first member is an annular first member and wherein the valve member is an expandable member, the first member and the expandable member defining an inflatable interior therebetween.
  • 17. The bleed valve of claim 16 wherein the valve member selectively obstructs the passageway in a continuously variable manner between a fully open position and a fully closed position.
  • 18. The bleed valve of claim 15 wherein the valve member increases its obstruction of the passageway as the pressure of the pressurized fluid is increased.
  • 19. A compressor for a turbine engine including the bleed valve of claim 15, wherein the compressor includes a plurality of stages of compressor blades and a plurality of stages of compressor vanes, wherein the inlet of the bleed valve is located between one of the stages of compressor blades and one of the stages of compressor vanes.
  • 20. The compressor of claim 19 wherein the bleed valve is radially outward of the compressor blades and the compressor vanes.
  • 21. The compressor of claim 19 wherein the valve member is an expandable member and where the expandable member is inflated by the pressurized fluid to selectively obstruct the passageway.
  • 22. A method for controlling bleed air from a compressor of a turbine engine including the steps of: a) supplying a fluid from an area after a centrifugal compressor chamber in a fan blade to an inflatable member adjacent an inlet of a bleed air passageway that leads from an interior of the compressor; andb) controlling a pressure of the fluid within the inflatable member, using an actuation valve, to selectively contract and expand the inflatable member to selectively obstruct bleed air through the passageway.
  • 23. The method of claim 22 further including the step of selectively expanding the inflatable member into the passageway to obstruct bleed air through the passageway.
  • 24. The method of claim 22 further including the step of varying the pressure within the inflatable member such that the inflatable member is continuously adjustable between a fully contracted position in which the passageway is completely unobstructed by the inflatable member and a fully expanded position in which the passageway is completely obstructed by the inflatable member.
  • 25. The method of claim 22 wherein said step b) further includes the step of increasing the pressure within the inflatable member to increase obstruction of the bleed air through the passageway.
  • 26. The method of claim 22 wherein at least a portion of the inflatable member is radially inward of a bypass air flow path of the turbine engine.
  • 27. The method of claim 22 further including the step of: selectively obstructing the passageway in a continuously variable manner between a fully open position and a fully closed position.
Government Interests

This invention was conceived in performance of U.S. Air Force contract F33657-03-C-2044. The government may have rights in this invention.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2004/039989 12/1/2004 WO 00 5/22/2007
