A rope is a large stout cord of strands of fibers or wire twisted or braided together for strength. The making of rope dates to ancient times. Originally, strands of fibers were twisted by hand, until the Egyptians developed tools to make ropes from papyrus fibers and leather strips. Hemp, used in Asia and adopted in Europe, became the chosen material for ropes until recently, when it was replaced by Manila hemp, an unrelated plant from the Philippines. Synthetic fibers supplanted Manila hemp as the prime rope material in the 1950s.
Working with ropes is a vital part of many industries and particularly essential to seafaring. Nineteenth century sailors knew and used hundreds of knots, some simple and others exceedingly complicated, each for a specific purpose. Accidents are common on ships, such as when a seaman falls into the water—for which an English word “overboard” was coined to succinctly capture the situation in the twelfth century. In cold waters, as the victim is experiencing hypothermia, his hands and fingers lose dexterity and he cannot hold on to a thin rescue rope that is thrown towards him. Larger diameter ropes, however, are too heavy to throw to a long distance where the victim may be located in the waters.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
Unpredictability is one among many risks facing those at seas and even on minor waterways. Ocean marine insurance, one of the oldest forms of insurance, recognizes the need for mitigating against loss from the dangers experienced by boats, cargo, and passengers. One of those dangers is illustrated by
On the boat 100 are several deckhands. Generally, it will take too long to steer the boat 100 to orient the boat to rescue the person 102. A quicker rescuing operation is needed. In the case illustrated in
The device 104 is fitted with a drum 106 in which the inflatable rope 108 is stored in a spool like fashion. The inflatable rope 108 has a distal end and a proximal end. The spool is wound into a cylinder-like shape so that the distal end protrudes from the center of the spool at one end of the spool and the proximal end protrudes from the center of the spool at the other end of the cylinder. The spool is placed inside a drum 106, which is coupled to the device 104, so as to allow the device 104 to propel, at first, the distal end of the inflatable rope, and after which, a portion of the inflatable rope connected to the distal end toward the person 102.
The inflatable rope 108 as hurled from the device 104 is manufactured so that it is initially small in diameter so as to easily cut through the air to quickly reach the person 102. Its small shape is maintained by a small diameter, elongated plastic bag that has a perforation to allow the inflatable rope 108 to tear the small diameter, elongated plastic bag, and emerge when it is inflated. When a desired portion of the inflatable rope 108 has been propelled toward the person 102, the inflatable rope 108 is inflated using its proximal end 108a.
In one embodiment, the proximal end 108a can be coupled to a wench-like mechanism to pull the person 102 toward the boat 100. In another embodiment, the device 104 can include a wench that retrieves the hurled portions of the inflatable rope 108 and thereby pulls the person 102 to safety.
The inflatable rope 108, in its natural, uncompressed, and uninflated form, includes at least two layers 108b, 108c as illustrated in
Both the sheath of the layer 108c and the bladder of the layer 108b can lay flat allowing both layers 108b, 108c to be rolled or undulated to form multiple compressed folds. The shape of the layers 108b, 108c formed after being rolled or folded can be maintained by slipping a fitted, perforated plastic layer 108d over the rolled or folded layers 108b, 108c. The inflatable rope 108 with the three layers 108b, 108c, and 108d can be wound into a spool, a center of which at one end protrudes the distal end of the inflatable rope 108 and at the other end protrudes the proximal end. As previously discussed, the distal end of the inflatable rope 108 along with a portion of the inflatable rope 108 will be hurled to the person 102 while the proximal end of the inflatable rope 108 remains behind to be tethered to the boat 100 and is coupled to a source of air or other medium to inflate the inflatable rope 108.
As the inflatable rope 108 is pumped with air or another suitable medium, the layer 108d is torn off along the perforated path allowing the sheath of the layer 108c and the bladder of the layer 108b to emerge. See
The sheath of the layer 108c, in one embodiment, is solid and in a color, such as yellow or orange. In another embodiment, as illustrated in
A candy stripe pattern is available, in an additional embodiment, to mark the sheath of the layer 108c. See
The inflated inflatable rope 108 is shown in
An inflatable rope 1100 can be used as a containment boom, which is a temporary floating barrier used to contain an oil or chemical spill. The inflatable rope 1100 includes elements similar to those of the inflatable rope 108, such as a bladder, a sheath, and a nostril 1110. Preferably the sheath of the inflatable rope 1100 is made from an ultra high molecular weight polyethylene, which is highly resistant to corrosive chemicals. The inflatable rope 1100 includes a curtain 1104, which is unfurled when the inflatable rope 1100 is inflated with air or another medium through the nostril 1110. The curtain 1104 preferably is created from the ultra high molecular weight polyethylene used for the sheath of the inflatable rope 1100. In one embodiment, the inflatable rope 1100 is wound into a spool and is stored in a 55 gallon drum or similar canister. The curtain 1104 has a length similar to the length of the inflatable rope 1100. The top of the curtain 1104 is attached to the bottom of the inflatable rope 1100 using a suitable fastening means, such as Velcro. The bottom 1104a of the curtain 1104 is preferably weighted so as to ease the process of unfurling and to maintain the drape of the curtain 1104 in the vertical direction to contain the spill. A number of light emitting diodes 1102 are periodically placed along the inflatable rope 1100 to allow visibility at night. In an embodiment, the light emitting diodes 1102 are placed between the bladder and the sheath.
A system 1200 of inflatable ropes 1100a, 1100b expand an area within which a spill can be contained. Both the inflatable ropes 1100a, 1100b include nostrils 1100a, 1100b, adapted to receive air or another medium to inflate the inflatable ropes 1100a, 1110b. Check valves (not shown) are provided at ends 1202, 1204, to regulate air or another medium that inflates the inflatable ropes 1100a, 1100b, and are adapted to close when the pressure in both inflatable ropes 1100a, 1100b is approximately equal. Light emitting diodes 1102 are provided on the top of the inflatable ropes 1100a, 1100b to provide visibility at night. The system 1200 allows each inflatable rope to be a component that can be interfaced together to expand to contain an enlargement of a spill.
While illustrative embodiments have been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.
This application is a continuation of application Ser. No. 11/772,754, filed Jul. 2, 2007, which claims the benefit of Provisional Application No. 60/947,595, filed Jul. 2, 2007, the disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60947595 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11772754 | Jul 2007 | US |
Child | 12398804 | US |