The present invention relates generally to seals for doors and more particularly to seals between doors that are inflatable and deflatable to allow for sealing when closed as well as door opening without door seal interference.
Some vehicles have door arrangements where two doors are mounted side by side and both open by pivoting away from each other (i.e., the hinges are on the sides opposite from the opposed door). This arrangement is sometimes used, for example, in extended cab pickup trucks where the front door pivots forward and a smaller rear door of the extended cab pivots backwards—without an B-pillar between the two doors. For such door arrangements, there needs to be a gap between the two doors in order to allow them to swing from open to closed without hitting each other. This gap, however, needs to be effectively sealed to prevent water and noise from entering the vehicle while the doors are closed since there is no B-pillar to seal each door against. Fixed seals have been used for sealing in the gap between the doors, but they require hard parts of the door and body to be close together to allow for effective sealing.
This arrangement, then, typically requires that the two doors cannot both be opened independently of the other door, while still providing effective sealing. For a typical vehicle, the front door must be opened first, then the second can be opened. This allows for two surfaces between which the fixed seals can be located.
An embodiment contemplates a vehicle having a first door, a second door, an inflatable door seal assembly and an inflator assembly. The first door has a first opening side, an opposed first hinge side pivotally supported by the vehicle and a first seal mount extending along at least a portion of the first opening side. The second door has a second opening side adjacent to the first opening side to define a gap therebetween, an opposed second hinge side pivotally supported by the vehicle and a second seal mount extending along at least a portion of the second opening side. The inflatable door seal assembly has a first seal assembly mounted to one of the first or second seal mounts, the first seal assembly configured to be inflatable to extend into the gap toward the other of the first or second seal mounts when the first and second door are closed and deflatable to retract from the gap. The inflator assembly is configured to pump a fluid into the first seal assembly to inflate the first seal assembly and pump the fluid out of the first seal assembly to deflate the first seal assembly.
An embodiment contemplates a method of sealing a gap between a first opening side of a first door and an adjacent second opening side of a second door on a vehicle, the method comprising the steps of: detecting that the first and second doors are closed; inflating a first seal assembly mounted on one of the first and second opening sides to cause the first seal assembly to expand into the gap when the first and second doors are detected as closed; detecting that opening of at least one of the first and second doors is imminent; and when opening is detected as imminent, deflating the first seal assembly to cause it to retract.
An advantage of an embodiment is that good door sealing, even with gap variations between vehicles, can be achieved, while still maintaining a desirable low effort for door opening and closing. The seal can be deflated prior to initial door opening movement, which decreases the effort to pull the door open, and the seal can be inflated after the door is fully closed, thus decreasing door closing effort. While the door remains closed, the seals can remain inflated and in contact to assure a good seal between the doors, while not interfering with each other as the doors pivot between open and closed positions. Also, metal attachment surfaces on each door do not need to be as close to each other as compared to doors with fixed size seals. In addition, the number of moving parts can be minimized since inflation/deflation of the seals accomplishes the desired goal. Moreover, inflatable seals may be used to allow for increasing or decreasing the opening and closing efforts by adjusting when and by how much the seals are inflated.
This type of inflatable seal arrangement may also allow for each door to be opened independently from the other, while still allowing for sealing between the two doors.
Referring to
The rear door 26 has an opening side 35 and a hinge side 36, in opposed relation to the hinge side 28 of the front door 24. This hinge side 32 connects to the vehicle body 22 via a rear hinge assembly 38 to allow for pivoting of the rear door 26 between open and closed positions. The rear door 26, if configured to open independently of the front door 24, may include an outside door handle 40 and an inside door handle 42, which are user operable to unlatch the rear door 26. If it is not desired to allow for opening of the rear door 26 independently of the front door 24, then there may be just one door handle (not specifically shown) that allows for unlatching of the rear door 26 after the front door 24 has been opened.
The door handles 32, 34, 40, 42 may be in communication with a controller 44, which may be, for example, a body controller. The controller 44 may take various forms of hardware and software as are known to those skilled in the art. Also, door closed sensors 52 may be employed to detect when the doors 24, 26 are closed. These sensors 52 may detect door latches being in their closed positions or may detect the actual door positions by use of, for example, a contact type of switch. The door closed sensors 52 may be in communication with the controller 44. The controller 44 may also be in communication with an inflator assembly 46.
