The present disclosure relates to wind turbines having inflatable components.
Conventional wind turbines used for power generation generally have two to five open blades arranged like a propeller, the blades being mounted to a horizontal shaft attached to a gear box which drives a power generator. Such turbines are generally known as horizontal axis wind turbines, or HAWTs. Although HAWTs have achieved widespread usage, their efficiency is not optimized. In particular, they will not exceed the Betz limit of 59.3% efficiency in capturing the potential energy of the wind passing through it.
Conventional wind turbines have three blades and are oriented or pointed into the wind by computer controlled motors. These turbines typically require a supporting tower ranging from 60 to 90 meters in height. The blades generally rotate at a rotational speed of about 10 to 22 rpm. A gear box is commonly used to step up the speed to drive the generator, although some designs may directly drive an annular electric generator. Some turbines operate at a constant speed. However, more energy can be collected by using a variable speed turbine and a solid state power converter to interface the turbine with the generator.
Several problems are associated with HAWTs in both construction and operation. The tall towers and long blades are difficult to transport. Massive tower construction is required to support the heavy blades, gearbox, and generator. Very tall and expensive cranes and skilled operators are needed for installation. In operation, HAWTs require an additional yaw control mechanism to turn the blades toward the wind. HAWTs typically have a high angle of attack on their airfoils that do not lend themselves to variable changes in wind flow. HAWTs are difficult to operate in near ground, turbulent winds. Ice build-up on the nacelle and the blades can cause power reduction and safety issues. Tall HAWTs may affect airport radar. Their height also makes them obtrusively visible across large areas, disrupting the appearance of the landscape and sometimes creating local opposition. Finally, downwind variants suffer from fatigue and structural failure caused by turbulence.
It would be desirable to reduce the size of wind turbines and to reduce wind turbine surface area under an undesirable wind load.
The present disclosure describes wind turbines of reduced mass and size. In particular, the wind turbines include a turbine shroud and/or ejector shroud having inflatable components. Such wind turbines are lighter. An inflated shroud would allow the turbine to change its aerodynamics/shape to accommodate changes in fluid flow. It would also allow for less substantial supports in the turbine body, and also allow the inflated portions to be deflated if needed due to adverse weather conditions. The inflated portions of the turbine do not actively rotate to aid in energy extraction or power production. The inflated portions may be covered by an exterior skin and/or an interior skin. The skins may add strength, water resistance, ultra violet (UV) stability, and other functionality.
A mixer/ejector wind turbine system (referenced herein as a “MEWT”) for generating power is disclosed that combines fluid dynamic ejector concepts, advanced flow mixing and control devices, and an adjustable power turbine. In some embodiments or versions, the MEWT is an axial flow turbine comprising, in order going downstream: an aerodynamically contoured turbine shroud having an inlet; a ring of stators within the shroud; an impeller having a ring of impeller blades “in line” with the stators; a mixer, associated with the turbine shroud, having a ring of mixing lobes extending downstream beyond the impeller blades; and an ejector comprising the ring of mixing lobes and a mixing shroud extending downstream beyond the mixing lobes. The turbine shroud, mixer and ejector are designed and arranged to draw the maximum amount of wind through the turbine and to minimize impact upon the environment (e.g., noise) and upon other power turbines in its wake (e.g., structural or productivity losses). Unlike existing wind turbines, the preferred MEWT contains a shroud with advanced flow mixing and control devices such as lobed or slotted mixers and/or one or more ejector pumps. The mixer/ejector pump presented is much different than used heretofore since in the disclosed wind turbine, the high energy air flows into the ejector inlets, and outwardly surrounds, pumps and mixes with the low energy air exiting the turbine shroud.
Also disclosed in other embodiments is a turbine comprising: a mixer shroud having an outlet and an inlet for receiving a primary fluid stream; and means for extracting energy from the primary fluid stream, the means for extracting energy being located within the turbine shroud; wherein the mixer shroud includes a set of high energy mixing lobes and a set of low energy mixing lobes; wherein each high energy mixing lobe forms an angle in the range of about of 5 to 65 degrees relative to the mixer shroud; and wherein each low energy mixing lobe forms an angle in the range of about 5 to 65 degrees relative to the mixer shroud or the turbine axis.
