The invention relates to missiles and missile launchers, and more particularly, to the use of a pneumatic bladder or inflatable membrane to support a missile or missile canister and for providing resonant tuning of the support to different spring constants and stiffness through modification of the pressure within the bladder.
The loading of missiles, torpedoes, canisters or the like into naval vessels is often a time consuming task. There are two areas of concern for support of missiles: the support of the canister (the item which surrounds and protects the missile), and the support of the missile inside the canister.
For surface ships, a vertical launch structure supports the missile canister. These canisters are locked into the structure using an apparatus to rigidly connect and align the aft end of the canister. This apparatus is called a “Dog-Down”. The Dog Down mechanism is a mechanical screw driven device with tapered wedges. These tapered wedges interface with a female receiver located on the missile canister. The tapered wedges on the Dog Down are drawn together by means of a reverse threaded shaft. This shaft, that passes through the wedges cause the wedges to move toward one another when the shaft is turned. The tapered wedges interface with the female receptacles on the missile canister, pushing the canister downward and sealing against the plenum surface on the launcher. Due to the rigid connection of the canister at the top of the launcher and at the dog-down interface, the entire launcher must be isolated from the ship to ensure shock loads are not transmitted to the missile round. This is a costly solution to the problem. Having a restraint mechanism at the launcher to canister interface would greatly simplify launcher designs and ship compatibility.
For submarines, pads are located on the canister itself for isolation. The launch structure within a submarine is directly connected to a launch tube (no isolation between ship and launcher). Within the launch tube are raised pads whose location coincides with the isolation pads located on the missile canister. The pads, which have tapered-edges and a low friction coating, aid in the installation of the canister in the launch tube. The missile canister is constrained within the launch tube by a connection at the top. Also along the height of the canister are raised rubber pads that interfere with the raised edges in the launch tube, creating an interference fit. This fit provides the lateral support for the canister, and isolates the missile canister from the rest of the launch structure. A hydraulic jack is used to insert the missile canister into the launch tube. Due to the number of pads and the amount of surface area of interference, loads required to insert the missile canister can be as high as 40,000 lbs. In addition to the large loads required to install the missile canister, the time required to mobilize the equipment and insert the canister may be as long as 3 hours per missile. Also, during the hydraulic jacking process, the pads on the missile canister can pop off, jamming between the missile canister and launch tube preventing complete installation.
For missile support, either sabots or snubbers are used to support the missile inside the canister. A sabot is a carrier inside the missile canister that provides support to the missile during shipping and transportation as well as during missile egress. The sabots are usually spring loaded against the missile and upon missile exit from the canister are ejected away from the missile. The sabots create a problem in ripple firing scenarios, since the ejected sabots could be in the flight trajectory of adjacent missiles. Snubbers, on the other hand, are retractable mechanisms within the canister that support the missile during shipping and transportation and fold down out of the way during launch, but always stay inside the canister. Snubbers are mechanical devices that have complex linkages that have reliability issues. In addition, since these linkages are rigid, loads outside the canister are transmitted directly into the missile.
Other known art relies upon passive support, meaning it inflates once and is left alone. Also, because of material selection and support provided to the bladder, other known techniques can only operate at low pressures. The present invention is an active support and can operate at high pressures in excess of 200 pounds per square inch due to the combination of having a support structure and the use of reinforced fabrics. The support structure comprises the recessed groove of our design and supports the top, bottom and back of the bladder. The front of the bladder is supported by the canister or missile.
The inflatable restraint in some fashion addresses all of the shortcomings associated with canister and missile support. The present invention is a constraining/clamping isolator that mitigates the need for having the launch structure entirely isolated. Isolation is occurring locally at the clamping interface by inflatable bladders. Also, when the bladders are deflated, ample clearance exists such that the missile canister no longer has to be hydraulically jacked into the launch tube as needed in the underwater launch configuration. The canister can simply be dropped in and the bladders inflated. For missile restraint, inflatable pads can replace the sabots. In this case, the invention behaves more like a snubber, but without the complicated linkages and the excessive load transfer into the missile.
The present invention is an inflatable restraint used to provide support and shock isolation when securing missiles, torpedoes, canisters, or the like into a naval vessel. The inflatable restraint features a structural collar, with an inside and outside surface, having a perimeter and thickness. The inside surface of the structural collar has at least one recessed groove with at least one inflatable bladder lying within the groove. The inside surfaces of the structural collar features an interference member for the purpose of substantially aligning an object within the structural collar. A pressure regulator can regulate and change the spring stiffness of the inflatable bladder based on the shock requirements of the missile. The pressure regulator is operatively coupled to the inflatable bladder and a pressure source to pressurize and to inflate the bladder.
