Inflatable medical device and related sheath

Information

  • Patent Grant
  • 11147953
  • Patent Number
    11,147,953
  • Date Filed
    Monday, February 18, 2019
    5 years ago
  • Date Issued
    Tuesday, October 19, 2021
    3 years ago
Abstract
An inflatable balloon is provided. The balloon includes a central lumen open at both ends of the balloon and connected to a gap formed in one sidewall of the balloon. This arrangement may provide the balloon with a generally C-shaped profile with the open central lumen within the balloon along a center axis thereof, such as to allow for perfusion. The balloon may also include an inflation port offset from a central axis and a shaft including an inflation lumen connected to the inflation port. A sheath may also be provided with a window through which the balloon may project in use.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


BACKGROUND
1. Technical Field

Inflatable medical devices, sheaths, and methods for making and using the same are disclosed. More narrowly, medical balloons, such as those used for dilatation, are disclosed, as is a sheath for use with a medical balloon.


2. Description of Related Art

Inflatable structures, such as balloons, are widely used in medical procedures. A balloon is inserted, typically on the end of a catheter, until the balloon reaches the area of interest. Adding pressure to the balloon causes the balloon to inflate. In one variation of use, the balloon creates a space inside the body when the balloon inflates.


Balloons may be used in the heart valves, including during Balloon Aortic Valvuloplasty (BAV) and Transcatheter Aortic Valve Implantation (TAVI). The balloons can be used to open a stenosed aortic valve. A stenosed valve may have hard calcific lesions which may tend to tear or puncture a balloon. Additionally, a precise inflated balloon diameter may be desired for increased safety and control.


The high fluid pressures exerted by the heart, combined with the normal pulsation of the opening and closing valves, pose a very dynamic environment for balloon angioplasty. When the balloon is inflated across the valve, the forces tend to squeeze the balloon and create a phenomenon called “ejection,” which causes the balloon to slip out of the valve. The clinician then has to deflate the balloon, reposition it, and re-inflate it, which can prolong the procedure. The inability to dilate the valve properly can also lead to a failed procedure, and lead to alternate, potentially less desirable treatment regimes.


Accordingly, a need is identified for a device to solve the ejection problem. The device would be able to be anchored during inflation, such that valve fluctuations do not eject the balloon from the valve. The device would also be adapted to use perfusion to allow blood flow through the inflated balloon, which provides the added benefit of allowing the blood to circulate normally during longer inflation cycles.


SUMMARY

An inflatable medical device is provided that is adapted to use perfusion to allow blood flow through the inflated balloon, which provides the added benefit of allowing the blood to circulate normally during longer inflation cycles. The device includes a balloon with a generally C-shaped profile. A corresponding sheath includes a window through which a portion of the balloon may project on inflation. Once deflated, the balloon may be rolled onto an associated catheter shaft with the aid of the sheath.


According to a more specific aspect of the disclosure, an apparatus for performing a medical procedure in the vasculature includes an inflatable balloon having a generally C-shaped profile providing the balloon with an open central lumen. The balloon includes a convex side and a concave side having a notch forming a part of the open central lumen. The proximal end of the balloon includes an inflation port, and a catheter shaft connected to the balloon has a first axis offset from the central lumen of the balloon.


Reinforcements, such as fibers, may also be wrapped around the balloon. This may include at least one fiber wrapped around the balloon in an axial direction. At least one fiber may be wrapped around the balloon in a circumferential direction.


The apparatus may also comprise a sheath having a window through which a portion of the balloon may project. The sheath may be connected to a first outer shaft and the balloon is connected to a second, inner shaft adapted for moving within the first outer shaft, the second, inner shaft including an inflation lumen for inflating the balloon. The first outer shaft may include a first hub and the second, inner shaft includes a second hub positioned proximal of the first hub.


A further aspect of the disclosure pertains to an apparatus for performing a medical procedure in the vasculature. The apparatus comprises an inflatable balloon and a sheath for at least partially covering the balloon. The sheath includes a window through which at least a portion of the balloon may pass.


In one embodiment, the window extends in a circumferential direction and a longitudinal direction of the sheath. The sheath includes a reinforcement adjacent to the window. A corresponding dimension of the window in the axial direction is greater than a length of the balloon, which may be generally C-shaped so as to provide the balloon with a central lumen.


The sheath may be connected to a first outer shaft and the balloon connected to a second, inner shaft adapted for moving within the first outer shaft. The second, inner shaft includes an inflation lumen for inflating the balloon. The first outer shaft may include a first hub and the second, inner shaft has a second hub positioned proximal to the first hub.