The high energy mixing lobe angle may be different from, greater than, less than, or equal to the low energy mixing lobe angle.
The turbine may further comprise an ejector shroud downstream from and coaxial with the mixer shroud, wherein a mixer shroud outlet extends into an ejector shroud inlet. The ejector shroud may itself have a ring of mixer lobes around its outlet.
The means for extracting energy may be an impeller or a rotor/stator assembly.
Disclosed in embodiments is a wind turbine comprising an impeller and a shroud located concentrically about the impeller. The shroud comprises a first rigid structural member, a second rigid structural member, and one or more inflatable members extending between the first rigid structural member and the second rigid structural member.
The first rigid structural member may comprise an inlet, one or more nozzles located on a trailing side for providing a gas to the one or more inflatable members, and a gas flowpath running from the inlet to the one or more nozzles. This allows a gas, such as air, to be passed through the first structural member into the inflatable member(s).
In some embodiments, the one or more inflatable members each comprise a first strut, a second strut, and circumferential spars. The first and second struts extend from the first rigid structural member and the second rigid structural member. A plurality of circumferential spars extends between the first strut and the second strut.
The second rigid structural member may have a circular crenellated shape. In such embodiments, the one or more inflatable members can include a set of airfoil inflatable members and a set of surface inflatable members.
The one or more inflatable members together may have an airfoil shape.
The one or more inflatable members can be formed from a textile material. The textile material can be selected from the group consisting of polyester, polyurethane, polyamide, polytrimethylene terephthalate, cellulose fibers, and mixtures thereof.
The shroud may comprise an exterior skin surrounding the one or more inflatable members. The exterior skin may comprise a polyurethane or a fluoropolymer. The fluoropolymer can be selected from the group consisting of polyvinyl fluoride and polyvinylidene fluoride. The shroud could also comprise an interior skin, which can also be a polyurethane or a fluoropolymer.
Disclosed in other embodiments is a wind turbine comprising an impeller and a turbine shroud surrounding the impeller. The turbine shroud comprises a first rigid structural member, a second rigid structural member having a circular crenellated shape, and one or more inflatable members extending between the first rigid structural member and the second rigid structural member.
Disclosed in still other embodiments is a wind turbine comprising an impeller, a turbine shroud surrounding the impeller and having an outlet end; and an ejector shroud surrounding the turbine shroud. The inlet end of the ejector shroud surrounds an outlet end of the turbine shroud. The ejector shroud comprises a first rigid structural member, a second rigid structural member, and one or more inflatable members extending between the first rigid structural member and the second structural member.
The one or more inflatable members together may have an airfoil shape.
These and other non-limiting features or characteristics of the present disclosure will be further described below.
The following is a brief description of the drawings, which are presented for the purposes of illustrating the disclosure set forth herein and not for the purposes of limiting the same.
A more complete understanding of the components, processes, and apparatuses disclosed herein can be obtained by reference to the accompanying figures. These figures are merely schematic representations based on convenience and the ease of demonstrating the present development and are, therefore, not intended to indicate the relative size and dimensions of the devices or components thereof and/or to define or limit the scope of the exemplary embodiments.
Although specific terms are used in the following description for the sake of clarity, these terms are intended to refer only to the particular structure of the embodiments selected for illustration in the drawings and are not intended to define or limit the scope of the disclosure. In the drawings and the following description below, it is to be understood that like numeric designations refer to components of like function.
The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (for example, it includes at least the degree of error associated with the measurement of the particular quantity). When used in the context of a range, the modifier “about” should also be considered as disclosing the range defined by the absolute values of the two endpoints. For example, the range “from about 2 to about 4” also discloses the range “from 2 to 4.”
a single or multiple-stage mixer-ejector to ingest flow with each such mixer/ejector stage including a mixing duct for both bringing in secondary flow and providing flow mixing-length for the ejector stage. The inlet contours of the mixing duct or shroud are designed to minimize flow losses while providing the pressure forces necessary for good ejector performance.