The inflator assembly 46 may employ, for example, a compressor or a single stroke pump. The compressor may be a reciprocating air pump that is activated to pump air (or other fluid) into or out of the inflatable door seal assembly 48. The single stroke pump may employ a cylinder containing a volume of air (or other fluid) that, when compressed, inflates the seal assembly 48, and when expanded, draws air out of the seal—similar in operation to a large syringe. Other types of fluid pumping or compressing mechanisms may be employed instead for the inflator assembly 46, if so desired.
The inflator assembly 46 is in fluid communication with an inflatable door seal assembly 48. The inflatable door seal assembly 48 mounts to the opening sides 27, 35 of the doors 24, 26 and is inflatable to fill and seal a gap 50 between the two doors 24, 26 when in their closed positions.
The rear door 26 includes a door outer panel 66 secured to a door inner panel 68, with the seals 70 for a window 72 secured thereon. The door 26 includes a rear seal assembly 73 having a seal mount, such as a seal pocket 74, within which is mounted a rear primary seal 76. This rear primary seal 76 is in fluid communication with the inflator assembly 46 (
The operation of the inflatable door seal assembly 48 will now be discussed with reference to
The trigger for deflation of the primary seals 64, 76 may be based on different factors and timing, as is desired. One example of triggers used to cause the deflation may be when movement of one of the door handles 32, 34, 40, 42 is initiated. That is, when a person begins to pull on one of the door handles, the particular handle sends a signal to the controller 44, which, in turn, causes the inflator assembly 46 to immediately begin deflating the primary seals 64, 76. Thus, by the time the particular door handle is pulled far enough to cause the corresponding door to unlatch and the person begins to pivot the door open, the primary seals 64, 76 have deflated sufficiently to avoid interfering with the smooth opening of the door. For some modern doors without an outside door handle, where a key fob or key card may electronically initiate door unlatching, the inflator assembly 46 may be initiated just before or at about the same time as the electronic door unlatching mechanism to allow for smooth opening of the door.
After both doors 24, 26 are closed, the controller 44 may cause the inflator assembly 46 to transfer fluid into the primary seals 64, 76, inflating the seals 64, 76 to again fill and seal the gap 50 between the two doors 24, 26. The controller 44 may detect closure of both doors 24, 26 by receiving signals from the door closed sensors 52. Thus, the inflatable door seal assembly 48 allows for independent opening of the front and rear doors 24, 26 while still assuring a good seal in the gap 50 between the doors 24, 25.
In this embodiment, the door structure may be essentially the same. Also, the rear primary seal 76 and its fluid connection to the inflator assembly 46 may be the same. The difference is with the front primary seal 82, which is no longer an inflatable/deflatable seal. This seal 82 is now a generally fixed block of material, which the rear primary seal 76 seals against when it is inflated (shown in phantom lines in
The operation of the inflatable door seal assembly 80 can be essentially the same as with the first embodiment. With one seal now essentially stationary, less inflation capability is needed, but this may reduce somewhat the amount of gap that can be sealed between the two doors 24, 26. Alternatively, the rear primary seal may be stationary while the front primary seal is the inflatable one.
In this embodiment, the structure of the doors 24, 26 may be essentially the same except for the front seal pocket 90 and the rear seal pocket 92. Also, the front seal assembly 94 and rear seal assembly 96 have changed. The front seal assembly 94 includes a front primary seal 98 that is mounted in a front seal carrier channel 100, which is telescopically slidable toward and away from the rear seal assembly 96. Between the front seal carrier channel 100 and the front seal pocket 90 is a front inflator seal 102, which is attached to the front seal carrier channel 100. The front inflator seal 102 is in fluid communication with the inflator assembly 46 (
The rear seal assembly 96 includes a rear primary seal 104 that is mounted in a rear seal carrier channel 106, which is telescopically slidable toward and away from the front seal assembly 94. Between the rear seal carrier channel 106 and the rear seal pocket 92 is a rear inflator seal 108, which is attached to the rear seal carrier channel 106. The rear inflator seal 108 is in fluid communication with the inflator assembly 46 (
The operation of this embodiment will now be discussed with reference to
To move from the deflated position to the inflated position, the controller 44 activates the inflator assembly 46, which pumps fluid, such as air, into the front and rear inflator seals 102, 108. As the fluid is pumped into the inflator seals 102, 108, the inflator seals 102, 108 push the front seal carrier channel 100 and the rear seal carrier channel 106 toward each other. This in turn pushes the front primary seal 98 into contact with the rear primary seal 104, thus sealing the gap 50 between the doors 24, 26.