Still a further aspect of the disclosure pertains to an apparatus for performing a medical procedure in the vasculature. The apparatus comprises an inflatable balloon having a central lumen open at both ends of the balloon and connected to a gap formed in one sidewall of the balloon. The balloon may have a substantially C-shaped cross-section.


Yet a further aspect of the disclosure pertains to an apparatus for performing a medical procedure in the vasculature. The apparatus comprises an inflatable balloon having a generally C-shaped profile providing the inflatable balloon with an open central lumen. The inflatable balloon includes an interior compartment in communication with an inflation port. A catheter shaft includes an inflation lumen for communicating with the inflation port, the catheter shaft extending at least partially into an interior compartment of the balloon. Hence, the balloon may be wrapped around the shaft. The balloon may include an upper lobe and a lower lobe, the inflation port being provided in one of the upper or lower lobes.


Still another aspect of the disclosure pertains to a method of deploying a medical balloon. The method comprises providing a sheath including a window, and inflating the balloon through a shaft such that the balloon passes at least partially through the window of the sheath. The method may further include the steps of: (1) deflating the balloon; and (2) wrapping the balloon around the shaft.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

The accompanying drawing figures incorporated herein and forming a part of the specification illustrate several aspects of the adjustable support and together with the description serve to explain certain principles thereof.



FIG. 1 is an end view of an inflatable device according to one aspect of the disclosure;



FIG. 2 is a rear view of the inflatable device of FIG. 1;



FIG. 3 is a front view of the inflatable device of FIG. 1;



FIG. 4 is a side view of another embodiment of the inflatable device;



FIG. 5 is a front view of the embodiment of FIG. 4;



FIG. 6 is a side view of another embodiment of the inflatable device;



FIG. 7 is a front view of the embodiment of FIG. 6;



FIG. 8 is a perspective view of the embodiment of FIG. 6;



FIG. 9 is a cutaway top view of a sheath for possible use in connection with the inflatable device;



FIG. 10 is a cutaway side view of the sheath;



FIG. 11 is a side view of the inflatable device of FIG. 6 in combination with the sheath;



FIG. 12 is a side cross-sectional view illustrating an inflatable device projecting through a window in the sheath;



FIG. 13 is a top cross-sectional view illustrating the rolling up of the inflatable device within the sheath;



FIG. 14 is a partially cutaway, partially cross-sectional view of a hub assembly; and



FIGS. 15-17 are different views of various reinforcements for associating with the sheath to facilitate retraction of the inflatable device.





Reference will now be made in detail to the present preferred embodiments of the aspects of the disclosure, examples of which are illustrated in the accompanying drawing figures.


DETAILED DESCRIPTION


FIGS. 1-3 illustrate one embodiment of an inflatable medical device 10 according to the present disclosure. FIG. 1 illustrates an inflatable portion of the device 10, which may be considered as a balloon 12. In the illustrated embodiment, the balloon 12 has a length L that is substantially greater than its width W. Thus, the balloon 12 is considered to be elongated as indicated in FIG. 3. However, it is possible for the balloon 12 to have a shorter length L.


As can be appreciated from FIG. 1, the balloon 12 includes a gap P in one side in communication with a central lumen C. Hence, in this embodiment, the balloon 12 is considered to be generally C-shaped in profile, such as when viewed from the longitudinal direction (that is, each cross-section of the balloon along its length is generally C-shaped and substantially identical, without any twisting). Thus, the balloon 12 may be considered to have a concave inner surface and a convex outer surface. Alternatively, without deviating from the meaning of the term C-shaped, the balloon 12 may be considered to have two closed ends or lobes (upper and lower) in a single cross-section, with the closed ends either touching each other or opposing to form a gap in fluid communication with central lumen C.


For purposes of reducing stress, the balloon 12 may be provided with a relief structure, such as a notch 12a. The notch 12a may be along the concave inner surface of the balloon 12. The arrangement may be such that the notch 12a may partially or fully compress when the balloon 12 is in a configuration where the closed ends are touching (compare FIGS. 1 and 8).


As also shown in FIGS. 2 and 3, the balloon 12 further includes an inflation port 12b for receiving an inflation fluid, such as a saline solution. The port 12b may be a single port attached to a catheter shaft 14 providing an inflation lumen I for supplying the fluid. As can be appreciated, the axis of the port 12b is offset from the central lumen C, which is generally aligned with a center axis X. In the illustrated embodiment, the port 12b is connected to a lower lobe of the C-shaped balloon 12, but could also be associated with the upper lobe as well, or provided between the upper and lower lobes.


The shaft 14 may be connected to the port 12b external to the interior of the balloon 12, and/or may pass through the port 12b into the balloon interior, including to the distal end thereof. Hence, the shaft 14 in this embodiment is offset from the central axis X as well.


The balloon 12 may be manufactured (prior to association with the shaft 14) using a vacuum-pressure mold and a parison, or by using water soluble mandrels (see, e.g., U.S. Patent Application Publication No. 20130190796). The balloon 12 may be formed of two C-shaped parts or halves connected together, or may be formed from an elongated tubular structure molded into a C-shaped configuration.


As indicated in FIGS. 4-8, one or more reinforcements, such as fibers 16, may also be wrapped around the formed balloon 12 to support the intended shape when inflated. For example, as shown in FIGS. 6, 7, and 8, circumferential fibers 16a may be wrapped around the balloon 12 to collapse the C-shape into an annulus (i.e., the notch 12a substantially disappears, but the balloon 12 remains circumferentially discontinuous), while longitudinal fibers 16b may be used to retain the shape in the opposite direction. The fibers 16a, 16b may be continuous or discontinuous, and may be applied in any arrangement as long as the shape-retaining function is provided. The fibers 16a, 16b may be inelastic or elastic.


Referring now to FIGS. 9-17, the device 10 may be used in connection with an outer sheath 18 for receiving the balloon 12 connected to the shaft 14 (the two structures together could be considered to form a single device for purposes of this disclosure). The sheath 18 may include a proximal portion 18a adapted for being attached to a support shaft 20, and a distal portion 18b including a window 22. The window 22 may be elongated and formed in a sidewall of the sheath, as shown in FIGS. 9 and 10. The sheath 18 may have a closed end at the distal portion 18b.


The inner diameter of the sheath 18 and shaft 20 is such that the balloon 12 in the deflated condition may be delivered to a position in alignment with the window 22. The window 22 may have a longitudinal dimension D at least as great as the length L of the balloon 12 (see FIG. 9). The entire length of the sheath 18 is thus greater than the length of the balloon 12.


In use, the balloon 12 may be positioned in alignment with the window 22, and in a configuration where it is folded or wrapped around the shaft 14 extending into the interior compartment of the balloon. On inflation (and, in the case where it is wrapped, unfurling via rotation of the shaft 14), a portion of the balloon 12 may thus emerge and project from the window 22 (FIG. 12) in order to provide a treatment in the vasculature, such as by causing dilatation. Alternatively, the entire balloon 12 may be passed through the window 22 prior to inflation, and then partially or fully inflated. The balloon 12 may be the C-shaped balloon noted above, or else may take a different form, with a preference for those balloons having perfusion capabilities.


In any case, it can be appreciated, the central lumen C of the balloon 12 allows for blood to continue flowing, including along the center axis X, during inflation. In the situation where the balloon 12 remains associated with the sheath 18, it can also be appreciated that the opening provided by the window 22 helps to anchor the balloon 12 in position in order to help prevent undesirable ejection. Continuous perfusion may be provided via the central lumen C despite the full or partial inflation of the balloon 12 in a C-shaped form, as can be appreciated from FIG. 1.


Upon deflation of the balloon 12, the sheath 18 can also be used to assist in refolding of the balloon 12. Specifically, once deflated, the shaft 14 supporting the balloon 12 may be rotated (FIG. 13), which shaft may include the inflation lumen I and may pass into the interior compartment of the balloon. In view of the offset positioning of the shaft 14, this rotation would tend to urge the balloon 12 against the lip of the distal end portion 18b of the sheath 18 bounding the window 22. This helps to roll the balloon 12 to a wrapped configuration around the shaft 14, such that it may be withdrawn.


In order to facilitate the relative rotation within the outer shaft 20 associated with the sheath 18, the inner shaft 14 may be slidably received within an outer hub 20a, as shown in FIG. 14. The inner shaft 14 may also include an inner hub 14a proximal to the outer hub 20a, and including the proximal end of the inflation lumen I and guidewire lumen G (if present).


As can be appreciated, the shaft 14 must be able to withstand a significant amount of torque in order to achieve this rewrapping of the balloon 12. Hence, it is possible to provide the shaft 14 with a reinforced configuration, such as by using braiding or hard polymers. As this may have a negative impact on trackability, it is possible to use the device with shorter working lengths with access sites near the heart (e.g., subclavian, jugular, transseptial, etc.). This may reduce the need for enhanced trackability.


It can be understood that the above-described configuration does not facilitate the passage of a guidewire through the shaft 14, as would be the case in a conventional “over-the-wire” configuration. Accordingly, delivery of the device 10 to a treatment site could be achieved through attachment of a wire external to the shaft 14 or balloon 12, similar to the situation in a “rapid exchange” configuration. Alternatively, a clinician could thread a wire through the central lumen C of the balloon 12, or attach a wire to the external sheath 18.


It can also be understood that the force required to roll the deflated balloon 12 back inside the sheath 18 may be significant, and could impart high stress on the surrounding structure forming the window 22. Accordingly, as shown in FIGS. 15-17, a reinforcement, such as a rounded lip or scroll 22a, may be provided to help ensure that the window 22 does not simply tear during the process. Alternatively or additionally, a reinforcement in the form of a frame 22b, such as made of a metal or hardened plastic, may be provided along all or a portion of the perimeter of the window 22 in order to provide enhanced strength and tear resistance.


The foregoing has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the embodiments to the precise form disclosed. Obvious modifications and variations are possible in light of the above teachings. All such modifications and variations are within the scope of the appended claims when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled. Any elements described herein as singular can be pluralized (i.e., anything described as “one” can be more than one), and plural elements can be used individually. Characteristics disclosed of a single variation of an element, the device, the methods, or combinations thereof can be used or apply for other variations, for example, dimensions, burst pressures, shapes, materials, or combinations thereof. Any species element of a genus element can have the characteristics or elements of any other species element of that genus. The term “comprising” is not meant to be limiting. The above-described configurations, elements or complete assemblies and methods and their elements for carrying out the invention, and variations of aspects of the invention can be combined and modified with each other in any combination.

Claims
  • 1. An apparatus for performing a medical procedure in the vasculature, comprising: an inflatable balloon; anda sheath for at least partially covering the inflatable balloon, the sheath including a window through which at least a portion of the inflatable balloon may project;wherein the inflatable balloon has a length, and a corresponding dimension of the window in the axial direction is greater than the length of the inflatable balloon;wherein the inflatable balloon is generally C-shaped.
  • 2. The apparatus of claim 1, wherein the window extends in a circumferential direction and a longitudinal direction of the sheath.
  • 3. The apparatus of claim 1, wherein the sheath includes a reinforcement adjacent to the window.
  • 4. The apparatus of claim 3, wherein the reinforcement comprises a frame.
  • 5. The apparatus of claim 3, wherein the reinforcement comprises a rounded lip or scroll.
  • 6. The apparatus of claim 1, wherein the inflatable balloon includes a central lumen with open ends.
  • 7. The apparatus of claim 6, wherein the inflatable balloon includes a notch along the central lumen.
  • 8. The apparatus of claim 6, wherein the sheath is connected to a first outer shaft and the inflatable balloon is connected to a second, inner shaft adapted for moving within the first outer shaft, the second, inner shaft including an inflation lumen for inflating the inflatable balloon.
  • 9. The apparatus of claim 8, wherein the first outer shaft includes a first hub and the second, inner shaft includes a second hub positioned proximal to the first hub.
  • 10. The apparatus of claim 6, wherein the inflatable balloon comprises a plurality of external fibers.
  • 11. The apparatus of claim 10, wherein at least one fiber of the plurality of external fibers is wrapped around the balloon in an axial direction.
  • 12. The apparatus of claim 10, wherein at least one fiber of the plurality of external fibers is wrapped around the balloon in a circumferential direction.
  • 13. The apparatus of claim 1, wherein the inflatable balloon comprises a plurality of fibers.
  • 14. The apparatus of claim 1, wherein the inflatable balloon is wrapped around a shaft.
  • 15. An apparatus for performing a medical procedure in the vasculature, comprising: an inflatable balloon wrapped around a shaft such that rotation of the shaft causes the inflatable balloon to unfurl; anda sheath for at least partially covering the inflatable balloon, the sheath including a window through which at least a portion of the inflatable balloon may project when inflated;wherein the inflatable balloon has a length, and a corresponding dimension of the window in the axial direction is greater than the length of the inflatable balloon.
  • 16. The apparatus of claim 15, wherein the inflatable balloon is generally C-shaped so as to provide the balloon with a central lumen.
  • 17. The apparatus of claim 16, wherein the inflatable balloon includes a notch along the central lumen.
  • 18. The apparatus of claim 15, wherein the sheath is connected to a first outer shaft and the shaft is a second, inner shaft connected to the inflatable balloon and adapted for moving within the first outer shaft, the second, inner shaft including an inflation lumen for inflating the inflatable balloon.
  • 19. The apparatus of claim 18, wherein the first outer shaft includes a first hub and the second, inner shaft includes a second hub positioned proximal to the first hub.
  • 20. An apparatus for performing a medical procedure in the vasculature, comprising: an inflatable perfusion balloon having a central lumen configured to allow for continuous fluid flow through the inflatable perfusion balloon; anda sheath for at least partially covering the inflatable perfusion balloon, the sheath including a window through which at least a portion of the inflatable balloon may project;wherein the inflatable perfusion balloon has a length, and a corresponding dimension of the window in the axial direction is greater than the length of the inflatable perfusion balloon.
  • 21. The apparatus of claim 20, further including a shaft attached to the inflatable perfusion balloon, and wherein the central lumen includes open ends.
Parent Case Info