The resulting mixer/ejectors enhance the operational characteristics of the power system by: (a) increasing the amount of flow through the system, (b) reducing the exit or back pressure on the turbine blades, and (c) reducing the noise propagating from the system.
The MEPS may include:
Referring to the drawings in detail, the figures illustrate alternate embodiments of Applicants' axial flow Wind Turbine with Mixers and Ejectors (“MEWT”).
Referring to
The center body 103 of MEWT 100, as shown in
Applicants have calculated, for optimum efficiency, the area ratio of the ejector pump 122, as defined by the ejector shroud 128 exit area over the turbine shroud 102 exit area, will be in the range of 1.5-3.0. The number of mixer lobes 120a would be between 6 and 14. Each lobe will have inner and outer trailing edge angles between 5 and 65 degrees. These angles are measured from a tangent line that is drawn at the exit of the mixing lobe down to a line that is parallel to the center axis of the turbine, as will be explained further herein. The primary lobe exit location will be at, or near, the entrance location or inlet 129 of the ejector shroud 128. The height-to-width ratio of the lobe channels will be between 0.5 and 4.5. The mixer penetration will be between 50% and 80%. The center body 103 plug trailing edge angles will be thirty degrees or less. The length to diameter (L/D) of the overall MEWT 100 will be between 0.5 and 1.25.
First-principles-based theoretical analysis of the preferred MEWT 100, performed by Applicants, indicate the MEWT can produce three or more times the power of its un-shrouded counterparts for the same frontal area; and, the MEWT 100 can increase the productivity of wind farms by a factor of two or more. Based on this theoretical analysis, it is believed the MEWT embodiment 100 will generate three times the existing power of the same size conventional open blade wind turbine.
A satisfactory embodiment 100 of the MEWT comprises: an axial flow turbine (e.g., stator vanes and impeller blades) surrounded by an aerodynamically contoured turbine shroud 102 incorporating mixing devices in its terminus region (i.e., end portion); and a separate ejector shroud 128 overlapping, but aft, of turbine shroud 102, which itself may incorporate mixer lobes in its terminus region. The ring 118 of mixer lobes 120a combined with the ejector shroud 128 can be thought of as a mixer/ejector pump. This mixer/ejector pump provides the means for consistently exceeding the Betz limit for operational efficiency of the wind turbine. The stator vanes' exit-angle incidence may be mechanically varied in situ (i.e., the vanes are pivoted) to accommodate variations in the fluid stream velocity so as to assure minimum residual swirl in the flow exiting the rotor.
Described differently, the MEWT 100 comprises a turbine stage 104 with a stator ring 106 and a rotor 110 mounted on center body 103, surrounded by turbine shroud 102 with embedded mixer lobes 120a having trailing edges inserted slightly in the entrance plane of ejector shroud 128. The turbine stage 104 and ejector shroud 128 are structurally connected to the turbine shroud 102, which is the principal load carrying member.
These figures depict a rotor/stator assembly for generating power. The term “impeller” is used herein to refer generally to any assembly in which blades are attached to a shaft and able to rotate, allowing for the generation of power or energy from wind rotating the blades. Exemplary impellers include a propeller or a rotor/stator assembly. Any type of impeller may be enclosed within the turbine shroud 102 in the wind turbine of the present disclosure.
In some embodiments, the length of the turbine shroud 102 is equal or less than the turbine shroud's outer maximum diameter. Also, the length of the ejector shroud 128 is equal or less than the ejector shroud's outer maximum diameter. The exterior surface of the center body 103 is aerodynamically contoured to minimize the effects of flow separation downstream of the MEWT 100. It may be configured to be longer or shorter than the turbine shroud 102 or the ejector shroud 128, or their combined lengths.
