Information aggregation games

Information

  • Patent Grant
  • 12112601
  • Patent Number
    12,112,601
  • Date Filed
    Thursday, May 4, 2023
    a year ago
  • Date Issued
    Tuesday, October 8, 2024
    2 months ago
Abstract
Games related to the aggregation of information are described.
Description
BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows a block diagram of components for a hand-reading system, according to some embodiments;



FIG. 2 shows an apparatus for playing a game, according to some embodiments.



FIG. 3 shows a method according to some embodiments;



FIG. 4 shows a method according to some embodiments;



FIG. 5 shows a method according to some embodiments; and



FIG. 6 shows a method according to some embodiments.







DETAILED DESCRIPTION

The following sections I-X provide a guide to interpreting the present application.


I. Terms

The term “product” means any machine, manufacture and/or composition of matter, unless expressly specified otherwise.


The term “process” means any process, algorithm, method, or the like, unless expressly specified otherwise.


Each process (whether called a method, algorithm or otherwise) inherently includes one or more steps, and therefore all references to a “step” or “steps” of a process have an inherent antecedent basis in the mere recitation of the term ‘process’ or a like term. Accordingly, any reference in a claim to a ‘step’ or ‘steps’ of a process has sufficient antecedent basis.


The term “invention” and the like mean “the one or more inventions disclosed in this application,” unless expressly specified otherwise.


The terms “an embodiment,” “embodiment,” “embodiments,” “the embodiment,” “the embodiments”, “one or more embodiments”, “some embodiments”, “certain embodiments”, “one embodiment”, “another embodiment” and the like mean “one or more (but not all) embodiments of the disclosed invention(s)”, unless expressly specified otherwise.


The term “variation” of an invention means an embodiment of the invention, unless expressly specified otherwise.


A reference to “another embodiment” in describing an embodiment does not imply that the referenced embodiment is mutually exclusive with another embodiment (e.g., an embodiment described before the referenced embodiment), unless expressly specified otherwise.


The terms “including”, “comprising” and variations thereof mean “including but not limited to”, unless expressly specified otherwise.


The terms “a”, “an” and “the” mean “one or more”, unless expressly specified otherwise.


The term “plurality” means “two or more”, unless expressly specified otherwise.


The term “herein” means “in the present application, including anything which may be incorporated by reference”, unless expressly specified otherwise.


The phrase “at least one of”, when such phrase modifies a plurality of things (such as an enumerated list of things) means any combination of one or more of those things, unless expressly specified otherwise. For example, the phrase “at least one of a widget, a car and a wheel” means either (i) a widget, (ii) a car, (iii) a wheel, (iv) a widget and a car, (v) a widget and a wheel, (vi) a car and a wheel, or (vii) a widget, a car, and a wheel. The phrase “at least one of”, when such phrase modifies a plurality of things does not mean “one of” each of the plurality of things.


Numerical terms such as “one”, “two”, etc. when used as cardinal numbers to indicate quantity of something (e.g., one widget, two widgets), mean the quantity indicated by that numerical term, but do not mean at least the quantity indicated by that numerical term. For example, the phrase “one widget” does not mean “at least one widget”, and therefore the phrase “one widget” does not cover, e.g., two widgets.


The phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” describes both “based only on” and “based at least on”. The phrase “based at least on” is equivalent to the phrase “based at least in part on.”


The term “represent” and like terms are not exclusive, unless expressly specified otherwise. For example, the term “represents” do not mean “represents only”, unless expressly specified otherwise. In other words, the phrase “the data represents a credit card number” describes both “the data represents only a credit card number” and “the data represents a credit card number, and the data also represents something else”.


The term “whereby” is used herein only to precede a clause or other set of words that express only the intended result, objective, or consequence of something that is previously and explicitly recited. Thus, when the term “whereby” is used in a claim, the clause, or other words that the term “whereby” modifies do not establish specific further limitations of the claim or otherwise restricts the meaning or scope of the claim.


The term “e.g.” and like terms mean “for example,” and thus does not limit the term or phrase it explains. For example, in the sentence “the computer sends data (e.g., instructions, a data structure) over the Internet”, the term “e.g.” explains that “instructions” are an example of “data” that the computer may send over the Internet, and also explains that “a data structure” is an example of “data” that the computer may send over the Internet. However, both “instructions” and “a data structure” are merely examples of “data,” and other things besides “instructions” and “a data structure” can be “data.”


The term “respective” and like terms mean “taken individually.” Thus if two or more things have “respective” characteristics, then each such thing has its own characteristic, and these characteristics can be different from each other but need not be. For example, the phrase “each of two machines has a respective function” means that the first such machine has a function and the second such machine has a function as well. The function of the first machine may or may not be the same as the function of the second machine.


The term “i.e.” and like terms mean “that is,” and thus limits the term or phrase it explains. For example, in the sentence “the computer sends data (i.e., instructions) over the Internet,” the term “i.e.” explains that “instructions” are the “data” that the computer sends over the Internet.


Any given numerical range shall include whole and fractions of numbers within the range. For example, the range “1 to 10” shall be interpreted to specifically include whole numbers between 1 and 10 (e.g., 1, 2, 3, 4, . . . 9) and non-whole numbers (e.g., 1.1, 1.2, . . . 1.9).


Where two or more terms or phrases are synonymous (e.g., because of an explicit statement that the terms or phrases are synonymous), instances of one such term/phrase does not mean instances of another such term/phrase must have a different meaning. For example, where a statement renders the meaning of “including” to be synonymous with “including but not limited to”, the mere usage of the phrase “including but not limited to” does not mean that the term “including” means something other than “including but not limited to”.


An “indication” of a thing may include anything from which at least part of the thing and/or a transformation of the thing may be derived. In some implementations, an indication of information, for example, may include an electronic message that may be interpreted by a receiver and/or transmitter of the message into at least a portion of the information and/or at least a portion of a transformation of the information. As another example, an indication of a final outcome of a hand may include a statement of the winner of the hand, a statement of the loser of the hand, the final cards making up the final state of the hand, a statement of winning for the hand, and/or any other information.


Wagering on an outcome may include risking money or other valuables that the outcome of an event will happen. Other wagers may include wagering on a set of outcomes, wagering against an outcome and so on.


As used herein, the term “outcome” may refer a set of symbols or indicia which may be obtained (e.g., randomly generated; e.g., selected by a player) in a game (e.g., in a game played with a wager), and which may determine a course or direction in the game and/or which may determine a payment or prize to be awarded from the game. The term “outcome” may, in various embodiments, refer both to symbols and indicia and to the payment or prize awarded in a game. The term “outcome” may, in various embodiments, refer to the prize or payment awarded in a game. In various embodiments, multiple outcomes may occur during a game. For example, in a slot machine game, each activated pay-line may feature a different outcome. Further, in various embodiments, a game may include a succession of outcomes. For example, in a game of video poker, an initial set of five cards dealt to a player may constitute a first outcome. The final hand of cards obtained by the player after discarding cards from the initial set of five cards may constitute a second outcome. In various embodiments, the aggregate effect of several outcomes in a game may itself constitute an outcome. For example, in a slot machine game, a player may activate three pay-lines and may thereby receive three outcomes. Payouts associated with the three outcomes may be 2 coins, 5 coins, and 3 coins. Thus, the aggregate outcome of the game may be that the player receives a payout of 10 coins. Examples of outcomes include: (a) a set of symbols achieved across the pay-line of a reel slot machine; (b) a set of cards dealt in a game of poker; (c) a set of cards dealt in a game of blackjack; (d) a player hand in a game of blackjack; (e) a player hand in combination with a dealer hand in blackjack (i.e., an outcome in a game of blackjack may include cards received by a player and cards received by a dealer); (f) a number rolled in a game of craps; (g) a series of numbers rolled in a game of craps (e.g., in a game of craps, an outcome may include the entire series of numbers rolled between the time a player made a bet and the time the player was paid for his bet or lost his bet); (g) a set of numbers generated in a game of keno; (h) a prize amount revealed in a bonus round; and so on.


As described below, in some implementations, plays may make payments, be required to make payments, and so on. The term payment used herein should be understood to not be limited to the payment of money but instead should be understood as accepting any negative or providing any positive. For example, a player may accept a negative by accepting that odds of a wager may be changed to a less favorable level, by accepting that a house edge may be adjusted against the player, by accepting that options once available to a player may no longer be available, acceptance of unfavorable terms, and so on. For another example, a player may provide a positive by paying a monetary fee, relinquishing anything of value, giving away private information, giving up favorable terms to another, and so on.


II. Determining

The term “determining” and grammatical variants thereof (e.g., to determine a price, determining a value, determine an object which meets a certain criterion) is used in an extremely broad sense. The term “determining” encompasses a wide variety of actions and therefore “determining” can include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database, or another data structure), ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information), accessing (e.g., accessing data in a memory) and the like. Also, “determining” can include resolving, selecting, choosing, establishing, and the like.


The term “determining” does not imply certainty or absolute precision, and therefore “determining” can include estimating, extrapolating, predicting, guessing and the like.


The term “determining” does not imply that mathematical processing must be performed and does not imply that numerical methods must be used and does not imply that an algorithm or process is used.


The term “determining” does not imply that any particular device must be used. For example, a computer need not necessarily perform the determining.


III. Forms of Sentences

Where a limitation of a first claim would cover one of a feature as well as more than one of a feature (e.g., a limitation such as “at least one widget” covers one widget as well as more than one widget), and where in a second claim that depends on the first claim, the second claim uses a definite article “the” to refer to the limitation (e.g., “the widget”), this does not imply that the first claim covers only one of the feature, and this does not imply that the second claim covers only one of the feature (e.g., “the widget” can cover both one widget and more than one widget).


When an ordinal number (such as “first”, “second”, “third” and so on) is used as an adjective before a term, that ordinal number is used (unless expressly specified otherwise) merely to indicate a particular feature, such as to distinguish that particular feature from another feature that is described by the same term or by a similar term. For example, a “first widget” may be so named merely to distinguish it from, e.g., a “second widget”. Thus, the mere usage of the ordinal numbers “first” and “second” before the term “widget” does not indicate any other relationship between the two widgets, and likewise does not indicate any other characteristics of either or both widgets. For example, the mere usage of the ordinal numbers “first” and “second” before the term “widget” (1) does not indicate that either widget comes before or after any other in order or location; (2) does not indicate that either widget occurs or acts before or after any other in time; and (3) does not indicate that either widget ranks above or below any other, as in importance or quality. In addition, the mere usage of ordinal numbers does not define a numerical limit to the features identified with the ordinal numbers. For example, the mere usage of the ordinal numbers “first” and “second” before the term “widget” does not indicate that there must be no more than two widgets.


When a single device, article or other product is described herein, more than one device/article (whether or not they cooperate) may alternatively be used in place of the single device/article that is described. Accordingly, the functionality that is described as being possessed by a device may alternatively be possessed by more than one device/article (whether or not they cooperate).


Similarly, where more than one device, article or other product is described herein (whether or not they cooperate), a single device/article may alternatively be used in place of the more than one device or article that is described. For example, a plurality of computer-based devices may be substituted with a single computer-based device. Accordingly, the various functionality that is described as being possessed by more than one device or article may alternatively be possessed by a single device/article.


The functionality and/or the features of a single device that is described may be alternatively embodied by one or more other devices which are described but are not explicitly described as having such functionality/features. Thus, other embodiments need not include the described device itself, but rather can include the one or more other devices which would, in those other embodiments, have such functionality/features.


IV. Disclosed Examples and Terminology are not Limiting

Neither the Title (set forth at the beginning of the first page of the present application) nor the Abstract (set forth at the end of the present application) is to be taken as limiting in any way as the scope of the disclosed invention(s). An Abstract has been included in this application merely because an Abstract of not more than 150 words is required under 37 C.F.R. § 1.72(b).


The title of the present application and headings of sections provided in the present application are for convenience only and are not to be taken as limiting the disclosure in any way.


Numerous embodiments are described in the present application and are presented for illustrative purposes only. The described embodiments are not, and are not intended to be, limiting in any sense. The presently disclosed invention(s) are widely applicable to numerous embodiments, as is readily apparent from the disclosure. One of ordinary skill in the art will recognize that the disclosed invention(s) may be practiced with various modifications and alterations, such as structural, logical, software, and electrical modifications. Although particular features of the disclosed invention(s) may be described with reference to one or more particular embodiments and/or drawings, it should be understood that such features are not limited to usage in the one or more particular embodiments or drawings with reference to which they are described, unless expressly specified otherwise.


No embodiment of method steps or product elements described in the present application constitutes the invention claimed herein, or is essential to the invention claimed herein, or is coextensive with the invention claimed herein, except where it is either expressly stated to be so in this specification or expressly recited in a claim.


All words in every claim have the broadest scope of meaning they would have been given by a person of ordinary skill in the art as of the priority date. No term used in any claim is specially defined or limited by this application except where expressly so stated either in this specification or in a claim.


The preambles of the claims that follow recite purposes, benefits, and possible uses of the claimed invention only and do not limit the claimed invention.


The present disclosure is not a literal description of all embodiments of the invention(s). Also, the present disclosure is not a listing of features of the invention(s) which must be present in all embodiments.


Devices that are described as in communication with each other need not be in continuous communication with each other, unless expressly specified otherwise. On the contrary, such devices need only transmit to each other as necessary or desirable and may actually refrain from exchanging data most of the time. For example, a machine in communication with another machine via the Internet may not transmit data to the other machine for long period of time (e.g. weeks at a time). In addition, devices that are in communication with each other may communicate directly or indirectly through one or more intermediaries.


A description of an embodiment with several components or features does not imply that all or even any of such components/features are required. On the contrary, a variety of optional components are described to illustrate the wide variety of possible embodiments of the present invention(s). Unless otherwise specified explicitly, no component/feature is essential or required.


Although process steps, algorithms or the like may be described or claimed in a particular sequential order, such processes may be configured to work in different orders. In other words, any sequence or order of steps that may be explicitly described or claimed does not necessarily indicate a requirement that the steps be performed in that order. The steps of processes described herein may be performed in any order possible. Further, some steps may be performed simultaneously despite being described or implied as occurring non-simultaneously (e.g., because one step is described after the other step). Moreover, the illustration of a process by its depiction in a drawing does not imply that the illustrated process is exclusive of other variations and modifications thereto, does not imply that the illustrated process or any of its steps are necessary to the invention(s), and does not imply that the illustrated process is preferred.


Although a process may be described as including a plurality of steps, that does not imply that all or any of the steps are preferred, essential or required. Various other embodiments within the scope of the described invention(s) include other processes that omit some or all of the described steps. Unless otherwise specified explicitly, no step is essential or required.


Although a process may be described singly or without reference to other products or methods, in an embodiment the process may interact with other products or methods. For example, such interaction may include linking one business model to another business model. Such interaction may be provided to enhance the flexibility or desirability of the process.


Although a product may be described as including a plurality of components, aspects, qualities, characteristics and/or features, that does not indicate that any or all of the plurality are preferred, essential or required. Various other embodiments within the scope of the described invention(s) include other products that omit some or all of the described plurality.


An enumerated list of items (which may or may not be numbered) does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise. Likewise, an enumerated list of items (which may or may not be numbered) does not imply that any or all of the items are comprehensive of any category, unless expressly specified otherwise. For example, the enumerated list “a computer, a laptop, a PDA” does not imply that any or all of the three items of that list are mutually exclusive and does not imply that any or all of the three items of that list are comprehensive of any category.


An enumerated list of items (which may or may not be numbered) does not imply that any or all of the items are equivalent to each other or readily substituted for each other.


All embodiments are illustrative, and do not imply that the invention or any embodiments were made or performed, as the case may be.


V. Computing

It will be readily apparent to one of ordinary skill in the art that the various processes described herein may be implemented by, e.g., appropriately programmed general purpose computers, special purpose computers and computing devices. Typically a processor (e.g., one or more microprocessors, one or more microcontrollers, one or more digital signal processors) will receive instructions (e.g., from a memory or like device), and execute those instructions, thereby performing one or more processes defined by those instructions. Instructions may be embodied in, e.g., one or more computer programs, one or more scripts.


A “processor” means one or more microprocessors, central processing units (CPUs), computing devices, microcontrollers, digital signal processors, or like devices or any combination thereof, regardless of the architecture (e.g., chip-level multiprocessing/multi-core, RISC, CISC, Microprocessor without Interlocked Pipeline Stages, pipelining configuration, simultaneous multithreading).


Thus a description of a process is likewise a description of an apparatus for performing the process. The apparatus that performs the process can include, e.g., a processor and those input devices and output devices that are appropriate to perform the process.


Further, programs that implement such methods (as well as other types of data) may be stored and transmitted using a variety of media (e.g., computer readable media) in a number of manners. In some embodiments, hard-wired circuitry or custom hardware may be used in place of, or in combination with, some or all of the software instructions that can implement the processes of various embodiments. Thus, various combinations of hardware and software may be used instead of software only.


The term “computer-readable medium” refers to any medium, a plurality of the same, or a combination of different media, that participate in providing data (e.g., instructions, data structures) which may be read by a computer, a processor or a like device. Such a medium may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media include, for example, optical or magnetic disks and other persistent memory. Volatile media include dynamic random access memory (DRAM), which typically constitutes the main memory. Transmission media include coaxial cables, copper wire and fiber optics, including the wires that comprise a system bus coupled to the processor. Transmission media may include or convey acoustic waves, light waves, and electromagnetic emissions, such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH-EEPROM, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read.


Various forms of computer readable media may be involved in carrying data (e.g. sequences of instructions) to a processor. For example, data may be (i) delivered from RAM to a processor; (ii) carried over a wireless transmission medium; (iii) formatted and/or transmitted according to numerous formats, standards or protocols, such as Ethernet (or IEEE 802.3), SAP, ATP, Bluetooth™, and TCP/IP, TDMA, CDMA, and 3G; and/or (iv) encrypted to ensure privacy or prevent fraud in any of a variety of ways well known in the art.


Thus a description of a process is likewise a description of a computer-readable medium storing a program for performing the process. The computer-readable medium can store (in any appropriate format) those program elements which are appropriate to perform the method.


Just as the description of various steps in a process does not indicate that all the described steps are required, embodiments of an apparatus include a computer/computing device operable to perform some (but not necessarily all) of the described process.


Likewise, just as the description of various steps in a process does not indicate that all the described steps are required, embodiments of a computer-readable medium storing a program or data structure include a computer-readable medium storing a program that, when executed, can cause a processor to perform some (but not necessarily all) of the described process.


Where databases are described, it will be understood by one of ordinary skill in the art that (i) alternative database structures to those described may be readily employed, and (ii) other memory structures besides databases may be readily employed. Any illustrations or descriptions of any sample databases presented herein are illustrative arrangements for stored representations of information. Any number of other arrangements may be employed besides those suggested by, e.g., tables illustrated in drawings or elsewhere. Similarly, any illustrated entries of the databases represent exemplary information only; one of ordinary skill in the art will understand that the number and content of the entries can be different from those described herein. Further, despite any depiction of the databases as tables, other formats (including relational databases, object-based models and/or distributed databases) could be used to store and manipulate the data types described herein. Likewise, object methods or behaviors of a database can be used to implement various processes, such as the described herein. In addition, the databases may, in a known manner, be stored locally or remotely from a device which accesses data in such a database.


Various embodiments can be configured to work in a network environment including a computer that is in communication (e.g., via a communications network) with one or more devices. The computer may communicate with the devices directly or indirectly, via any wired or wireless medium (e.g. the Internet, LAN, WAN or Ethernet, Token Ring, a telephone line, a cable line, a radio channel, an optical communications line, commercial on-line service providers, bulletin board systems, a satellite communications link, a combination of any of the above). Each of the devices may themselves comprise computers or other computing devices, such as those based on the Intel® Pentium® or Centrino™ processor, that are adapted to communicate with the computer. Any number and type of devices may be in communication with the computer.


In some embodiments, a server computer and one or more client computers may perform desired actions. Actions may be performed by one or more of the clients and/or servers in accordance with a desired distribution of labor. Such distribution of labor may be made based on where the actions may be performed more securely, more quickly, and/or more cost-effectively. For example, in some implementations, complex calculations may be performed by a central server to increase speed, display related calculations may be performed by a client because they may be simple, outcome determining calculations may be performed by a central server in order to ensure the validity of the calculations and allow tweaking of odds to be performed at a single location. It should be recognized that any desired actions may be divided among a server and any number of clients in any desired way.


In an embodiment, a server computer or centralized authority may not be necessary or desirable. For example, the present invention may, in an embodiment, be practiced on one or more devices without a central authority. In such an embodiment, any functions described herein as performed by the server computer or data described as stored on the server computer may instead be performed by or stored on one or more such devices.


Where a process is described, in an embodiment the process may operate without any user intervention. In another embodiment, the process includes some human intervention (e.g., a step is performed by or with the assistance of a human).


VI. Continuing Applications

The present disclosure provides, to one of ordinary skill in the art, an enabling description of several embodiments and/or inventions. Some of these embodiments and/or inventions may not be claimed in the present application but may nevertheless be claimed in one or more continuing applications that claim the benefit of priority of the present application.


Applicants intend to file additional applications to pursue patents for subject matter that has been disclosed and enabled but not claimed in the present application.


VII. 35 U.S.C. § 112, Paragraph 6

In a claim, a limitation of the claim which includes the phrase “means for” or the phrase “step for” means that 35 U.S.C. § 112, paragraph 6, applies to that limitation.


In a claim, a limitation of the claim which does not include the phrase “means for” or the phrase “step for” means that 35 U.S.C. § 112, paragraph 6 does not apply to that limitation, regardless of whether that limitation recites a function without recitation of structure, material or acts for performing that function. For example, in a claim, the mere use of the phrase “step of” or the phrase “steps of” in referring to one or more steps of the claim or of another claim does not mean that 35 U.S.C. § 112, paragraph 6, applies to that step(s).


With respect to a means or a step for performing a specified function in accordance with 35 U.S.C. § 112, paragraph 6, the corresponding structure, material, or acts described in the specification, and equivalents thereof, may perform additional functions as well as the specified function.


Computers, processors, computing devices and like products are structures that can perform a wide variety of functions. Such products can be operable to perform a specified function by executing one or more programs, such as a program stored in a memory device of that product or in a memory device which that product accesses. Unless expressly specified otherwise, such a program need not be based on any particular algorithm, such as any particular algorithm that might be disclosed in the present application. It is well known to one of ordinary skill in the art that a specified function may be implemented via different algorithms, and any of a number of different algorithms would be a mere design choice for carrying out the specified function.


Therefore, with respect to a means or a step for performing a specified function in accordance with 35 U.S.C. § 112, paragraph 6, structure corresponding to a specified function includes any product programmed to perform the specified function. Such structure includes programmed products which perform the function, regardless of whether such product is programmed with (i) a disclosed algorithm for performing the function, (ii) an algorithm that is similar to a disclosed algorithm, or (iii) a different algorithm for performing the function.


Where there is recited a means for performing a function hat is a method, one structure for performing this method includes a computing device (e.g., a general purpose computer) that is programmed and/or configured with appropriate hardware to perform that function.


Also includes a computing device (e.g., a general purpose computer) that is programmed and/or configured with appropriate hardware to perform that function via other algorithms as would be understood by one of ordinary skill in the art.


VIII. Disclaimer

Numerous references to a particular embodiment does not indicate a disclaimer or disavowal of additional, different embodiments, and similarly references to the description of embodiments which all include a particular feature does not indicate a disclaimer or disavowal of embodiments which do not include that particular feature. A clear disclaimer or disavowal in the present application shall be prefaced by the phrase “does not include” or by the phrase “cannot perform”.


IX. Incorporation By Reference

Any patent, patent application or other document referred to herein is incorporated by reference into this patent application as part of the present disclosure, but only for purposes of written description in accordance with 35 U.S.C. § 112, paragraph 1 and enablement in accordance with 35 U.S.C. § 112, paragraph 1, and should in no way be used to limit, define, or otherwise construe any term of the present application where the present application, without such incorporation by reference, would not have failed to provide an ascertainable meaning, but rather would have allowed an ascertainable meaning for such term to be provided. Thus, the person of ordinary skill in the art need not have been in any way limited by any embodiments provided in the reference.


Any incorporation by reference does not, in and of itself, imply any endorsement of, ratification of, or acquiescence in any statements, opinions, arguments or characterizations contained in any incorporated patent, patent application or other document, unless explicitly specified otherwise in this patent application.


X. Prosecution History

In interpreting the present application (which includes the claims), one of ordinary skill in the art shall refer to the prosecution history of the present application, but not to the prosecution history of any other patent or patent application, regardless of whether there are other patent applications that are considered related to the present application, and regardless of whether there are other patent applications that share a claim of priority with the present application.


XI. Cards

Playing cards have been in existence for many years. Although there are many types of playing cards that are played in many different types of games, the most common type of playing cards consists of 52 cards, divided out into four different suits (namely Spades, Hearts, Diamonds and Clubs) which are printed or indicated on one side or on the face of each card. In the standard deck, each of the four suits of cards consists of 13 cards, numbered either two through ten, or lettered A (Ace), K (King), Q (Queen), or J (Jack), which is also printed or indicated on the face of each card. Each card will thus contain on its face a suit indication along with a number or letter indication. The King, Queen, and Jack usually also include some sort of design on the face of the card and may be referred to as picture cards.


In some cases, the 52 card standard playing deck also contains a number of extra cards, sometimes referred to as jokers, that may have some use or meaning depending on the particular game being played with the deck. For example, if a card game includes the jokers, then if a player receives a joker in his “hand” he may use it as any card in the deck. If the player has the ten, jack, queen, and king of Spades, along with a joker, the player would use the joker as an Ace of Spades. The player will then have a Royal Flush (ten through Ace of Spades).


Many different games can be played using a standard deck of playing cards. The game being played with the standard deck of cards may include other items, such as game boards, chips, etc., or the game being played may only need the playing card deck itself. In most of the games played using a standard deck of cards, a value is assigned to each card. The value may differ for different games.


Usually, the card value begins with the number two card as the lowest value and increases as the numbers increase through ten, followed in order of increasing value with the Jack, Queen, King, and Ace. In some games the Ace may have a lower value than the two, and in games where a particular card is determined to be wild, or have any value, that card may have the greatest value of all. For example, in card games where deuces, or twos, are wild, the player holding a playing card containing a two can use that two as any other card, such that a nine and a two would be the equivalent of two nines.


Further, the four different suits indicated on the cards may have a particular value depending on the game. Under game rules where one suit, i.e., Spades, has more value than another suit, i.e., Hearts, the seven of Spades may have more value than the seven of Hearts.


It is easy to visualize that using the different card quantity and suit values, many different games can be played. In certain games, it is the combination of cards that one player obtains that determines whether or not that player has defeated the other player or players. Usually, the more difficult the combination is to obtain, the more value the combination has, and the player who obtains the more difficult combination (also taking into account the value of the cards) wins the game.


For instance in the game of Poker, each player may ultimately receive five cards. The player who obtains three cards having similar numbers on their face, i.e., the four of Hearts, four of Diamonds and four of Clubs, will defeat the player having only two cards with the same numerical value, i.e., the King of Spades and the King of Hearts. However, the player with five cards that all contain Clubs, commonly known as a flush, will defeat the player with the same three of a kind described above.


In many instances, a standard deck of playing cards is used to create gaming machines. In these gaming machines players insert coins and play certain card games, such as poker, using an imitation of standard playing cards on a video screen, in an attempt to win back more money than they originally inserted into the machine.


Another form of gambling using playing cards utilizes tables, otherwise known as table games. A table uses a table and a dealer, with the players sitting or standing around the table. The players place their bets on the table and the dealer deals the cards to each player. The number of cards dealt, or whether the cards are dealt face up or face down, will depend on the particular table game being played.


Further, an imitation or depiction of a standard playing card is used in many handheld electronic games, such as poker and blackjack, and in many computer games and Internet games. Using a handheld electronic game or a computer terminal that may or may not be connected to the Internet, a player receives the imitation playing cards and plays a card game either against the computer or against other players. Further, many of these games can be played on the computer in combination with gambling.


Also, there are many game shows that are broadcasted on television that use a deck of playing cards in the game play, in which the cards are usually enlarged or shown on a video screen or monitor for easy viewing. In these television game shows, the participants play the card game for prizes or money, usually against each other, with an individual acting as a host overseeing the action.


Also, there are lottery tickets that players purchase and play by “scratching off” an opaque layer to see if they have won money and prizes. The opaque layer prevents the player from knowing the results of the lottery ticket prior to purchasing and scratching off the layer. In some of these lottery tickets, playing cards are used under the opaque layer and the player may need to match a number of similar cards in order to win the prizes or money.


XII. Rules of Card Games

Rules of Poker


In a basic poker game, which is played with a standard 52-card deck, each player is dealt five cards. All five cards in each player's hand are evaluated as a single hand with the presence of various combinations of the cards such as pairs, three-of-a-kind, straight, etc. Determining which combinations prevail over other combinations is done by reference to a table containing a ranking of the combinations. Rankings in most tables are based on the odds of each combination occurring in the player's hand. Regardless of the number of cards in a player's hand, the values assigned to the cards, and the odds, the method of evaluating all five cards in a player's hand remain the same.


Poker is a popular skill-based card game in which players with fully or partially concealed cards make bets into a central pot. The pot is awarded to the player or players with the best combination of cards or to the player who makes an uncalled bet. Poker can also refer to video poker, a single-player game seen in casinos much like a slot machine, or to other games that use poker hand rankings.


Poker is played in a multitude of variations, but most follow the same basic pattern of play.


The right to deal each hand typically rotates among the players and is marked by a token called a ‘dealer’ button or buck. In a casino, a house dealer handles the cards for each hand, but a button (typically a white plastic disk) is rotated clockwise among the players to indicate a nominal dealer to determine the order of betting.


For each hand, one or more players are required to make forced bets to create an initial stake for which the players will contest. The dealer shuffles the cards, he cuts, and the appropriate number of cards are dealt to the players one at a time. Cards may be dealt either face-up or face-down, depending on the variant of poker being played. After the initial deal, the first of what may be several betting rounds begins. Between rounds, the players' hands develop in some way, often by being dealt additional cards or replacing cards previously dealt. At the end of each round, all bets are gathered into the central pot.


At any time during a betting round, if a player makes a bet, opponents are required to fold, call, or raise. If one player bets and no opponents choose to match the bet, the hand ends immediately, the bettor is awarded the pot, no cards are required to be shown, and the next hand begins. The ability to win a pot without showing a hand makes bluffing possible. Bluffing is a primary feature of poker, one that distinguishes it from other vying games and from other games that make use of poker hand rankings.


At the end of the last betting round, if more than one player remains, there is a showdown, in which the players reveal their previously hidden cards and evaluate their hands. The player with the best hand according to the poker variant being played wins the pot.


The most popular poker variants are as follows:


Draw Poker


Players each receive five—as in five-card draw—or more cards, all of which are hidden. They can then replace one or more of these cards a certain number of times.


Stud Poker


Players receive cards one at a time, some being displayed to other players at the table. The key difference between stud and ‘draw’ poker is that players are not allowed to discard or replace any cards.


Community Card Poker


Players combine individually dealt cards with a number of “community cards” dealt face up and shared by all players. Two or four individual cards may be dealt in the most popular variations, Texas hold 'em and Omaha hold 'em, respectively.


Poker Hand Rankings

Straight Flush


A straight flush is a poker hand such as Qcustom character Jcustom character 10custom character 9custom character 8custom character, which contains five cards in sequence, all of the same suit. Two such hands are compared by their high card in the same way as are straights. The low ace rule also applies: 5♦ 4♦ 3♦ 2♦ A♦ is a 5-high straight flush (also known as a “steel wheel”). An ace-high straight flush such as Acustom character Kcustom character Qcustom character Jcustom character 10custom character is known as a royal flush and is the highest ranking standard poker hand (excluding five of a kind).


Examples

7♥ 6♥ 5♥ 4♥ 3♥ beats 5custom character 4custom character 3custom character 2custom character Acustom character


Jcustom character 10custom character 9custom character 8custom character 7custom character ties J♦ 10♦ 9♦ 8♦ 7♦


Four of a Kind


Four of a kind, or quads, is a poker hand such as 9custom character 9custom character 9♦ 9♥ J♥, which contains four cards of one rank, and an unmatched card. It ranks above a full house and below a straight flush. Higher ranking quads defeat lower ranking ones. Between two equal sets of four of a kind (possible in wild card and community card games), the kicker determines the winner.


Examples

10custom character 10♦ 10♥ 10custom character 5♦ (“four tens” or “quad tens”) defeats 6♦ 6♥ 6custom character 6custom character Kcustom character (“four sixes” or “quad sixes”)


10custom character 10♦ 10♥ 10custom character Qcustom character (“four tens, queen kicker”) defeats 10custom character 10♦ 10♥ 10custom character 5♦ (“four tens with a five”)


Full House


A full house, also known as a boat or a full boat, is a poker hand such as 3custom character 3custom character 3♦ 6custom character 6♥, which contains three matching cards of one rank, plus two matching cards of another rank. It ranks below a four of a kind and above a flush. Between two full houses, the one with the higher ranking set of three wins. If two have the same set of three (possible in wild card and community card games), the hand with the higher pair wins. Full houses are described by the three of a kind (e.g. Q-Q-Q) and pair (e.g. 9-9), as in “Queens over nines” (also used to describe a two pair), “Queens full of nines” or simply “Queens full”.


Examples

10custom character 10♥ 10♦ 4custom character 4♦ (“tens full”) defeats 9♥ 9custom character 9custom character A♥ Acustom character (“nines full”)


Kcustom character Kcustom character K♥ 3♦ 3custom character (“kings full”) defeats 3custom character 3♥ 3♦ Kcustom character K♦ (“threes full”)


Q♥ Q♦ Qcustom character 8♥ 8custom character (“queens full of eights”) defeats Q♥ Q♦ Qcustom character 5custom character 5♥ (“queens full of fives”)


Flush


A flush is a poker hand such as Qcustom character 10custom character 7custom character 6custom character 4custom character, which contains five cards of the same suit, not in rank sequence. It ranks above a straight and below a full house. Two flushes are compared as if they were high card hands. In other words, the highest ranking card of each is compared to determine the winner; if both have the same high card, then the second-highest ranking card is compared, etc. The suits have no value: two flushes with the same five ranks of cards are tied. Flushes are described by the highest card, as in “queen-high flush”.


Examples

A♥ Q♥ 10♥ 5♥ 3♥ (“ace-high flush”) defeats Kcustom character Qcustom character Jcustom character 9custom character 6custom character (“king-high flush”)


A♦ K♦ 7♦ 6♦ 2♦ (“flush, ace-king high”) defeats A♥ Q♥ 10♥ 5♥ 3♥ (“flush, ace-queen high”)


Q♥ 10♥ 9♥ 5♥ 2♥ (“heart flush”) ties Qcustom character 10custom character 9custom character 5custom character 2custom character (“spade flush”)


Straight


A straight is a poker hand such as Qcustom character Jcustom character 10custom character 9♥ 8♥, which contains five cards of sequential rank of varying suits. It ranks above three of a kind and below a flush. Two straights are ranked by comparing the high card of each. Two straights with the same high card are of equal value and split any winnings (straights are the most commonly tied hands in poker, especially in community card games). Straights are described by the highest card, as in “queen-high straight” or “straight to the queen”.


A hand such as Acustom character Kcustom character Q♦ Jcustom character 10custom character is an ace-high straight and ranks above a king-high straight such as K♥ Qcustom character J♥ 10♥ 9♦. But the ace may also be played as a 1-spot in a hand such as 5custom character 4♦ 3♦ 2custom character Acustom character, called a wheel or five-high straight, which ranks below the six-high straight 6custom character 5custom character 4custom character 3♥ 2♥. The ace may not “wrap around” or play both high and low in the same hand: 3custom character 2♦ Acustom character Kcustom character Qcustom character is not a straight, but just ace-high no pair.


Examples

8custom character 7custom character 6♥ 5♥ 4custom character (“eight-high straight”) defeats 6♦ 5custom character 4♦ 3♥ 2custom character (“six-high straight”)


8custom character 7custom character 6♥ 5♥ 4custom character ties 8♥ 7♦ 6custom character 5custom character 4♥


Three of a Kind


Three of a kind, also called trips, set or a prile, is a poker hand such as 2♦ 2custom character 2♥ Kcustom character 6custom character, which contains three cards of the same rank, plus two unmatched cards. It ranks above two pair and below a straight. Higher ranking three of a kind defeat lower ranking three of a kinds. If two hands have the same rank three of a kind (possible in games with wild cards or community cards), the kickers are compared to break the tie.


Examples

8custom character 8♥ 8♦ 5custom character 3custom character (“three eights”) defeats 5custom character 5♥ 5♦ Q♦ 10custom character (“three fives”)


8custom character 8♥ 8♦ Acustom character 2♦ (“three eights, ace kicker”) defeats 8custom character 8♥ 8♦ 5custom character 3custom character (“three eights, five kicker”)


Two Pair


A poker hand such as J♥ Jcustom character 4custom character 4custom character 9custom character, which contains two cards of the same rank, plus two cards of another rank (that match each other but not the first pair), plus one unmatched card, is called two pair. It ranks above one pair and below three of a kind. Between two hands containing two pair, the higher ranking pair of each is first compared, and the higher pair wins. If both have the same top pair, then the second pair of each is compared. Finally, if both hands have the same two pairs, the kicker determines the winner. Two pair are described by the higher pair (e.g., K♥ Kcustom character) and the lower pair (e.g., 9custom character 9♦), as in “Kings over nines”, “Kings and nines” or simply “Kings up”.


Examples

K♥ K♦ 2custom character 2♦ J♥ (“kings up”) defeats J♦ Jcustom character 10custom character 10custom character 9custom character (“jacks up”)


9custom character 9♦ 7♦ 7custom character 6♥ (“nines and sevens”) defeats 9♥ 9custom character 5♥ 5♦ Kcustom character (“nines and fives”)


4custom character 4custom character 3custom character 3♥ K♦ (“fours and threes, king kicker”) defeats 4♥ 4♦ 3♦ 3 10custom character (“fours and threes with a ten”)


One Pair


One pair is a poker hand such as 4♥ 4custom character Kcustom character 10♦ 5custom character, which contains two cards of the same rank, plus three unmatched cards. It ranks above any high card hand, but below all other poker hands. Higher ranking pairs defeat lower ranking pairs. If two hands have the same rank of pair, the non-paired cards in each hand (the kickers) are compared to determine the winner.


Examples

10custom character 10custom character 6custom character 4♥ 2♥ (“pair of tens”) defeats 9♥ 9custom character A♥ Q♦ 10♦ (“pair of nines”)


10♥ 10♦ J♦ 3♥ 2custom character (“tens with jack kicker”) defeats 10custom character 10custom character 6custom character 4♥ 2♥ (“tens with six kicker”)


2♦ 2♥ 8custom character 5custom character 4custom character (“deuces, eight-five-four”) defeats 2custom character 2custom character 8custom character 5♥ 3♥ (“deuces, eight-five-three”)


High Card


A high-card or no-pair hand is a poker hand such as K♥ Jcustom character 8custom character 7♦ 3custom character, in which no two cards have the same rank, the five cards are not in sequence, and the five cards are not all the same suit. It can also be referred to as “nothing” or “garbage,” and many other derogatory terms. It ranks below all other poker hands. Two such hands are ranked by comparing the highest ranking card; if those are equal, then the next highest ranking card; if those are equal, then the third highest ranking card, etc. No-pair hands are described by the one or two highest cards in the hand, such as “king high” or “ace-queen high”, or by as many cards as are necessary to break a tie.


Examples

A♦ 10♦ 9custom character 5custom character 4custom character (“ace high”) defeats Kcustom character Q♦ Jcustom character 8♥ 7♥ (“king high”)


Acustom character Qcustom character 7♦ 5♥ 2custom character (“ace-queen”) defeats A♦ 10♦ 9custom character 5custom character 4custom character (“ace-ten”)


7custom character 6custom character 5custom character 4♦ 2♥ (“seven-six-five-four”) defeats 7custom character 6♦ 5♦ 3♥ 2custom character (“seven-six-five-three”)


Decks Using a Bug


The use of joker as a bug creates a slight variation of game play. When a joker is introduced in standard poker games it functions as a fifth ace or can be used as a flush or straight card (though it can be used as a wild card too). Normally casino draw poker variants use a joker, and thus the best possible hand is five of a kind, as in A♥ A♦ Acustom character Acustom character Joker.


Rules of Caribbean Stud


Caribbean Stud™ poker may be played as follows. A player and a dealer are each dealt five cards. If the dealer has a poker hand having a value less than Ace-King combination or better, the player automatically wins. If the dealer has a poker hand having a value of an Ace-King combination or better, then the higher of the player's or the dealer's hand wins. If the player wins, he may receive an additional bonus payment depending on the poker rank of his hand. In the commercial play of the game, a side bet is usually required to allow a chance at a progressive jackpot. In Caribbean Stud™ poker, it is the dealer's hand that must qualify. As the dealer's hand is partially concealed during play (usually only one card, at most) is displayed to the player before player wagering is complete), the player must always be aware that even ranked player hands can lose to a dealer's hand and no bonus will be paid out unless the side bet has been made, and then usually only to hands having a rank of a flush or higher.


Rules of Blackjack


Some versions of Blackjack are now described. Blackjack hands are scored according to the point total of the cards in the hand. The hand with the highest total wins as long as it is 21 or less. If the total is greater than 21, it is a called a “bust.” Numbered cards 2 through 10 have a point value equal to their face value, and face cards (i.e., Jack, Queen, and King) are worth 10 points. An Ace is worth 11 points unless it would bust a hand, in which case it is worth 1 point. Players play against the dealer and win by having a higher point total no greater than 21. If the player busts, the player loses, even if the dealer also busts. If the player and dealer have hands with the same point value, this is called a “push,” and neither party wins the hand.


After the initial bets are placed, the dealer deals the cards, either from one or more, but typically two, hand-held decks of cards, or from a “shoe” containing multiple decks of cards, generally at least four decks of cards, and typically many more. A game in which the deck or decks of cards are hand-held is known as a “pitch” game. “Pitch” games are generally not played in casinos. When playing with more than one deck, the decks are shuffled together in order to make it more difficult to remember which cards have been dealt and which have not. The dealer deals two cards to each player and to himself. Typically, one of the dealer's two cards is dealt face-up so that all players can see it, and the other is face down. The face-down card is called the “hole card.” In a European variation, the “hole card” is dealt after all the players' cards are dealt and their hands have been played. The players' cards are dealt face up from a shoe and face down if it is a “pitch” game.


A two-card hand with a point value of 21 (i.e., an Ace and a face card or a 10) is called a “Blackjack” or a “natural” and wins automatically. A player with a “natural” is conventionally paid 3:2 on his bet, although in 2003 some Las Vegas casinos began paying 6:5, typically in games with only a single deck.


Once the first two cards have been dealt to each player and the dealer, the dealer wins automatically if the dealer has a “natural” and the player does not. If the player has a “natural” and the dealer does not, the player automatically wins. If the dealer and player both have a “natural,” neither party wins the hand.


If neither side has a “natural,” each player completely plays out their hand; when all players have finished, the dealer plays his hand.


The playing of the hand typically involves a combination of four possible actions “hitting,” “standing,” “doubling down,” or “splitting” his hand. Often another action called “surrendering” is added. To “hit” is to take another card. To “stand” is to take no more cards. To “double down” is to double the bet, take precisely one more card and then “stand.” When a player has identical value cards, such as a pair of 8s, the player can “split” by placing an additional bet and playing each card as the first card in two new hands. To “surrender” is to forfeit half the player's bet and give up his hand. “Surrender” is not an option in most casino games of Blackjack. A player's turn ends if he “stands,” “busts” or “doubles down.” If the player “busts,” he loses even if the dealer subsequently busts. This is the house advantage.


After all players have played their hands, the dealer then reveals the dealer's hole card and plays his hand. According to house rules (the prevalent casino rules), the dealer must hit until he has a point total of at least 17, regardless of what the players have. In most casinos, the dealer must also hit on a “soft” 17 (e.g., an Ace and 6). In a casino, the Blackjack table felt is marked to indicate if the dealer hits or stands on a soft 17. If the dealer busts, all remaining players win. Bets are normally paid out at odds of 1:1.


Four of the common rule variations are one card split Aces, early surrender, late surrender, and double-down restrictions. In the first variation, one card is dealt on each Ace and the player's turn is over. In the second, the player has the option to surrender before the dealer checks for Blackjack. In the third, the player has the option to surrender after the dealer checks for Blackjack. In the fourth, doubling-down is only permitted for certain card combinations.


Insurance


Insurance is a commonly-offered betting option in which the player can hedge his bet by betting that the dealer will win the hand. If the dealer's “up card” is an Ace, the player is offered the option of buying Insurance before the dealer checks his “hole card.” If the player wishes to take Insurance, the player can bet an amount up to half that of his original bet. The Insurance bet is placed separately on a special portion of the table, which is usually marked with the words “Insurance Pays 2:1.” The player buying Insurance is betting that the dealer's “hole card” is one with a value of 10 (i.e., a 10, Jack, Queen or King). Because the dealer's up card is an Ace, the player who buys Insurance is betting that the dealer has a “natural.”


If the player originally bets $10 and the dealer shows an Ace, the player can buy Insurance by betting up to $5. Suppose the player makes a $5 Insurance bet and the player's hand with the two cards dealt to him totals 19. If the dealer's hole card is revealed to be a 10 after the Insurance betting period is over (the dealer checks for a “natural” before the players play their hands), the player loses his original $10 bet, but he wins the $5 Insurance bet at odds of 2:1, winning $10 and therefore breaking even. In the same situation, if the dealer's hole card is not one with a value of ten, the player immediately loses his $5 Insurance bet. But if the player chooses to stand on 19, and if the dealer's hand has a total value less than 19, at the end of the dealer's turn, the player wins his original $10 bet, making a net profit of $5. In the same situation, if the dealer's hole card is not one with a value of ten, again the player will immediately lose their $5 Insurance bet, and if the dealer's hand has a total value greater than the player's at the end of both of their turns, for example the player stood on 19 and the dealer ended his turn with 20, the player loses both his original $10 bet and his $5 Insurance bet.


Basic Strategy


Blackjack players can increase their expected winnings by several means, one of which is “basic strategy.” “Basic strategy” is simply something that exists as a matter of general practice; it has no official sanction. The “basic strategy” determines when to hit and when to stand, as well as when doubling down or splitting in the best course. Basic strategy is based on the player's point total and the dealer's visible card. Under some conditions (e.g., playing with a single deck according to downtown Las Vegas rules) the house advantage over a player using basic strategy can be as low as 0.16%. Casinos offering options like surrender and double-after-split may be giving the player using basic strategy a statistical advantage and instead rely on players making mistakes to provide a house advantage.


A number of optional rules can benefit a skilled player, for example: if doubling down is permitted on any two-card hand other than a natural; if “doubling down” is permitted after splitting; if early surrender (forfeiting half the bet against a face or Ace up card before the dealer checks for Blackjack) is permitted; if late surrender is permitted; if re-splitting Aces is permitted (splitting when the player has more than two cards in their hand, and has just been dealt a second ace in their hand); if drawing more than one card against a split Ace is permitted; if five or more cards with a total no more than 21 is an automatic win (referred to as “Charlies”).


Other optional rules can be detrimental to a skilled player. For example: if a “natural” pays less than 3:2 (e.g., Las Vegas Strip single-deck Blackjack paying out at 6:5 for a “natural”); if a hand can only be split once (is re-splitting possible for other than aces); if doubling down is restricted to certain totals (e.g., 9 11 or 10 11); if Aces may not be re-split; if the rules are those of “no-peek” (or European) Blackjack, according to which the player loses hands that have been split or “doubled down” to a dealer who has a “natural’ (because the dealer does not check for this automatically winning hand until the players had played their hands); if the player loses ties with the dealer, instead of pushing where neither the player or the dealer wins and the player retains their original bet.


Card Counting


Unlike some other casino games, in which one play has no influence on any subsequent play, a hand of Blackjack removes those cards from the deck. As cards are removed from the deck, the probability of each of the remaining cards being dealt is altered (and dealing the same cards becomes impossible). If the remaining cards have an elevated proportion of 10-value cards and Aces, the player is more likely to be dealt a natural, which is to the player's advantage (because the dealer wins even money when the dealer has a natural, while the player wins at odds of 3:2 when the player has a natural). If the remaining cards have an elevated proportion of low-value cards, such as 4s, 5s and 6s, the player is more likely to bust, which is to the dealer's advantage (because if the player busts, the dealer wins even if the dealer later busts).


The house advantage in Blackjack is relatively small at the outset. By keeping track of which cards have been dealt, a player can take advantage of the changing proportions of the remaining cards by betting higher amounts when there is an elevated proportion of 10-value cards and Aces and by better lower amounts when there is an elevated proportion of low-value cards. Over time, the deck will be unfavorable to the player more often than it is favorable, but by adjusting the amounts that he bets, the player can overcome that inherent disadvantage. The player can also use this information to refine basic strategy. For instance, basic strategy calls for hitting on a 16 when the dealer's up card is a 10, but if the player knows that the deck has a disproportionately small number of low-value cards remaining, the odds may be altered in favor of standing on the 16.


There are a number of card-counting schemes, all dependent for their efficacy on the player's ability to remember either a simplified or detailed tally of the cards that have been played. The more detailed the tally, the more accurate it is, but the harder it is to remember. Although card counting is not illegal, casinos will eject or ban successful card counters if they are detected.


Shuffle tracking is a more obscure, and difficult, method of attempting to shift the odds in favor of the player. The player attempts to track groups of cards during the play of a multi-deck shoe, follow them through the shuffle, and then looks for the same group to reappear from the new shoe, playing and betting accordingly.


Rules of Baccarat


Some versions of Baccarat are now described. In Baccarat, cards 2-9 are worth face value, 10's and face cards (J, Q, K) are worth zero, and Aces are worth 1 point. Players calculate their score by taking the sum of all cards and performing a modulo 10 operation on the sum. For example, a hand consisting of 2 and 3 is worth 5 (2+3=5). A hand consisting of 6 and 7 is worth 3 (6+7=13 mod 10=3). A hand consisting of 4 and 6 is worth zero, which is also referred to as Baccarat (4+6=10 mod 10=0). The name “Baccarat” is used to describe the worst hand of the game i.e., one worth 0 points. The highest score that can be achieved is 9.


One common variation of Baccarat is referred to as Punto Banco. In Punto Banco, players may bet on either a Player hand or a Banker hand. The initial deal comprises two cards dealt to each of the Player hand and the Banker hand. Both cards in each hand are then turned over and added together to determine the initial score of each hand. After the deal, play is controlled by rules without controlling input from any players. Depending on the two hands, the Player and Banker will draw a card or stand. The hand with the highest total after each participant acts is the winning hand.


If either the Player or the Banker achieves a total of 8 or 9 on the initial deal (known as a ‘natural’), no further cards are drawn. If neither Player has an 8 or a 9, play proceeds as follows.


If the Player has an initial total of 0-5, the Player draws a single card. If the Player has an initial total of 6 or 7, he stands.


The Banker's play depends on the Banker's hand, on whether the Player drew a card, and on what card the Player drew:


If the Player did not draw a card, the Banker draws if he has 0-5, and stands if he has 6-7.


If the Player drew a 2 or 3, the Banker draws if he has 0-4, and stands if he has 5-7.


If the Player drew a 4 or 5, the Banker draws if he has 0-5, and stands if he has 6-7.


If the Player drew a 6 or 7, the Banker draws if he has 0-6, and stands if he has 7.


If the Player drew an 8, the Banker draws if he has 0-2, and stands if he has 3-7.


If the Player drew an ace, 9, 10, or face-card, the Banker draws if he has 0-3, and stands if he has 4-7.


After hands are played, the winner and loser will be determined based on the final scores of the hands. Losing bets will be collected and the winning bets will be paid according to the rules of the house. In some embodiments, 1-1 will be paid for the Player and 95% for the ‘Banker’, with a 5% commission to the house. Some embodiments pay even money or 1-1 to both ‘Player’ and ‘Banker’ except when the ‘Banker’ wins with 6. Then the ‘Banker’ will be paid 50% or half the original bet. Other embodiments may have other payouts associated with various wagers, as is described in more detail below.


If both the ‘Banker's’ hand and the ‘Player's’ hand have the same value at the end of the deal a tie outcome. A tie may be referred to as an egalite. In some embodiments, a tie bet will be paid at the odds of 9 for 1, 8 to 1, or any other desired odds. In some embodiments, in the event of a tie, players betting on Player of Banker may reclaim their initial bets. In other embodiments, these bets may be lost.


Another version of Baccarat is known as Chemin de Fer. Chemin de Fer generally involves six full packs of cards of the same pattern shuffled together. Shuffling in Chemin de Fer typically involves a first player, known as the croupier shuffling the cards, and then passing them on, each player having the right to shuffle in turn. When they have made the circuit of the table, the croupier again shuffles, and, having done so, offers the cards to the player on his left, who cuts. The croupier places the cards before him, and, taking a manageable quantity from the top, hands it to the player on his right, who for the time being is dealer, or “Banker.” Of course, other implementations may include any variation from this tradition.


The dealer places before him the amount he is disposed to risk. The other players, beginning with the player on the immediate right of the dealer, is entitled to say “Banco”, meaning to “go bank,” to play against the whole of the Banker's stake. If no one does so, each player places a desired bet amount before him. If the total so bet by the players is not equal to the amount for the time being in the bank, other persons standing round may stake in addition. If it is more than equal to the amount in the bank, the players nearest in order to the Banker have the preference to stake up to such amount, the Banker having the right to decline any stake in excess of that limit.


The Banker proceeds to deal four cards face downwards: the first, for the Player, to the right; the second to himself; the third for the Player, the fourth to himself. The player who has the highest stake represents all of the players. If two players are equal in this respect, the player first in rotation has the preference. Each then looks at his cards. If he finds that they make either nine or eight he turns them up, and the hand is at an end. If the Banker's point is the better, the stakes of the players become the property of the bank. If the players' point is better, the Banker pays each player the amount of his stake.


The stakes are made afresh, and the game proceeds. If the Banker has been the winner, he deals again. If otherwise, the cards are passed to the player next in order, who thereupon becomes Banker in his turn.


If neither party turns up his cards, this is an admission that neither has eight or nine. In this case the Banker is bound to offer a third card. If the point total of the Player is Baccarat (i.e., 0), one, two, three, or four, he accepts as a matter of course. A third card is then dealt to him, face upwards. If his point is already six or seven, he will, equally as a matter of course, refuse the offered card. To accept a card with six or seven, or refuse with Baccarat, one, two, three, or four (known in either case as a “false draw”), is a breach of the established procedure of the game and may result in a penalty or a loss. At the point of five, and no other, is it optional to the player whether to take a card or not; generally, nobody has the right to advise him, or to remark upon his decision.


The Banker may decide whether he himself will draw a card, the Banker, having drawn or not drawn, as he may elect, exposes his cards, and receives or pays as the case may be. In the case of ties, neither win nor lose, but the stakes remain for the next hand.


The Banker is not permitted to withdraw any part of his winnings, which go to increase the amount in the bank. Should he at any given moment, desire to retire, he says, “I pass the deal.” In such case each of the other players, in rotation, has the option of taking it, but he must start the bank with the same amount at which it stood when the last Banker retired. Should no one present care to risk that high a figure, the deal passes to the player next on the right hand of the retiring Banker, who is in such case at liberty to start the bank with such amount as he thinks fit, the late Banker now being regarded as last in order of rotation, though the respective priorities are not otherwise affected.


A player who has “gone bank,” and lost, is entitled to do so again on the next hand, notwithstanding that the deal may have “passed” to another player.


When the first supply of cards is exhausted, the croupier takes a fresh handful from the heap before him, has them cut by the player on his left, and hands them to the Banker. To constitute a valid deal, there must be not less than seven cards left in the dealer's hand. Should the cards in hand fall below this number, they are discarded, and the Banker takes a fresh supply as described above.


Yet another version of Baccarat is known as Baccarat Banque. In Baccarat Banque the position of Banker is more permanent than in Chemin de Fer. Three packs of cards are shuffled together. (The number is not absolute, but three is the more usual number.) The Banker (unless he retires either of his own free will or by reason of the exhaustion of his finances) holds office until all these cards have been dealt.


The bank is at the outset put up to auction, i.e. belongs to the player who will undertake to risk the largest amount. In some implementations, the person who has first agreed to play, has the right to hold the first bank, risking such amount as he may think proper.


The Banker deals three cards, the first to the player on his right, the second to the player on his left, and the third to himself; then three more in like manner. The players on the right (and any bystanders staking with them) win or lose by the cards dealt to that side; the others by the cards dealt to the left side. The rules as to turning up with eight or nine, offering and accepting cards, and so on, are the same as at Baccarat Chemin de Fer.


Each player continues to hold the cards for his side so long as he wins. If he loses, the next hand is dealt to the player next following him in rotation.


Any player may “go bank,” the first claim to do so belonging to the player immediately on the right of the Banker; the next to the player on his left, and so on alternatively in regular order. If two players on opposite sides desire to “go bank,” they go half shares.


A player going bank may either do so on a single hand, in the ordinary course, or on two hands separately, one-half of the stake being played upon each hand. A player going bank and losing may, again go bank; and if he again loses, may go bank a third time, but not further.


A player undertaking to hold the bank must play out one hand but may retire at any time afterwards. On retiring, he is bound to state the amount with which he retires. It is then open to any other player (in order of rotation) to continue the bank, starting with the same amount, and dealing from the remainder of the pack, used by his predecessor. The outgoing Banker takes the place previously occupied by his successor.


The breaking of the bank does not deprive the Banker of the right to continue, provided that he has funds with which to replenish it, up to the agreed minimum.


Should the stakes of the players exceed the amount for, the time being in the bank, the Banker is not responsible for the amount of such excess. In the event of his losing, the croupier pays the players in order of rotation, so far as the funds in the bank will extend; beyond this, they have no claim. The Banker, may, however, in such a case, instead of resting on his right, declare the stakes accepted, forthwith putting up the funds to meet them. In such event the bank thenceforth becomes unlimited, and the Banker must hold all stakes (to whatever amount) offered on any subsequent hand or give up the bank.


It should be recognized that variations of the game of Baccarat are given as example only, and that other embodiments may include any variation desired. For example, various embodiments may include variants to the described traditions of Baccarat. Such variations, for example may allow a game to be played by a gaming device. Such variations may include variations to the game play rules, such as who wins when, what payouts are received, when bets may be made, what actions must be taken, the number of player, the number of decks, and so on.


XII. Tracking the Action at a Table

U.S. Pat. No. 6,579,181 generally describes, “a system for automatically monitoring playing and betting of a game. In one illustrated embodiment, the system includes a card deck reader that automatically reads a respective symbol from each card in a deck of cards before a first one of the cards is removed from the deck. The symbol identifies a value of the card in terms of rank and suit, and can take the form of a machine-readable symbol, such as a bar code, area or matrix code or stacked code. In another aspect, the system does not decode the read symbol until the respective card is dealt, to ensure security.


“In another aspect, the system can include a chip tray reader that automatically images the contents of a chip tray. The system periodically determines the number and value of chips in the chip tray from the image and compares the change in contents of the chip tray to the outcome of game play to verify that the proper amounts have been paid out and collected.”


“In a further aspect, the system can include a table monitor that automatically images the activity or events occurring at a gaming table. The system periodically compares images of the gaming table to identify betting, as well as the appearance, removal, and position of cards and/or other objects on the gaming table. The table monitoring system can be unobtrusively located in the chip tray.”


U.S. Pat. No. 6,579,181 generally describes “a drop box that automatically verifies an amount and authenticity of a deposit and reconciles the deposit with a change in the contents of the chip tray. The drop box can image different portions of the deposited item, selecting appropriate lighting and resolutions to examine security features in the deposited item.


“In another aspect, the system can employ some, or all of the components to monitor the gaming habits of players and the performance of employees. The system can detect suspect playing and betting patterns that may be prohibited. The system can also identify the win/loss percentage of the players and the dealer, as well as a number of other statistically relevant measures. Such measures can provide a casino or other gaming establishment with enhanced automated security, and automated real-time accounting. The measures can additionally provide a basis for automatically allocating complimentary benefits to the players.”


Various embodiments include an apparatus, method and system which utilizes a card dispensing shoe with scanner and its associated software which enable the card dealer when dealing the game from a card dispensing shoe with scanner preferably placed on a game table where the twenty-one game to be evaluated by the software is being played, to use one or more keyboard(s) and/or LCD displays coupled to the shoe to identify for the computer program the number of the active players' seats, or active players, including the dealer's position relative thereto and their active play at the game table during each game round dealt from the shoe. These keyboards and LCD displays are also used to enter other data relevant to each seat's, or player's, betting and/or decision strategies for each hand played. The data is analyzed by a computer software program designed to evaluate the strategy decisions and betting skills of casino twenty-one, or blackjack players playing the game of blackjack during real time. The evaluation software is coupled to a central processing unit (CPU) or host computer that is also coupled to the shoe's keyboard(s) and LCD displays. The dealer using one or more keyboard(s) attached to or carried by the shoe, or a keyboard(s) located near the dealer is able to see and record the exact amount bet by each player for each hand played for the game to be evaluated. The optical scanner coupled to the CPU reads the value of each card dealt to each player's hand(s) and the dealer's hand as each card is dealt to a specific hand, seat or position and converts the game card value of each card dealt from the shoe to the players and the dealer of the game to a card count system value for one or more card count systems programmed into the evaluation software. The CPU also records each players decision(s) to hit a hand, and the dealer's decision to hit or take another card when required by the rules of the game, as the hit card is removed from the shoe. The dealer uses one or more of the keyboards and LCD displays carried by the shoe to record each player's decision(s) to Insure, Surrender, Stand, Double Down, or Split a hand. When the dealer has an Ace or a Ten as an up-card, he/she may use one or more of the keyboards to prompt the computer system's software, since the dealer's second card, or hole-card, which is dealt face down, has been scanned and the game card value thereof has been imported into the computer systems software, to instantly inform the dealer, by means of one or more of the shoe's LCDs, if his/her game cards, or hand total, constitutes a two-card “21” or “Blackjack”.


In various embodiments, a card playing system for playing a card game which includes a card delivery shoe apparatus for use in dealing playing cards to at least one player for the playing of the card game comprises, in combination, housing means having a chute for supporting at least one deck of playing cards for permitting movement of the playing cards one at a time through the chute, the housing means having an outlet opening that permits the playing cards of the deck to be moved one-by-one out of the housing means during the play of a card game, card scanning means located within the housing means for scanning indicia located on each of the playing cards as each of the playing cards are moved out from the chute of the housing means, means for receiving the output of the card scanning means for identifying each of the playing cards received by each player from the shoe, for evaluating information relative to each players received playing cards and their values with information as to playing tactics used by each player relative to the values of the received playing cards, and for combining all of this information for identifying each player's playing strategy, and a playing table coupled to the card delivery shoe apparatus and having at least one keypad means located thereon for permitting at least one player to select various card playing options to bet upon.


In various embodiments, a card playing system for playing a card game which includes a card delivery shoe apparatus for use in dealing playing cards to at least one player for the playing of the card game comprises, in combination, housing means having a chute for supporting at least one deck of playing cards for permitting movement of the playing cards one at a time through the chute, the housing means having an outlet opening that permits the playing cards of the deck to be moved one-by-one out of the housing means during the play of a card game, card scanning means located within the housing means for scanning indicia located on each of the playing cards as each of the playing cards are moved out from the chute of the housing means, means for receiving the output of the card scanning means for identifying such of the playing cards received by each player from the shoe apparatus, for evaluating information relative to each player's received playing cards and their values with information as to betting tactics used by each player relative to playing cards previously dealt out from the shoe apparatus providing card count information, and for combining all of this information for identifying each player's card count strategy, and a playing table coupled to the card delivery shoe apparatus and having at least one keypad means located thereon for permitting the at least one player to select at least one of various card playing options to bet upon.


In various embodiments, a card playing system for playing a card game which includes a card delivery shoe apparatus for use in dealing playing cards to at least one player for the playing of a card game comprises, in combination, housing means having a chute for supporting at least one deck of playing cards for permitting movement of the playing cards one at a time through the chute, the housing means having an outlet opening that permits the playing cards of the deck to be moved one-by-one out of the housing means during the play of a card game, card scanning means located within the housing means for scanning indicia located on each of the playing cards as each of the playing cards are moved out from the chute of the housing means, means for receiving the output of the card scanning means for identifying each of the playing cards received by each player from the shoe apparatus, for evaluating information relative to each player's received playing cards and their values with information as to playing tactics used by each player relative to the values of the received playing cards, for combining use of all of this information for identifying each player's playing strategy, and for also identifying each player's card count strategy based on each player's betting tactics used by each player relative to playing cards previously dealt out from the shoe apparatus providing card count information, and a playing table coupled to the card delivery shoe apparatus and having at least one keypad means located thereon for permitting the at least one player to select at least one of various card playing options to bet upon.


In various embodiments, a secure game table system, adapted for multiple sites under a central control, allows for the monitoring of hands in a progressive live card game. A live card game has at least one deck, with each deck having a predetermined number of cards. Each game table in the system has a plurality of player positions with or without players at each position and a dealer at a dealer position.


In one embodiment, for providing additional security, a common identity code is located on each of the cards in each deck. Each deck has a different common identity code. A shuffler is used to shuffle the decks together and the shuffler has a circuit for counting of the cards from a previous hand that are inserted into the shuffler for reshuffling. The shuffler circuit counts each card inserted and reads the common identity code located on each card. The shuffler circuit issues a signal corresponding to the count and the common identity code read. The game control (e.g., the computer) located at each table receives this signal from the shuffler circuit and verifies that no cards have been withdrawn from the hand by a player (or the dealer) or that no new cards have been substituted. If the count is not proper or if a game card lacks an identity code or an identity code is mismatched, an alarm signal is generated indicating that a new deck of cards needs to be used and that the possibility of a breach in the security of the game has occurred.


In yet another embodiment of security, a unique code, such as a bar code, is placed on each card and as each card is dealt by the dealer from a shoe, a detector reads the code and issues a signal to the game control containing at least the value and the suit of each card dealt in the hand. The detector may also read a common identity deck code and issue that as a signal to the game control. The shoe may have an optical scanner for generating an image of each card as it is dealt from the shoe by the dealer in a hand. The game control stores this information in a memory so that a history of each card dealt from the shoe in a hand is recorded.


In yet another embodiment of security, an integrated shuffler/shoe obtains an optical image of each card dealt from the shoe for a hand and for each card inserted into the shuffler after a hand. These images are delivered to the game control where the images are counted and compared. When an irregular count or comparison occurs, an alarm is raised. The shuffler and shoe are integrated to provide security between the two units.


In another embodiment of security for a live card game, a game bet sensor is located near each of the plurality of player positions for sensing the presence of a game bet. The game bet sensor issues a signal counting the tokens placed. It is entirely possible that game bet sensors at some player positions do not have bets, and therefore, the game control that is receptive of these signals identifies which player positions have players placing game bets. This information is stored in memory and becomes part of the history of the game.


In another embodiment of security, a progressive bet sensor is located at each of the plurality of player positions and senses the presence of a progressive bet. The progressive bet sensor issues a signal that is received by the game control, which records in memory the progressive bets being placed at the respective player position sensed. If a progressive bet is sensed and a game bet is not, the game control issues an alarm signal indicating improper betting. At this point, the game control knows the identity of each player location having placed a game bet and, of those player positions having game bets placed, which player positions also have a progressive bet. This is stored in memory as part of the history of the hand.


In yet another embodiment of security, a card sensor is located near each player position and the dealer position. The card sensor issues a signal for each card received at the card sensor. The game control receives this issued signal and correlates those player positions having placed a game bet with the received cards. In the event a player position without a game bet receives a card or a player position with a game bet receives a card out of sequence, the game control issues an alarm. This information is added to the history of the game in memory, and the history contains the value and suit of each card delivered to each player position having a game bet.


A progressive jackpot display may be located at each game table and may display one or more jackpot awards for one or more winning combinations of cards. In one embodiment of the present invention, the game control at each table has stored in memory the winning combinations necessary to win the progressive jackpots. Since the game control accurately stores the suit and value of each card received at a particular player position, the game control can automatically detect a winning combination and issue an award signal for that player position. The dealer can then verify that that player at that position indeed has the correct combination of cards. The game control continuously updates the central control interconnected to all other game tables so that the central control can then inform all game tables of this win including, if desirable, the name of the winner and the amount won.


The central control communicates continuously with each game control and its associated progressive jackpot display may receive over a communication link all or part of the information stored in each game control.


Various embodiments include a card shoe with a device for automatic recognition and tracking of the value of each gaming card drawn out of the card shoe in a covered way (face down).


Various embodiments include a gaming table with a device for automatic recognition of played or not played boxes (hands), whereby it has to realize multiple bets on each hand and the use of insurance lines. Furthermore, the gaming table may include a device to recognize automatically the number of cards placed in front of each player and the dealer.


Various embodiments include the recognition, tracking, and storage of gaming chips.


In various embodiment, an electronic data processing (EDP) program may process the value of all bets on each box and associated insurance line, control the sequence of delivery of the cards, control the distribution of the gaming cards to each player and the dealer, may calculate and compare the total score of each hand and the dealer's, and may evaluate the players' wins.


Gaming data may then be processed by means of the EDP program and shown simultaneously to the actual game at a special monitor or display. Same data may be recalled later on to monitor the total results whenever requested.


Various embodiments include a gaming table and a gaming table cloth arranged on the gaming table, the gaming table cloth provided with betting boxes and areas designated for placement of the gaming chips and other areas designated for placement of the playing cards, a card shoe for storage of one or more decks of playing cards, this card shoe including means for drawing individual ones of the playing cards face down so that a card value imprint on the drawn card is not visible to a player of the game of chance, a card recognition means for recognizing this card value imprint on the drawn card from the card shoe, this card recognition means being located in the card shoe, an occupation detector unit including means for registering a count of gaming chips placed on the designated areas and another count of playing cards placed on the other designated areas on the table cloth, this occupation detector unit being located under the table cloth and consisting of multiple single detectors allocated to each betting box, each area for chips and each other area for playing cards respectively, a gaming bet detector for automatic recognition or manual input of gaming bets, and a computer including means for evaluating the play of the game of chance according to the rules of the game of chance, means for storing results of the play of the game of chance and means for displaying a course of the play of the game of chance and the results from electronic signals input from the gaming bet detector, the occupation detector unit and the card recognition means.


According to various embodiments, the card recognition means comprises an optical window arranged along a movement path of the card image imprint on the playing card drawn from the card shoe; a pulsed light source for illuminating a portion of the drawn playing card located opposite the optical window; a CCD image converter for the portion of the drawn playing card located opposite the optical window; an optical device for deflecting and transmitting a reflected image of the card value imprint from the drawn playing card to the CCD image converter from that portion of the drawn playing card when the drawn card is exactly in a correct drawn position opposite the optical window; and sensor means for detecting movement of the drawn card and for providing a correct timing for operation of the pulsed light source for transmission of the reflected image to the CCD image converter. The optical device for deflecting and transmitting the reflected image can comprise a mirror arranged to deflect the reflected image to the CCD image converter. Alternatively, the optical device for deflecting and transmitting the reflected image comprises a reflecting optical prism having two plane surfaces arranged at right angles to each other, one of which covers the optical window and another of which faces the CCD image converter and comprises a mirror, and the pulsed light source is arranged behind the latter plane surface so as to illuminate the drawn card when the drawn card is positioned over the optical window. Advantageously the sensor means for detecting movement of the drawn card and for providing a correct timing comprises a single sensor, preferably either a pressure sensor or a photoelectric threshold device, for sensing a front edge of the drawn card to determine whether or not the drawn card is being drawn and to activate the CCD image converter and the pulsed light source when a back edge of the drawn card passes the sensor means. Alternatively, the sensor means can include two electro-optical sensors, one of which is located beyond a movement path of the card image imprint on the drawn playing card and another of which is located in a movement path of the card image imprint on a drawn playing card. The latter electro-optical sensor can includes means for activating the pulsed light source by sensing a color trigger when the card value imprint passes over the optical window. In preferred embodiments of the card shoe the pulsed light source comprises a Xenon lamp.


In various embodiments of the gaming apparatus the single detectors of the occupation detector unit each comprise a light sensitive sensor for detection of chips or playing cards arranged on the tablecloth over the respective single detector. Each single detector can be an infrared sensitive photodiode, preferably a silicon photodiode. Advantageously the single detectors can be arranged in the occupation detector unit so that the chips or playing cards placed over them on the tablecloth are arranged over at least two single detectors.


The gaming apparatus may includes automatic means for discriminating colored markings or regions on the chips and for producing a bet output signal in accordance with the colored markings or regions and the number of chips having identical colored markings or regions.


The gaming bet detector may include automatic means for discriminating between chips of different value in the game of chance and means for producing a bet output signal in accordance with the different values of the chips when the chips are bet by a player. In various embodiments the gaming bet detector includes a radio frequency transmitting and receiving station and the chips are each provided with a transponder responding to the transmitting and receiving station so that the transponder transmits the values of the bet chips back to the transmitting and receiving station.


The connection between the individual units of the gaming apparatus and the computer can be either a wireless connection or a cable connection.


XIII. Following the Bets

Various embodiments include a smart card delivery shoe that reads the suit and rank of each card before it is delivered to the various positions where cards are to be dealt in the play of the casino table card game. The cards are then dealt according to the rules of the game to the required card positions. Different games have diverse card distribution positions, different card numbers, and different delivery sequences that the hand identifying system of the invention must encompass. For example, in the most complex of card distribution games of blackjack, cards are usually dealt one at a time in sequence around a table, one card at a time to each player position and then to the dealer position. The one card at a time delivery sequence is again repeated so that each player position and the dealer position have an initial hand of exactly two cards. Complexity in hand development is introduced because players have essentially unlimited control over additional cards until point value in a hand exceeds a count of twenty-one. Players may stand with a count of 2 (two aces) or take a hit with a count of 21 if they are so inclined, so the knowledge of the count of a hand is no assurance of what a player will do. The dealer, on the other hand, is required to follow strict house rules on the play of the game according to the value of the dealer's hand. Small variances such as allowing or disallowing a hit on a “soft” seventeen count (e.g., an Ace and a 6) may exist, but the rules are otherwise very precise so that the house or dealer cannot exercise any strategy.


Other cards games may provide equal numbers of cards in batches. Variants of stud poker played against a dealer, for example, would usually provide hands of five cards, five at a time to each player position and if competing against a dealer, to the dealer position. This card hand distribution is quite simple to track as each sequence of five cards removed from the dealer shoe is a hand.


Other games may require cards to be dealt to players and other cards dealt to a flop or common card area. The system may also be programmable to cover this alternative if it is so desired.


Baccarat is closer to blackjack in card sequence of dealing but has more rigid rules as to when hits may be taken by the player and the dealer, and each position may take a maximum of one card as a hit. The hand identification system of the invention must be able to address the needs of identifying hands in each of these types of games and especially must be able to identify hands in the most complex situation, the play of blackjack.


In various embodiments, where cameras are used to read cards, the light sensitive system may be any image capture system, digital or analog, that is capable of identifying the suit and rank of a card.


In various embodiments, a first step in the operation is to provide a set of cards to the smart delivery shoe, the cards being those cards that are going to be used in the play of a casino table card game. The set of cards (usually one or more decks) is provided in an already randomized set, being taken out of a shuffler or having been shuffled by hand. A smart delivery shoe is described in U.S. patent application Ser. No. 10/622,321, titled SMART DELIVERY SHOE, which application is incorporated herein in its entirety by reference. Some delivery systems or shoes with reading capability include but are not limited to those disclosed in U.S. Pat. Nos. 4,750,743; 5,779,546; 5,605,334; 6,361,044; 6,217,447; 5,941,769; 6,229,536; 6,460,848; 5,722,893; 6,039,650; and 6,126,166. In various embodiments, the cards are read in the smart card delivery shoe, such as one card at a time in sequence. Reading cards by edge markings and special codes (as in U.S. Pat. No. 6,460,848) may require special encoding and marking of the cards. The entire sequence of cards in the set of cards may thus be determined and stored in memory. Memory may be at least in part in the smart delivery shoe, but communication with a central processor is possible. The sequence would then also or solely be stored in the central computer.


In various embodiments, the cards are then dealt out of the smart delivery shoe, the delivery shoe registering how many cards are removed one-at-a-time. This may be accomplished by the above identified U.S. patent application Ser. No. 10/622,321 where cards are fed to the dealer removal area one at a time, so only one card can be removed by the dealer. As each card is removed, a signal is created indicating that a specific card (of rank and suit) has been dealt. The computer and system knows only that a first card has been dealt, and it is presumed to go to the first player. The remaining cards are dealt out to players and dealer. In the play of certain games (e.g., stud variants) where specific numbers of cards are known to be dealt to each position, the shoe may be programmed with the number of players at any time, so hands can be correlated even before they have been dealt. If the shoe is playing a stud variant where each player and the dealer gets three cards (Three Card Poker™ game), the system may know in advance of the deal what each player and the dealer will have as a hand. It is also possible that there be a signal available when the dealer has received either his first card (e.g., when cards are dealt in sequence, one-at-a-time) or has received his entire hand. The signal may be used to automatically determine the number of player positions active on the table at any given time. For example, if in a hand of blackjack the dealer receives the sixth card, the system may immediately know that there are five players at the table. The signal can be given manually (pressing a button at the dealer position or on the smart card delivery shoe) or can be provided automatically (a card presence sensor at the dealer's position, where a card can be placed over the sensor to provide a signal). Where an automatic signal is provided by a sensor, some physical protection of the sensor may be provided, such as a shield that would prevent accidental contact with the sensor or blockage of the sensor. An L-shaped cover may be used so a card could be slid under the arm of the L parallel to the table surface and cover the sensor under that branch of the L. The signal can also be given after all cards for the hand have been delivered, again indicating the number of players, For example, when the dealer's two cards are slid under the L-shaped cover to block or contact the sensor, the system may know the total number of cards dealt on the hand (e.g., 10 cards), know that the dealer has 2 cards, determine that players therefore have 8 cards, and know that each player has 2 cards each, thereby absolutely determining that there are four active player positions at the table (10−2=8 and then 8/2=4 players). This automatic determination may serve as an alternative to having dealers input the number of players each hand at a table or having to manually change the indicated number of players at a table each time the number changes.


Once all active positions have been dealt to, the system may now know what cards are initially present in each player's hand, the dealer's hand, and any flop or common hand. The system operation may now be simple when no more cards are provided to play the casino table game. All hands may then be known, and all outcomes may be predicted. The complication of additional cards will be addressed with respect to the game of blackjack.


After dealing the initial set of two cards per hand, the system may not immediately know where each remaining card will be dealt. The system may know what cards are dealt, however. It is with this knowledge and a subsequent identification of discarded hands that the hands and cards from the smart delivery shoe can be reconciled or verified. Each hand is already identified by the presence of two specifically known cards. Hands are then played according to the rules of the game, and hands are discarded when play of a hand is exhausted. A hand is exhausted when 1) there is a blackjack, the hand is paid, and the cards are cleared; 2) a hand breaks with a count over twenty-one and the cards are cleared; and/or a round of the game is played to a conclusion, the dealer's hand completed, all bets are settled, and the cards are cleared. As is typically done in a casino to enable reconciling of hands manually, cards are picked up in a precise order from the table. The cards are usually cleared from the dealer's right to the dealer's left, and the cards at each position comprise the cards in the order that they were delivered, first card on the bottom, second card over the first card, third card over the second card, etc. maintaining the order or a close approximation of the order (e.g., the first two cards may be reversed) is important as the first two cards form an anchor, focus, basis, fence, end point or set edge for each hand. For example, if the third player position was known to have received the 10 of hearts (10H) and the 9 of spades (9S) for the first two card, and the fourth player was known to receive the 8 of diamonds (8D) and the 3 of clubs (3C) for the first two cards, the edges or anchors of the two hands are 9S/10H and 8D/3C. When the hands are swept at the conclusion of the game, the cards are sent to a smart discard rack (e.g., see U.S. patent application Ser. No. 10/622,388, which application is incorporated herein by reference in its entirety) and the hand with the 9S/10H was not already exhausted (e.g., broken or busted) and the swept cards consist of 9S, 10H, 8S, 8D and 3C (as read by the smart discard rack), the software of the processor may automatically know that the final hands in the third and fourth positions were a count of 19 (9S and 10H) for the third hand and 19 (8D and 3C originally plus the 8S hit) for the fourth hand. The analysis by the software specifically identifies the fourth hand as a count of 19 with the specific cards read by the smart discard shoe. The information from reading that now exhausted hand is compared with the original information collected from the smart delivery shoe. The smart delivery shoe information when combined with the smart discard rack information shall confirm the hands in each position, even though cards were not uniformly distributed (e.g., player one takes two hits for a total of four cards, player two takes three hits for a total of five cards, player three takes no hit for a total of two cards, player four takes one hit for a total of three cards, and the dealer takes two hits for a total of four cards).


The dealer's cards may be equally susceptible to analysis in a number of different formats. After the last card has been dealt to the last player, a signal may be easily and imperceptibly generated that the dealer's hand will now become active with possible hits. For example, with the sensor described above for sensing the presence of the first dealer card or the completion of the dealer's hand, the cards would be removed from beneath the L-shaped protective bridge. This type of movement is ordinarily done in blackjack where the dealer has at most a single card exposed, and one card buried face down. In this case, the removal of the cards from over the sensor underneath the L-cover to display the hole card is a natural movement and then exposes the sensor. This can provide a signal to the central processor that the dealer's hand will be receiving all additional cards in that round of the game. The system at this point knows the two initial cards in the dealer's hand, knows the values of the next sequence of cards, and knows the rules by which a dealer must play. The system knows what cards the dealer will receive and what the final total of the dealer's hand will be because the dealer has no freedom of decision or movement in the play of the dealer's hand. When the dealer's hand is placed into the smart discard rack, the discard rack already knows the specifics of the dealer's hand even without having to use the first two cards as an anchor or basis for the dealer's hand. The cards may be treated in this manner in some embodiments.


When the hands are swept from the table, dealer's hand then players' hands from right to left (from the dealer's position or vice-versa if that is the manner of house play), the smart discard rack reads the shoes, identifies the anchors for each hand, knows that no hands swept at the conclusion can exceed a count of twenty-one, and the computer identifies the individual hands and reconciles them with the original data from the smart delivery shoe. The system thereby can identify each hand played and provide system assurance that the hand was played fairly and accurately.


If a lack of reconciling by the system occurs, a number of events can occur. A signal can be given directly to the dealer position, to the pit area, or to a security zone and the cards examined to determine the nature and cause of the error and inspect individual cards if necessary. When the hand and card data is being used for various statistical purposes, such as evaluating dealer efficiency, dealer win/loss events, player efficiency, player win/loss events, statistical habits of players, unusual play tactics or meaningful play tactics (e.g., indicative of card counting), and the like, the system may file the particular hand in a ‘dump’ file so that hand is not used in the statistical analysis, this is to assure that maximum benefits of the analysis are not tilted by erroneous or anomalous data.


Various embodiments may include date stamping of each card dealt (actual time and date defining sequence, with concept of specific identification of sequence identifier possibly being unique). The date stamping may also be replaced by specific sequence stamping or marking, such as a specific hand number, at a specific table, at a specific casino, with a specific number of players, etc. The records could indicate variations of indicators in the stored memory of the central computer of Lucky 777 Casino, Aug. 19, 1995, 8:12:17 a.m., Table 3, position 3, hand 7S/4D/9S, or simply identify something similar by alphanumeric code as L7C-819-95-3-3-073-7S/4D/9S (073 being the 73rd hand dealt). This date stamping of hands or even cards in memory can be used as an analytical search tool for security and to enhance hand identification.



FIG. 1 shows a block diagram of the minimum components for the hand-reading system on a table 4 of the invention, a smart card-reading delivery shoe 8 with output 14 and a smart card-reading discard rack 12 with output 18. Player positions 6 are shown, as is a dealer's hand position sensor 10 without output port 16.


The use of the discard rack acting to reconcile hands returned to the discard rack out-of-order (e.g., blackjack or bust) automatically may be advantageous, in some embodiments. The software as described above can be programmed to recognize hands removed out-of-dealing order on the basis of knowledge of the anchor cards (the first two cards) known to have been dealt to a specific hand. For example, the software will identify that when a blackjack was dealt to position three, that hand will be removed, the feed of the third hand into the smart card discard tray confirms this, and position three will essentially be ignored in future hand resolution. More importantly, when the anchor cards were, for example, 9S/5C in the second player position and an exhausted hand of 8D/9S/5C is placed into the smart discard rack, that hand will be identified as the hand from the second player position. If two identical hands happen to be dealt in the same round of play, the software will merely be alerted (it knows all of the hands) to specifically check the final order of cards placed into the smart discard rack to more carefully position the location of that exhausted hand. This is merely recognition software implementation once the concept is understood.


That the step of removal of cards from the dealer's sensor or other initiated signal identifies that all further cards are going to the dealer may be useful in defining the edges of play between rounds and in identifying the dealer's hand and the end of a round of play. When the dealer's cards are deposited and read in the smart discard rack, the central computer knows that another round of play is to occur, and a mark or note may be established that the following sequence will be a new round and the analytical cycle may begin all over again.


The discard rack indicates that a complete hand has been delivered by absence of additional cards in the Discard Rack in-feed tray. When cards are swept from an early exhausted hand (blackjack or a break), they are swept one at a time and inserted into the smart discard rack one at a time. When the smart discard rack in-feed tray is empty, the system understands that a complete hand has been identified, and the system can reconcile that specific hand with the information from the smart delivery shoe. The system can be hooked-up to feed strategy analysis software programs such as the SMI licensed proprietary Bloodhound™ analysis program.


Various embodiments include a casino or cardroom game modified to include a progressive jackpot component. During the play of a Twenty-One game, for example, in addition to this normal bet, a player will have the option of making an additional bet that becomes part of, and makes the player eligible to win, the progressive jackpot. If the player's Twenty-One hand comprises a particular, predetermined arrangement of cards, the player will win all, or part of, the amount showing on the progressive jackpot. This progressive jackpot feature is also adaptable to any other casino or cardroom game such as Draw Poker, Stud Poker, Lo-Ball Poker, or Caribbean Stud™ Poker. Various embodiments include a gaming table, such as those used for Twenty-One or poker, modified with the addition of a coin acceptor that is electronically connected to a progressive jackpot meter. When player drops a coin into the coin acceptor, a light is activated at the player's location indicating that he is participating in the progressive jackpot component of the game during that hand. At the same time, a signal from the coin acceptor is sent to the progressive meter to increment the amount shown on the progressive meter. At the conclusion of the play of each hand, the coin acceptor is reset for the next hand. When a player wins all or part of the progressive jackpot, the amount showing on the progressive jackpot meter is reduced by the amount won by the player. Any number of gaming tables can be connected to a single progressive jackpot meter.


XIV. Card Shufflers

Various embodiments include an automatic card shuffler, including a card mixer for receiving cards to be shuffled in first and second trays. Sensors detect the presence of cards in these trays to automatically initiate a shuffling operation, in which the cards are conveyed from the trays to a card mixer, which randomly interleaves the cards delivered to the mixing mechanism and deposits the interleaved cards in a vertically aligned card compartment.


A carriage supporting an ejector is reciprocated back and forth in a vertical direction by a reversible linear drive while the cards are being mixed, to constantly move the card ejector along the card receiving compartment. The reversible linear drive is preferably activated upon activation of the mixing means and operates simultaneously with, but independently of, the mixing means. When the shuffling operation is terminated, the linear drive is deactivated thereby randomly positioning the card ejector at a vertical location along the card receiving compartment.


A sensor arranged within the card receiving compartment determines if the stack of cards has reached at least a predetermined vertical height. After the card ejector has stopped and, if the sensor in the compartment determines that the stack of cards has reached at least the aforesaid predetermined height, a mechanism including a motor drive, is activated to move the wedge-shaped card ejector into the card receiving compartment for ejecting a group of the cards in the stack, the group selected being determined by the vertical position attained by the wedge-shaped card ejector.


In various embodiments, the card ejector pushes the group of cards engaged by the ejector outwardly through the forward open end of the compartment, said group of cards being displaced from the remaining cards of the stack, but not being completely or fully ejected from the stack.


The card ejector, upon reaching the end of its ejection stroke, detected by a microswitch, is withdrawn from the card compartment, and returned to its initial position in readiness for a subsequent shuffling and card selecting operation.


In various embodiments, a technique for randomly selecting the group of cards to be ejected from the card compartment utilizes solid state electronic circuit means, which may comprise either a group of discrete solid state circuits or a microprocessor, either of which techniques preferably employ a high frequency generator for stepping a N-stage counter during the shuffling operation. When the shuffling operation is completed, the stepping of the counter is terminated. The output of the counter is converted to a DC signal, which is compared against another DC signal representative of the vertical location of the card ejector along the card compartment.


In various embodiments, a random selection is made by incrementing the N-stage counter with a high frequency generator. The high frequency generator is disconnected from the N-stage counter upon termination of the shuffling operation. The N-stage counter is then incremented by a very low frequency generator until it reaches its capacity count and resets. The reciprocating movement of the card ejector is terminated after completion of a time interval of random length and extending from the time the high frequency generator is disconnected from the N-stage counter to the time that the counter is advanced to its capacity count and reset by the low frequency generator, triggering the energization of the reciprocating drive, at which time the card ejector carriage coasts to a stop.


In various embodiments, the card ejector partially ejects a group of cards from the stack in the compartment. The partially displaced group of cards is then manually removed from the compartment. In another preferred embodiment, the ejector fully ejects the group of cards from the compartment, the ejected cards being dropped into a chute, which delivers the cards directly to a dealing shoe. The pressure plate of the dealing shoe is initially withdrawn to a position enabling the cards passing through the delivery shoe to enter directly into the dealing shoe and is thereafter returned to its original position at which it urges the cards towards the output end of the dealing shoe.


Various embodiments include a method and apparatus for automatically shuffling and cutting playing cards and delivering shuffled and cut playing cards to the dispensing shoe without any human intervention whatsoever once the playing cards are delivered to the shuffling apparatus. In addition, the shuffling operation may be performed as soon as the play of each game is completed, if desired, and simultaneously with the start of a new game, thus totally eliminating the need to shuffle all of the playing cards (which may include six or eight decks, for example) at one time. Preferably, the cards played are collected in a “dead box” and are drawn from the dead box when an adequate number of cards have been accumulated for shuffling and cutting using the method of the present invention.


Various embodiments include a computer controlled shuffling and cutting system provided with a housing having at least one transparent wall making the shuffling and card delivery mechanism easily visible to all players and floor management in casino applications. The housing is provided with a reciprocally slidable playing card pusher which, in the first position, is located outside of said housing. A motor-operated transparent door selectively seals and uncovers an opening in the transparent wall to permit the slidably mounted card pusher to be moved from its aforementioned first position to a second position inside the housing whereupon the slidably mounted card pusher is then withdrawn to the first position, whereupon the playing cards have been deposited upon a motorized platform which moves vertically and selectively in the upward and downward directions.


The motor driven transparent door is lifted to the uncovered position responsive to the proper location of the motor driven platform, detected by suitable sensor means, as well as depression of a foot or hand-operated button accessible to the dealer.


The motor driven platform (or “elevator”) lifts the stack of playing cards deposited therein upwardly toward a shuffling mechanism responsive to removal of the slidably mounted card pusher and closure of the transparent door whereupon the playing cards are driven by the shuffling mechanism in opposing directions and away from the stack to first and second card holding magazines positioned on opposing sides of the elevator, said shuffling mechanism comprising motor driven rollers rotatable upon a reciprocating mounting device, the reciprocating speed and roller rotating speed being adjustable. Alternatively, however, the reciprocating and rotating speeds may be fixed; if desired, employing motors having fixed output speeds, in place of the stepper motors employed in one preferred embodiment.


Upon completion of a shuffling operation, the platform is lowered and the stacks of cards in each of the aforementioned receiving compartments are sequentially pushed back onto the moving elevator by suitable motor-driven pushing mechanisms. The order of operation of the pushing mechanisms is made random by use of a random numbers generator employed in the operating computer for controlling the system. These operations can be repeated, if desired. Typically, new cards undergo these operations from two to four times.


Guide assemblies guide the movement of cards onto the platform, prevent shuffled cards from being prematurely returned to the elevator platform and align the cards as they fall into the card receiving regions as well as when they are pushed back onto the elevator platform by the motor-driven pushing mechanism.


Upon completion of the plurality of shuffling and cutting operations, the platform is again lowered, causing the shuffled and cut cards to be moved downwardly toward a movable guide plate having an inclined guide surface.


As the motor driven elevator moves downwardly between the guide plates, the stack of cards engages the inclined guide surface of a substantially U-shaped secondary block member causing the stack to be shifted from a horizontal orientation to a diagonal orientation. Substantially simultaneously therewith, a “drawbridge-like” assembly comprised of a pair of swingable arms pivotally mounted at their lower ends, are swung downwardly about their pivot pin from a vertical orientation to a diagonal orientation and serve as a diagonally aligned guide path. The diagonally aligned stack of cards slides downwardly along the inclined guide surfaces and onto the draw bridge-like arms and are moved downwardly therealong by the U-shaped secondary block member, under control of a stepper motor, to move cards toward and ultimately into the dealing shoe.


A primary block, with a paddle, then moves between the cut-away portion of the U-shaped secondary block, thus applying forward pressure to the stack of cards. The secondary block then retracts to the home position. The paddle is substantially rectangular-shaped and is aligned in a diagonal orientation. Upon initial set-up of the system the paddle is positioned above the path of movement of cards into the dealing shoe. The secondary block moves the cut and shuffled cards into the dealing shoe and the paddle is lowered to the path of movement of cards toward the dealing shoe and is moved against the rearwardmost card in the stack of cards delivered to the dealing shoe. When shuffling and cutting operations are performed subsequent to the initial set-up, the paddle rests against the rearwardmost card previously delivered to the dealing shoe. The shuffled and cut cards sliding along the guide surfaces of the diagonally aligned arms of the draw bridge-like mechanism come to rest upon the opposite surface of the paddle which serves to isolate the playing cards previously delivered to the dispensing shoe, as well as providing a slight pushing force urging the cards toward the outlet slot of the dispensing shoe thereby enabling the shuffling and delivering operations to be performed simultaneously with the dispensing of playing cards from the dispensing shoe.


After all of the newly shuffled playing cards have been delivered to the rear end of the dispensing shoe, by means of the U-shaped secondary block the paddle, which is sandwiched between two groups of playing cards, is lifted to a position above and displaced from the playing cards. A movable paddle mounting assembly is then moved rearwardly by a motor to place the paddle to the rear of the rearmost playing card just delivered to the dispensing shoe; and the paddle is lowered to its home position, whereupon the motor controlling movement of the paddle assembly is then deenergized enabling the rollingly-mounted assembly supporting the paddle to move diagonally downwardly as playing cards are dispensed from the dispensing shoe to provide a force which is sufficient to urge the playing cards forwardly toward the playing card dispensing slot of the dealing shoe. The force acting upon the paddle assembly is the combination of gravity and a force exerted upon the paddle assembly by a constant tension spring assembly. Jogging (i.e., “dither”) means cause the paddle to be jogged or reciprocated in opposing forward and rearward directions at periodic intervals to assure appropriate alignment, stacking and sliding movement of the stack of playing cards toward the card dispensing slot of the dealing shoe.


Upon completion of a game, the cards used in the completed game are typically collected by the dealer and placed in a dead box on the table. The collected cards are later placed within the reciprocally movable card pusher. The dealer has the option of inserting the cards within the reciprocally slidable card pusher into the shuffling mechanism or, alternatively, and preferably, may postpone a shuffling operation until a greater number of cards have been collected upon the reciprocally slidable card pusher. The shuffling and delivery operations may be performed as often or as infrequently as the dealer or casino management may choose. The shuffling and playing card delivery operations are fully automatic and are performed without human intervention as soon as cards are inserted within the machine on the elevator platform. The cards are always within the unobstructed view of the players to enable the players, as well as the dealer, to observe and thereby be assured that the shuffling, cutting and card delivery operations are being performed properly and without jamming and that the equipment is working properly as well. The shuffling and card delivery operations do not conflict or interfere with the dispensing of cards from the dispensing shoe, thereby permitting these operations to be performed substantially simultaneously, thus significantly reducing the amount of time devoted to shuffling and thereby greatly increasing the playing time, as well as providing a highly efficient random shuffling and cutting mechanism.


The system may be controlled by a microcomputer programmed to control the operations of the card shuffling and cutting system. The computer controls stepper motors through motor drive circuits, intelligent controllers and an opto-isolator linking the intelligent controllers to the computer. The computer also monitors a plurality of sensors to assure proper operation of each of the mechanisms of the system.


XV. Casino Countermeasures

Some methods of thwarting card counters include using a large number of decks. Shoes containing 6 or 8 decks are common. The more cards there are, the less variation there is in the proportions of the remaining cards and the harder it is to count them. The player's advantage can also be reduced by shuffling the cards more frequently, but this reduces the amount of time that can be devoting to actual play and therefore reduces the casino profits. Some casinos now use shuffling machines, some of which shuffle one set of cards while another is in play, while others continuously shuffle the cards. The distractions of the gaming floor environment and complimentary alcoholic beverages also act to thwart card counters. Some methods of thwarting card counters include using varied payoff structures, such Blackjack payoff of 6:5, which is more disadvantageous to the player than the standard 3:2 Blackjack payoff.


XVI. