The present invention relates to an inflator, especially to an inflator that indicates state and having simple structure.
Generally, water life saving equipment including life jackets, life vests, life rafts, etc. is connected to an inflator with a high pressure gas cylinder for fast inflation and providing gas required for generating buoyancy. The conventional inflator at least includes an inflator body, a pierce pin arranged at and movable with the inflator body, and a rotation arm. While in use, the pierce pin is driven by the rotation arm to pierce a seal of the high pressure gas cylinder. Thus compressed gas in the gas cylinder is released so as to inflation the life saving equipment mentioned above. The inflator is further arranged with an indicator for indicating the state of the inflator and the state of the high pressure gas cylinder. Users can learn the state of the inflator and the gas cylinder.
Refer to U.S. Pat. No. 7,854,347, a manual gas inflator is revealed. The shortcoming of the manual gas inflator is in that CO2 sensor and CO2 gas cylinder need to be replaced at the same time during rearming process. Moreover, the structure of the manual gas inflator is complicated and many components required increase the cost. The CO2 sensor is a special component and is not easy to get.
Refer to U.S. Pat. No. 3,809,288, an inflation manifold assembly is disclosed. The disadvantage of the inflation manifold assembly is in that an additional component (such as a color indicator) is required besides replacement of the gas cylinder during the reaming process. Once the rearming process is interrupted or the color indicator is lost, whether the gas cylinder of the inflator has been used is unable to be confirmed. Thus the gas cylinder needs to be removed and checked again.
Refer to U.S. Pat. No. 5,694,986, an automatic actuator with apertured housing and safety indicator is revealed. The shortcoming of the device is in that during rearming of the inflator operated manually, additional component (such as color indicator) is required. Once the rearming process is interrupted or the color indicator is lost, whether the gas cylinder of the inflator has been used is unable to be checked. The gas cylinder needs to be removed and checked again. When the inflator is operated automatically and the color indicator is not fallen off, whether the gas cylinder is fully-charged is unable to be quickly checked by the appearance. The gas cylinder needs to be removed for checking the state.
Refer to U.S. Pat. No. 6,589,087, an automatic inflator having a status indicator is disclosed. Besides the gas cylinder, a cylinder adapter also needs to be replaced during rearming of the inflator. Thus the cost is increased. Moreover, the status indicator that indicates whether the gas cylinder has been installed has complicated structure. Thus the assembly is time-consuming and the cost is further increased.
As to the inflators revealed in U.S. Pat. No. 5,643,030, and U.S. Pat. No. 6,422,420, they have the same shortcoming. Both devices have movement structure that needs more components. Thus more assembly processes are required and the defective rate is increased. Therefore the cost of the product is increased.
Thus the conventional at least has following shortcomings: complicated structure, too many components, time-consuming assembly and additional components required during rearming of the inflator. Moreover, users are unable to quickly check whether the gas cylinder of the inflator is replaced or not yet during rearming of the inflator.
Therefore it is a primary object of the present invention to provide an inflator that not only overcomes shortcomings of conventional ones but also features on simple structure, reliable performance, easy operation, convenient rearming and reduced cost.
In order to achieve the above object, an inflator of the present invention includes an inflator body, a needle-shaped shaft and a transmission arm. A top surface of the inflator body is disposed with a cylinder housing for mounting a gas cylinder. The inflator body further includes a first channel and a chamber therein. A through hole for connecting an object to be inflated is arranged at a side surface of the inflator body. A top end and a bottom end of the first channel are communicating with the cylinder housing and the chamber respectively while the through hole is communicating with one side of the first channel. A window is arranged at each of the two opposite side surfaces of the inflator body respectively. The needle-shaped shaft is moveable in the first channel of the inflator body and including a needle on a top end and a spring and a movable seat are disposed on a lower part thereof in turn. The needle is for piercing a seal of the gas cylinder. A first color area and a second color area are disposed around the needle-shaped shaft vertically. Through the windows of the inflator body, the color of the first color area or the second color area is displayed to indicate the state of the inflator including a non-inflated state and an already-inflated state. The transmission arm is pivotally disposed on the chamber of the inflator body and one end of the transmission arm is leaning against the bottom surface of the movable seat.