The turbine shroud's entrance area and exit area will be equal to or greater than that of the annulus occupied by the turbine stage 104, but need not be circular in shape so as to allow better control of the flow source and impact of its wake. The internal flow path cross-sectional area formed by the annulus between the center body 103 and the interior surface of the turbine shroud 102 is aerodynamically shaped to have a minimum area at the plane of the turbine and to otherwise vary smoothly from their respective entrance planes to their exit planes. The turbine and ejector shrouds' external surfaces are aerodynamically shaped to assist guiding the flow into the turbine shroud inlet, eliminating flow separation from their surfaces, and delivering smooth flow into the ejector entrance 129. The ejector 128 entrance area, which may alternatively be noncircular in shape, is greater than the mixer 118 exit plane area; and the ejector's exit area may also be noncircular in shape if desired.
Optional features of the preferred embodiment 100 can include: a power take-off, in the form of a wheel-like structure, which is mechanically linked at an outer rim of the impeller to a power generator; a vertical support shaft with a rotatable coupling for rotatably supporting the MEWT, the shaft being located forward of the center-of-pressure location on the MEWT for self-aligning the MEWT; and a self-moving vertical stabilizer fin or “wing-tab” affixed to upper and lower surfaces of the ejector shroud to stabilize alignment directions with different wind streams.
The MEWT 100, when used near residences can have sound absorbing material affixed to the inner surface of its shrouds 102, 128 to absorb and thus eliminate the relatively high frequency sound waves produced by the interaction of the stator 106 wakes with the rotor 110. The MEWT 100 can also contain blade containment structures for added safety. The MEWT should be considered to be a horizontal axis wind turbine as well.
As seen in
The mixer-ejector design concepts described herein can significantly enhance fluid dynamic performance. These mixer-ejector systems provide numerous advantages over conventional systems, such as: shorter ejector lengths; increased mass flow into and through the system; lower sensitivity to inlet flow blockage and/or misalignment with the principal flow direction; reduced aerodynamic noise; added thrust; and increased suction pressure at the primary exit.
As shown in
Free stream air indicated generally by arrow 406 passing through the stator 408a has its energy extracted by the rotor 410. High energy air indicated by arrow 429 bypasses the shroud 402 and stator 408a and flows over the turbine shroud 402 and directed inwardly by the high energy mixing lobes 418. The low energy mixing lobes 420 cause the low energy air exiting downstream from the rotor 410 to be mixed with the high energy air 429.
Referring to
In
In
Generally, the wind turbine of the present disclosure comprises a shroud which is formed from inflatable components. This provides a wind turbine which has a lower mass compared to a HAWT.
Referring now to
The turbine shroud 520 has a leading edge 522 and a trailing edge 526. The leading edge 522 defines an intake end 534 of the turbine shroud, while the trailing edge 526 defines an exhaust end 532 of the turbine shroud. The leading edge 522 is annular and acts as a funnel to channel air through the impeller 502. The shroud is approximately cylindrical and has an airfoil shape, with the airfoil configured to generate relatively lower pressure within the turbine shroud (i.e. the interior of the shroud) and relatively higher pressure outside the turbine shroud (i.e. the exterior of the shroud). A plurality of mixing lobes 530 are generally uniformly distributed about the circumference of the exhaust end 532, or in other words along the trailing edge 526. The mixing lobes 530 may be divided into a set of high-energy mixing lobes 536 and a set of low-energy mixing lobes 538. The mixer lobes 530 generally cause the exhaust end 532 of the turbine shroud 520, where air exits, to have a circular crenellated shape about its circumference.
The ejector shroud 550 has a larger diameter than the turbine shroud 520. The trailing edge 526 of the turbine shroud 520 fits within the inlet end 552 of the ejector shroud 550. Put another way, the inlet end 552 of the ejector shroud 550 surrounds the exhaust end 532 of the turbine shroud 520. The turbine shroud 520 and ejector shroud 550 are sized so that air can flow between them. Phrased another way, the ejector shroud 550 is concentrically disposed about the turbine shroud 520 and is downstream of the turbine shroud 520. The impeller 502, turbine shroud 520, and ejector shroud 550 all share a common axis, i.e. are coaxial to each other. Support members 514 connect the turbine shroud 520 and the ejector shroud 550 together.