To deflate the seal assemblies 94, 96, the fluid is pulled from the inflator seals 102, 108, which pulls the carrier channels 100, 106 and hence the primary seals 98, 104 away from each other.
The carrier channels 100, 106 help protect the inflator seals 102, 108 from possible puncture or other damage and may also overlap each other in the inflated positions to better secure the gap 50 from intrusion from someone, for example, attempting to gain entry into the vehicle without a key.
Alternatively, the third embodiment may also have one fixed position seal and one seal moved into contact due to inflation, similar to the second embodiment. Again, while two movable seals require more inflation and deflation ability, they may allow for filling and sealing a larger gap. Also, one may employ a seal assembly like the first embodiment on one door and a seal assembly like the third embodiment on the other door if so desired.
While certain embodiments of the present invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2306990 | Essl | Dec 1942 | A |
2530160 | Finley | Nov 1950 | A |
2700196 | Panhard | Jan 1955 | A |
2704387 | Clay et al. | Mar 1955 | A |
2860911 | Cotter | Nov 1958 | A |
3161229 | Sanders | Dec 1964 | A |
3178779 | Clark et al. | Apr 1965 | A |
3580629 | Heim | May 1971 | A |
4370831 | Hamilton | Feb 1983 | A |
4371175 | Van Dyk, Jr. | Feb 1983 | A |
4375104 | Starr et al. | Feb 1983 | A |
4399317 | Van Dyk, Jr. | Aug 1983 | A |
4813184 | Weimar | Mar 1989 | A |
4924629 | Smith et al. | May 1990 | A |
4989369 | Maass | Feb 1991 | A |
5012615 | Piccinini et al. | May 1991 | A |
5046285 | Fratini et al. | Sep 1991 | A |
5079873 | Smith | Jan 1992 | A |
5085293 | Aime | Feb 1992 | A |
5090765 | Gremillion | Feb 1992 | A |
5181341 | Keys et al. | Jan 1993 | A |
5253453 | Maass et al. | Oct 1993 | A |
5339488 | Maass | Aug 1994 | A |
5361542 | Dettloff | Nov 1994 | A |
5452550 | Vanesky et al. | Sep 1995 | A |
5469667 | Le Marrec | Nov 1995 | A |
5489104 | Wolff | Feb 1996 | A |
5870860 | Heller | Feb 1999 | A |
6098992 | Long et al. | Aug 2000 | A |
6125591 | Schmidhuber et al. | Oct 2000 | A |
6694676 | Sakamoto et al. | Feb 2004 | B2 |
6846034 | Angus et al. | Jan 2005 | B1 |
6848737 | Mikolai et al. | Feb 2005 | B2 |
6922945 | Dron | Aug 2005 | B2 |
8123278 | McKenney et al. | Feb 2012 | B1 |
8196992 | Konchan et al. | Jun 2012 | B2 |
8328268 | Charnesky et al. | Dec 2012 | B2 |
8328269 | Krajenke | Dec 2012 | B2 |
20060010779 | Schlachter et al. | Jan 2006 | A1 |
20060249982 | Frohne-Brinkmann | Nov 2006 | A1 |
20090255187 | Alexander et al. | Oct 2009 | A1 |
20100132264 | Campbell et al. | Jun 2010 | A1 |
20120133175 | Charnesky et al. | May 2012 | A1 |
20120153678 | Konchan et al. | Jun 2012 | A1 |
20130025211 | Zaccaria et al. | Jan 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20130047519 A1 | Feb 2013 | US |