While in use, the transmission arm is rotated counterclockwise to chive the movable seat moving upward and further compressing the spring. Then the needle-shaped shaft is further pushed to move upward for piercing the seal of the gas cylinder. Thus compressed gas in the gas cylinder is released, passed the first channel and the through hole of the inflator body and entering the object to be inflated for inflation. Now the color of the first color area of the needle-shaped shaft representing non-inflated state and displayed through the window of the inflator body is changed into the color of the second color area that represents already-inflated state. Next the transmission arm is released. Due to the elasticity, one end of the first spring is elastically against the bottom surface of the needle-shaped shaft to keep the needle stay on the seal while the other end of the first spring is elastically against the movable seat to make the movable seat move downward. Thus the transmission arm is rotated in the opposite direction and moved back to the original position.
Refer to
Refer to
Refer from
The first spring 23 and the movable seat 28 are disposed on a lower part of the needle-shaped shaft 20 in turn. The top end and the bottom end of the first spring 23 are leaning against the bottom surface of the needle-shaped shaft 20 and the top surface of the movable seat 28. A space 22 with an opening facing downward for receiving the first spring 23 is arranged at a lower end of the needle-shaped shaft 20 (as shown in
Refer to
The colors of the first color area 24 and the second color area 25 of the needle-shaped shaft 20 are coated over the needle-shaped shaft 20 by spray, electroplating or coating. Refer to
Refer to
When the needle-shaped shaft 20 pierces the seal 41 of the gas cylinder 40, the first spring 23 is compressed into the space 22 of the needle-shaped shaft 20 or the space 282 of the movable seat 28. At the moment, the top surface of the movable seat 28 is in contact with the bottom surface of the needle-shaped shaft 20 so as to prevent damages or elastic fatigue of the first spring 23 caused by over compression. Thereby the first spring 23 is protected by the design and the structure of the space 22, 282 mentioned above.
The first color area 24 is used to represent non-inflated state while the second color area 25 is represented the already-inflated state. When the gas cylinder 40 is assembled with the cylinder housing 11 of the inflator body 10, the needle-shaped shaft 20 is observed through the window 15. Once the color of the first color area 24 such as green color is shown, it is learned that the inflator 1 can be used for inflation or is full-charged after being used. If the color of the second color area 25 such as red color is displayed, it means that the inflator 1 is unable to be used. The gas cylinder 40 needs to be replaced or rearmed so that the inflator 1 can be used again.
Two windows 15 on the inflator body 10 of the present invention allow users to check the state of the inflator 1 now easier and faster, compared with conventional device with a single window 15.
Refer to
Refer to
As shown in
Refer to
Under manual operation of the inflator 1, how the inflator 1 works during rearming of the gas cylinder 40 is described in the following. The gas cylinder 40 is assembled with the cylinder housing 11 of the inflator body 10. When the needle 21 of the needle-shaped shaft 20 is against the seal 41 of the gas cylinder 40 and the needle-shaped shaft 20 is moving downward, the color of the first color area 24 is completely shown through the window 15 of the inflator body 10. This represents that the gas cylinder 40 has not been used yet and the inflator 1 can be used for inflation. Once the needle 21 of the needle-shaped shaft 20 has pierced the seal 41 of the gas cylinder 40 and the needle-shaped shaft 20 has not moved downward, the color of the second color area 25 is completely shown through the window 15 of the inflator body 10. This means that the gas cylinder has been used and a new gas cylinder 40 is required for using the inflator 1 to inflate.
In another embodiment of the present invention, an automatic actuating device is used for automatic operation of the inflator 1. Thus the inflator 1 can be operated manually/automatically and users have more options.
Refer from
The inner sleeve 51 is disposed under the inflator body 10 and is communicating with a second channel 16 of the inflator body 10 axially. At least two slots 511 are arranged with a certain interval axially at the inner sleeve 51. A plurality of long grooves 512 is disposed on an inner wall of the inner sleeve 51 with an interval along the length direction of the inner sleeve 51. An inner top surface 513 of the inner sleeve 51 is extended downward to form a circular projecting neck 514. A threaded part 515 is set around on an outer surface of the inner sleeve 51. At least one assembly hole 516 corresponding to an assembly hole 17 of the inflator body 10 is mounted on an upper part of the inner sleeve 51. By at least one pin 18 being passed through the assembly holes 516, 517, of the inner sleeve 51 is assembled with the inflator body 10. Moreover, the inner sleeve 51 and the inflator body 10 can be integrally formed. The second channel 16 and the first channel 12 of the inflator body 10 are positioned in parallel with an interval. The width of the long grooves 512 can be modified for alignment and preventing misplacement.
The rod 52 is mounted axially in the inner sleeve 51. An upper part of the rod 52 is inserted into the second channel 16 of the inflator body 10 and is moveable along the length direction of the second channel 16. A long hole 521 is disposed axially on an upper part of the rod 52, allowing the second end 302 of the transmission arm 30 to pass through and move along the length direction thereof. A circular stopping part 522 is projecting from a lower part of the rod 52 while a circular groove 523 is mounted on a middle part of the rod 52 and a projecting flange 524 is disposed under the circular groove 523. A seal ring 56 is mounted in the circular groove 523 and is against the inner wall of the circular projecting neck 514 of the inner sleeve 51 to achieve sealing. A plurality of projecting bodies 525 corresponding to and locked with the long grooves 512 is radially arranged on the projecting flange 524.
The second spring 53 is arranged around the rod 52. One end of the second spring 53 is elastically leaning against the inner top surface 513 of the inner sleeve 51 while the other end thereof is elastically leaning against a top surface of the projecting flange 524 of the rod 52.
The ammunition mechanism 54 is mounted in the inner sleeve 51 and is located under the rod 52. The ammunition mechanism 54 consists of a base 541, a plurality of elastic pieces 542 and a circular wall 543. A round hole 544 penetrating the base 541 is disposed on a center of the base 541 and the elastic pieces 542 are arranged evenly in the round hole 544 of the base 541 and is projecting a predetermined height from the round hole 544. A bottom end of each elastic piece 542 is connected to the base 541 while a top end of the elastic piece 542 is disposed with a stopping surface 545 that is against the stopping part 522 of the rod 52. The circular wall 543 is wrapped around the elastic piece 542 and is arranged at the top surface of the base 541 so as to restrict the elastic pieces 542 and prevent the elastic piece 542 from radial elastic deformation caused by axial pushing force from upward. The circular wall 543 is dissolved after in contact with aqueous solution. Corresponding to the slots 511 and the long grooves 512 of the inner sleeve 51, the base 541 is radially disposed with at least two convex bodies 546 and a plurality of convex bodies 547. The convex body 546 is locked with the slot 511 while the convex body 547 is locked with the long groove 512 correspondingly. The convex bodies 546, 547 of the ammunition mechanism 54 and the slots 511 as well as the long grooves 512 of the inner sleeve 51 provide guidance and alignment while assembling the ammunition mechanism 54 with the inner sleeve 51 so as to prevent errors during rearming of the ammunition mechanism 54. When the ammunition mechanism 54 is mounted in the inner sleeve 51, the stopping surface 545 of the elastic piece 542 is against the stopping part 522 of the rod 52 and the elastic pieces 542 are stopped by the circular wall 543. Thus the rod 52 will not move downward even under the action of elasticity of the second spring 53.
As shown in
Under the automatic operation of the inflator 1, how the inflator 1 works during rearming of the gas cylinder 40 is described in the following. The steps are similar to those of the manual-operated inflator 1 but the difference is in that the ammunition mechanism 54 needs to be replaced. First disassemble the outer sleeve 55 of the automatic actuating device 50. Then replace the used ammunition mechanism 54 with a new one. While assembling the new ammunition mechanism 54, the convex bodies 546, 547 on the base 541 of the ammunition mechanism 54 are locked with the slots 511 and the long grooves 512 of the inner sleeve 51 respectively. Then push the ammunition mechanism 54 inward until the stopping surface 545 of the elastic piece 542 of the ammunition mechanism 54 is against the stopping part 522 of the rod 52. Next put the outer sleeve 55 back in place and the rod 52 is moved upward during the put-back process. At the same time, the second end 302 of the transmission arm 30 turns back to the original position due to elasticity of the first spring 23.
Refer to
In summary, the inflator 1 can be operated manually, automatically, or both on the same inflator 1, as shown in
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, and representative devices shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.