The inlet end 552 of the ejector shroud 550 is defined by a first rigid structural member 556. The exhaust end 554 is defined by a second rigid structural member 558. One or more inflatable members 560 extend between the first rigid structural member 556 and the second rigid structural member 558. In
Generally, the inflatable member 660 can be connected to the second rigid structural member 658 using means that permit the member to be inflated. For example, adhesives or other fasteners can be used. The inflatable member 660 is connected to the first rigid structural member 656 using the coupling 662, so that air or other suitable gases can be pumped into the inflatable member.
One or more nozzles 690 are located on a trailing side 692 of the first structural member. As depicted here, the nozzles extend from the trailing side; however, embodiments are also contemplated where the trailing side includes cavities in which the nozzles are located. Using this structure, air or another gas is provided through the inlet 682 and subsequently runs through the gas flowpath 684 out the nozzles 690 into the inflatable members. Valves (not shown) can be used to independently control the amount of gas released by or added to each inflatable member, as well as to simply retain the gas within the inflatable member.
It is contemplated that the turbine shroud as well as the ejector shroud may each include mixing lobes on their trailing edge, and
The second rigid structural member 1220 has a circular crenellated or castellated shape. The second rigid structural member can be considered as being formed from several inner circumferentially spaced arcuate portions 1230 which each have the same radius of curvature. Those inner arcuate portions are preferably evenly spaced apart from each other. In those spaces between portions are several outer arcuate portions 1240, which each have the same radius of curvature. The radius of curvature for the inner arcuate portions 1230 is different from the radius of curvature for the outer arcuate portions 1240, but the inner arcuate portions and outer arcuate portions should share generally the same center. The inner portions 1230 and the outer arcuate portions 1240 are then connected to each other by radially extending portions 1250. This results in a circular crenellated shape. The term “crenellated” or “castellated” are not used herein as requiring the inner arcuate portions, outer arcuate portions, and radially extending portions to be straight lines, but rather to refer to the general up-and-down or in-and-out shape of the second rigid structural member. As will be explained further herein, this structure forms two sets of mixing lobes, high energy mixing lobes and low energy mixing lobes. It should be noted that the crenellated shape may be only part of the second rigid structural member 1220, and that the second rigid structural member could be shaped differently further upstream of the crenellated shape.
Two or three sets of inflatable members are used to form the mixing lobes. Airfoil inflatable members 1260 have a curved shape, and are used to define the mixing lobes themselves. Generally, one set of airfoil inflatable members 1262 is used to connect the first structural member 1210 to the corners of the outer arcuate portions 1240 of the second structural member 1220. Another set of airfoil inflatable members 1264 is used to connect the first structural member 1210 to the corners of the inner arcuate portions 1230 of the second structural member. There may be one or two sets of airfoil inflatable members, depending on the curvature desired for the mixing lobes. A set of surface inflatable members 1270 is also used, with a surface inflatable member being placed between each airfoil inflatable member. The surface inflatable members may also have a curved shape. Generally speaking, the airfoil members can be considered as defining edges of the mixing lobes, while the surface members form the surfaces of the mixing lobes.
The inflatable members described here may include several internal chambers within for controlling the amount of lift or the degree of inflation. These internal chambers may be arranged around the circumference of the inflatable member, or from one end of the inflatable member to the other end, as desired.
The thin film material used for forming the inflatable member, the exterior skin, and/or the interior skin of the shroud may be generally formed of any polymeric or fabric material. Exemplary materials include polyurethane, polyfluoropolymers, and multi-layer films of similar composition. Stretchable fabrics, such as spandex-type fabrics, may also be employed. The inflatable members may comprise a plurality of closed fabric forms. Fibers and/or additional layers may be included to ensure that the inflatable members maintain the desired shape when inflated.
Polyurethane films are tough and have good weatherability. The polyester-type polyurethane films tend to be more sensitive to hydrophilic degradation than polyether-type polyurethane films. Aliphatic versions of these polyurethane films are generally ultraviolet resistant as well.
Exemplary polyfluoropolymers include polyvinyldidene fluoride (PVDF) and polyvinyl fluoride (PVF). Commercial versions are available as KYNAR and TEDLAR. Polyfluoropolymers generally have very low surface energy, which allow their surface to remain somewhat free of dirt and debris, as well as shed ice easier compared to materials having a higher surface energy.
Film/fabric composites are also contemplated along with a backing, such as foam, for making the inflatable member or exterior film.
The inflatable members could also be composed of urethane film bladders with a woven or braided cover over the bladder to give it strength and durability. The woven or braided materials may be polyester, pre-stressed polyester, aromatic polyester (trade name VECTRAN® manufactured by Kuraray of Japan), p-phenylene terephtalamide (PpPTA) (trade name TWARON from Akzo), PPTA (poly-paraphenylene terephthalamide) (trade name KEVLAR from DuPont), and polytrimethylene terephthalate (trade name CORTERRA from Shell). The exterior of the woven or braided cover may be coated with various polymers such as cis-polyisoprene, polyurethane, epoxy or polyvinyl chloride. This protects the woven or braided fibers from environmental attack, such as UV or abrasion from sand or other materials that could damage the fibers. Manufacturers include Federal Fabrics-Fibers of Lowell, Mass.; Warwick Mills of New Ipswich, N.H.; Vertigo Inc of Lake Elsinore, Calif.; and ILC Dover of Frederica, Del. The inflatable members may also be partially or completely stiffened through the use of reactive polymer infusion through vacuum assisted resin transfer molding (VARTM) or the curing of previously impregnated polymers such as unsaturated polyesters, epoxy, acrylates or urethanes that are cured through radiation, free radical initiation, or crosslinking with isocyanate.
The inflatable members and skins could also be made from woven or braded textile materials. Exemplary materials include polyesters, polyurethanes, polyamides, polytrimethylene terephthalate, cellulose fibers, rayon, and combinations thereof. Such textiles may be coated to enhance their weatherability and/or durability.
The inflatable construction of the shroud in the wind turbines of the present disclosure allows the turbine to be substantially lighter than conventional turbines. Thus, a less substantial supporting tower may be used.
The skins may be reinforced with a reinforcing material. Examples of reinforcing materials include but are not limited to highly crystalline polyethylene fibers, paramid fibers, and polyaramides.
The interior skin and exterior skin may independently be multi-layer, comprising one, two, three, or more layers. Multi-layer constructions may add strength, water resistance, UV stability, and other functionality. However, multi-layer constructions may also be more expensive and add weight to the overall wind turbine.
The skin may cover all or part of the shroud. For example, the skin may not cover the leading and/or trailing edges of the shroud. The rigid structural members may be comprised of rigid materials. Rigid materials include, but are not limited to, polymers, metals, and mixtures thereof. Other rigid materials such as glass reinforced polymers may also be employed. Rigid surface areas around fluid inlets and outlets may improve the aerodynamic properties of the shrouds. The rigid surface areas may be in the form of panels or other constructions.
While the inflatable members and shroud skins have primarily been described in reference to the ejector shroud, these aspects of the present disclosure may also be included in the turbine shroud.
The present disclosure has been described with reference to exemplary embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the present disclosure be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/183,749, filed Jun. 3, 2009. This application is also a continuation-in-part application of U.S. patent application Ser. No. 12/555,446, filed Sep. 8, 2009, which claims priority from U.S. Provisional Patent Application Ser. No. 61/191,358, filed on Sep. 8, 2008. This application is also a continuation-in-part from U.S. patent application Ser. No. 12/054,050, filed Mar. 24, 2008, which claimed priority from U.S. Provisional Patent Application Ser. No. 60/919,588, filed Mar. 23, 2007. The disclosure of these applications is hereby fully incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61183749 | Jun 2009 | US | |
61191358 | Sep 2008 | US | |
60919588 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12555446 | Sep 2009 | US |
Child | 12793385 | US | |
Parent | 12054050 | Mar 2008 | US |
Child | 12555446 | US |