The above and other advantages and features of the present invention will be better understood from the following detailed description of the preferred embodiments of the invention, which is provided in connection with the accompanying drawings. The various features of the drawings may not be to scale. Included in the drawing are the following figures:
a is a perspective view of an interference member of the present invention.
b is a perspective view of an alternative embodiment of the interference member.
c is a perspective view of an alternative embodiment of the present invention.
Recessed groove 14 is formed during the manufacture of the structural collar 11, but in other embodiments the recessed groove 14 may be cut into the inside surface 12 of structural collar 11 after its manufacture. Recessed groove 14 protects an inflatable bladder (not shown in
The structural collar 11 also features hole 15 that is cut through inner surface 12 and the outer surface 13 and around the perimeter of the structural collar 11. Hole 15 allows a pressure regulator (not shown in
Recessed groove 14 is formed during the manufacture of the structural collar 11, but in other embodiments the recessed groove 14 may be cut into the inside surface 14 of structural collar 11 after its manufacture. Recessed groove 14 protects an inflatable bladder (not shown in
The structural collar 11 also features hole 15 that is cut through inner surface 12 and the outer surface 13 and around the perimeter of the structural collar 11. Hole 15 allows a pressure regulator (not shown in
The interference member 40 attaches to structural collar 11 by means well known within the art. For example, interference member 40 may be threadedly attached to structural collar 11. In other embodiments, the interference member 40 may snap onto the structural collar 11.
a describes a perspective view of interference member 40 featuring connector 41 and front side 42. Interference member 40 can be the shape of any polygon and is manufactured from a rigid and sturdy material such as, but not limited to, steel, titanium, or the like.
Preferably, when an object (not shown) is inserted into the structural collar 11, interference member 40 aligns the object ensuring that the object is only in contact with the at least one interference member 40 and not the inside surface 12 of the structural collar or the at least one inflatable member (not shown). The interference member 40, in addition to aligning the object within the structural collar 11, prevents the object from damaging the inflatable bladder.
Interference member 40 also features connector 41 allowing the interference member 40 to attach to the inside of the structural collar 11. For example, connector 41 may be a threaded hole in the back of interference member 40 or connector 41 may allow the interference member 40 to connect to structural collar by means of a snap connection. Regardless of the type of connector 41 that is used to attach interference member 40 to structural collar 11, connector 41 also allows the interference member 40 to be adjustable through either a manual or automatic means.
b shows a perspective view of the interference member 40 having a rubber cover 43 attached to its front side 42. When an object is inserted into the structural collar 11 configured with the interference member 40 of
c shows a perspective view of the interference member 40 having at least one roller 44 attached to the front side 42 of the interference member 40. Preferably, roller 44 is spring loaded allowing roller 44 to move in a radial direction with respect to the structural collar 11. This alternative embodiment is, preferably, used with a structural collar 11 having an alignment pin (not shown), which is described below. As an object is inserted into the structural collar 11, the roller 44 is substantially in contact with the object and roller 44 may move since it is spring loaded, as is well known in the art.
Inflatable bladder 52 is attached to the inside surface 12 of structural collar 11 within a recessed groove 14 (not shown in
Since the inflatable bladder 52 has a low modulus, it tends to have excellent isolation characteristics. Additionally, the aforementioned materials are ideal for shock isolation, where shock attenuation is the main goal. The size of the inflatable bladder is based upon shock analysis where the support area (contact area), load, and stiffness dictate the size and type of bladder.
Alignment system 61 is attached to structural collar 11 by means well known within the art. As shown in
In order to use the inflatable restraint 10 or 20, an object, such as a missile 72, shown within a canister 70 in
Although illustrated and described herein with reference to certain specific embodiments, the present invention is nevertheless not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the spirit of the invention.
This application claims the benefit of U.S. Provisional Application Ser. No. 60/385,914 filed Jun. 6, 2002, and which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5375898 | Ohmori et al. | Dec 1994 | A |
5626229 | Dickie et al. | May 1997 | A |
5704579 | Celentino et al. | Jan 1998 | A |
5791618 | Lancaster | Aug 1998 | A |
5942712 | Mello | Aug 1999 | A |
6302364 | Chiueh | Oct 2001 | B1 |
6637617 | Eisenbraun et al. | Oct 2003 | B2 |
6834838 | Dennis et al. | Dec 2004 | B2 |
7128013 | Plunkett et al. | Oct 2006 | B1 |
20020101197 | Lys et al. | Aug 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20030226771 A1 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
60385914 | Jun 2002 | US |