This application is a continuation of U.S. application Ser. No. 14/757,718 which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/096,294, the disclosures of which are incorporated herein by reference.

US Referenced Citations (76)
Number Name Date Kind
4183102 Guiset Jan 1980 A
4447227 Kotsanis May 1984 A
4641653 Rockey Feb 1987 A
4662885 DiPisa, Jr. May 1987 A
4763653 Rockey Aug 1988 A
4909252 Goldberger Mar 1990 A
4923464 DiPisa, Jr. May 1990 A
5019042 Sahota May 1991 A
5049131 Deuss Sep 1991 A
5078685 Colliver Jan 1992 A
5108370 Walinsky Apr 1992 A
5330528 Lazim Jul 1994 A
5388590 Horrigan Feb 1995 A
5395333 Brill Mar 1995 A
5401241 Delany Mar 1995 A
5423851 Samuels Jun 1995 A
5433706 Abiuso Jul 1995 A
5470314 Walinsky Nov 1995 A
5554119 Harrison Sep 1996 A
5556382 Adams Sep 1996 A
5558642 Schweich, Jr. Sep 1996 A
5599306 Klein Feb 1997 A
5613948 Avellanet Mar 1997 A
5623940 Daikuzono Apr 1997 A
5716340 Schweich, Jr. Feb 1998 A
5720723 Adams Feb 1998 A
5749852 Schwab May 1998 A
5759172 Weber Jun 1998 A
5836957 Schulz Nov 1998 A
5843027 Stone Dec 1998 A
5954740 Ravenscroft Sep 1999 A
5961490 Adams Oct 1999 A
6110192 Ravenscroft Aug 2000 A
6139517 Macoviak Oct 2000 A
6183492 Hart Feb 2001 B1
6190356 Bersin Feb 2001 B1
6254563 Macoviak Jul 2001 B1
6562056 Jervis May 2003 B2
6565589 Jervis May 2003 B1
6695864 Macoviak Feb 2004 B2
7559923 Seward Jul 2009 B2
7686783 Jenson Mar 2010 B2
7815649 Layne Oct 2010 B2
8323242 Beckham Dec 2012 B2
9421056 O'Neil Aug 2016 B2
9446222 Silvestro Sep 2016 B2
9592119 Tilson Mar 2017 B2
9713483 Makower Jul 2017 B2
9872981 Sparks Jan 2018 B2
10226599 Schaffer Mar 2019 B2
20020010411 Macoviak Jan 2002 A1
20020032456 Jervis Mar 2002 A1
20020161388 Samuels Oct 2002 A1
20030004462 Halpin Jan 2003 A1
20050090852 Layne Apr 2005 A1
20050123702 Beckham Jun 2005 A1
20070067010 Wang Mar 2007 A1
20070185443 Euteneuer Aug 2007 A1
20070185444 Euteneuer Aug 2007 A1
20080243066 Jenson Oct 2008 A1
20090088789 O'Neil Apr 2009 A1
20090105641 Nissl Apr 2009 A1
20100179581 Beckham Jul 2010 A1
20110137331 Walsh Jun 2011 A1
20110144742 Madrid Jun 2011 A1
20130116721 Takagi May 2013 A1
20130190796 Tilson Jul 2013 A1
20140236207 Makower Aug 2014 A1
20150250991 Silvestro Sep 2015 A1
20150272732 Tilson Oct 2015 A1
20150320330 Sparks Nov 2015 A1
20160045240 O'Neil Feb 2016 A1
20160175565 Schaffer Jun 2016 A1
20160235531 Ciobanu Aug 2016 A1
20160331362 O'Neil Nov 2016 A1
20190175880 Schaffer Jun 2019 A1
Related Publications (1)
Number Date Country
20190175880 A1 Jun 2019 US
Provisional Applications (1)
Number Date Country
62096294 Dec 2014 US
Continuations (1)
Number Date Country
Parent 14757718 Dec 2015 US
Child 16278214 US