Publishing Document Publishing Date Country Kind
WO2006/110122 10/19/2006 WO A
US Referenced Citations (122)
Number Name Date Kind
1544318 Hodgkinson Jun 1925 A
2221685 Smith Nov 1940 A
2414410 Griffith Jan 1947 A
2499831 Palmatier Mar 1950 A
2548975 Hawthorne Apr 1951 A
2611241 Schulz Sep 1952 A
2620554 Mochel et al. Dec 1952 A
2698711 Newcomb Jan 1955 A
2801789 Moss Aug 1957 A
2830754 Stalker Apr 1958 A
2874926 Gaubatz Feb 1959 A
2989848 Paiement Jun 1961 A
3009630 Busquet Nov 1961 A
3037742 Dent et al. Jun 1962 A
3042349 Pirtle et al. Jul 1962 A
3081597 Kosin et al. Mar 1963 A
3132842 Tharp May 1964 A
3204401 Serriades Sep 1965 A
3216455 Cornell et al. Nov 1965 A
3267667 Erwin Aug 1966 A
3269120 Sabatiuk Aug 1966 A
3283509 Nitsch Nov 1966 A
3286461 Johnson Nov 1966 A
3302397 Davidovic Feb 1967 A
3363419 Wilde Jan 1968 A
3404831 Campbell Oct 1968 A
3465526 Emerick Sep 1969 A
3496725 Ferri et al. Feb 1970 A
3505819 Wilde Apr 1970 A
3616616 Flatt Nov 1971 A
3684857 Morley et al. Aug 1972 A
3703081 Krebs et al. Nov 1972 A
3705775 Rioux Dec 1972 A
3720060 Davies et al. Mar 1973 A
3729957 Petrie et al. May 1973 A
3735593 Howell May 1973 A
3811273 Martin May 1974 A
3818695 Rylewski Jun 1974 A
3836279 Lee Sep 1974 A
3861822 Wanger Jan 1975 A
3932813 Gallant Jan 1976 A
3979087 Boris et al. Sep 1976 A
4005575 Scott et al. Feb 1977 A
4130379 Partington Dec 1978 A
4147035 Moore et al. Apr 1979 A
4251185 Karstensen Feb 1981 A
4251987 Adamson Feb 1981 A
4265646 Weinstein et al. May 1981 A
4271674 Marshall et al. Jun 1981 A
4298090 Chapman Nov 1981 A
4326682 Nightingale Apr 1982 A
4452038 Soligny Jun 1984 A
4463553 Boudigues Aug 1984 A
4561257 Kwan et al. Dec 1985 A
4563875 Howald Jan 1986 A
4631092 Ruckle et al. Dec 1986 A
4751816 Perry Jun 1988 A
4785625 Stryker et al. Nov 1988 A
4817382 Rudolph et al. Apr 1989 A
4834614 Davids et al. May 1989 A
4883404 Sherman Nov 1989 A
4887424 Geidel et al. Dec 1989 A
4904160 Partington Feb 1990 A
4912927 Billington Apr 1990 A
4965994 Ciokajlo et al. Oct 1990 A
4999994 Rud et al. Mar 1991 A
5010729 Adamson et al. Apr 1991 A
5012640 Mirville May 1991 A
5014508 Lifka May 1991 A
5088742 Catlow Feb 1992 A
5107676 Hadaway et al. Apr 1992 A
5157915 Bart Oct 1992 A
5182906 Gilchrist et al. Feb 1993 A
5224339 Hayes Jul 1993 A
5232333 Girault Aug 1993 A
5267397 Wilcox Dec 1993 A
5269139 Klees Dec 1993 A
5275536 Stephens et al. Jan 1994 A
5315821 Dunbar et al. May 1994 A
5328324 Dodd Jul 1994 A
5443590 Ciokajlo et al. Aug 1995 A
5466198 McKibbin et al. Nov 1995 A
5497961 Newton Mar 1996 A
5501575 Eldredge et al. Mar 1996 A
5537814 Nastuk et al. Jul 1996 A
5584660 Carter et al. Dec 1996 A
5628621 Toborg May 1997 A
5746391 Rodgers et al. May 1998 A
5769317 Sokhey et al. Jun 1998 A
6004095 Waitz et al. Dec 1999 A
6095750 Ross et al. Aug 2000 A
6102361 Riikonen Aug 2000 A
6158207 Polenick et al. Dec 2000 A
6223616 Sheridan May 2001 B1
6244539 Lifson et al. Jun 2001 B1
6364805 Stegherr Apr 2002 B1
6381948 Klingels May 2002 B1
6382915 Aschermann et al. May 2002 B1
6384494 Avidano et al. May 2002 B1
6430917 Platts Aug 2002 B1
6454535 Goshorn et al. Sep 2002 B1
6471474 Mielke et al. Oct 2002 B1
RE37900 Partington Nov 2002 E
6513334 Varney Feb 2003 B2
6619030 Seda et al. Sep 2003 B1
6851264 Kirtley et al. Feb 2005 B2
6883303 Seda Apr 2005 B1
6899513 Eleftheriou May 2005 B2
6910854 Joslin Jun 2005 B2
7021042 Law Apr 2006 B2
7214157 Flamang et al. May 2007 B2
20020190139 Morrison Dec 2002 A1
20030031556 Mulcaire et al. Feb 2003 A1
20030131602 Ingistov Jul 2003 A1
20030131607 Daggett Jul 2003 A1
20030192304 Paul Oct 2003 A1
20040025490 Paul Feb 2004 A1
20040070211 Franchet et al. Apr 2004 A1
20040189108 Dooley Sep 2004 A1
20040219024 Soupizon et al. Nov 2004 A1
20050008476 Eleftheriou Jan 2005 A1
20050127905 Proctor et al. Jun 2005 A1
Foreign Referenced Citations (99)
Number Date Country
767704 May 1953 DE
765809 Nov 1954 DE
1173292 Jul 1964 DE
1301634 Aug 1969 DE
2361310 Jun 1975 DE
2451059 Apr 1976 DE
3333437 Apr 1985 DE
3942042 Jun 1991 DE
19519322 Nov 1996 DE
19646601 Apr 1997 DE
19644543 Apr 1998 DE
0475771 Mar 1992 EP
0661413 Jul 1995 EP
1319896 Jun 2003 EP
1033849 Jul 1953 FR
1367893 Jul 1964 FR
2274788 Jan 1976 FR
2566835 Jan 1986 FR
2599086 Nov 1987 FR
716263 Sep 1954 GB
766728 Jan 1957 GB
785721 Nov 1957 GB
905136 Sep 1962 GB
907323 Oct 1962 GB
958842 May 1964 GB
1026102 Apr 1966 GB
1046272 Oct 1966 GB
1287223 Aug 1972 GB
1338499 Nov 1973 GB
1351000 Apr 1974 GB
1357016 Jun 1974 GB
1466613 Mar 1977 GB
1503394 Mar 1978 GB
2016597 Sep 1979 GB
2026102 Jan 1980 GB
2095755 Oct 1982 GB
2191606 Dec 1987 GB
2229230 Sep 1990 GB
2265221 Sep 1993 GB
2401655 Nov 2004 GB
2410530 Aug 2005 GB
10184305 Jul 1998 JP
9902864 Jan 1999 WO
0127534 Apr 2001 WO
02081883 Oct 2002 WO
2004011788 Feb 2004 WO
2004022948 Mar 2004 WO
2004092567 Oct 2004 WO
2006059968 Jun 2006 WO
2006059969 Jun 2006 WO
2006059972 Jun 2006 WO
2006059973 Jun 2006 WO
2006059974 Jun 2006 WO
2006059975 Jun 2006 WO
2006059976 Jun 2006 WO
2006059977 Jun 2006 WO
2006059978 Jun 2006 WO
2006059979 Jun 2006 WO
2006059980 Jun 2006 WO
2006059981 Jun 2006 WO
2006059982 Jun 2006 WO
2006059985 Jun 2006 WO
2006059986 Jun 2006 WO
2006059987 Jun 2006 WO
2006059988 Jun 2006 WO
2006059989 Jun 2006 WO
2006059990 Jun 2006 WO
2006059991 Jun 2006 WO
2006059992 Jun 2006 WO
2006059993 Jun 2006 WO
2006059994 Jun 2006 WO
2006059995 Jun 2006 WO
2006059996 Jun 2006 WO
2006059999 Jun 2006 WO
2006060000 Jun 2006 WO
2006060001 Jun 2006 WO
2006060002 Jun 2006 WO
2006060004 Jun 2006 WO
2006060005 Jun 2006 WO
2006060006 Jun 2006 WO
2006060009 Jun 2006 WO
2006060010 Jun 2006 WO
2006060011 Jun 2006 WO
2006060012 Jun 2006 WO
2006060013 Jun 2006 WO
2006060014 Jun 2006 WO
2006062497 Jun 2006 WO
2006059980 Jun 2006 WO
2006059990 Jun 2006 WO
2006060003 Jun 2006 WO
2006059971 Aug 2006 WO
2006059970 Oct 2006 WO
2006110122 Oct 2006 WO
2006059997 Nov 2006 WO
2006110124 Nov 2006 WO
2006110123 Dec 2006 WO
2006112807 Dec 2006 WO
2006110125 Feb 2007 WO
2006060003 Mar 2007 WO
Related Publications (1)
Number Date Country
20090110544 A1 Apr 2009 US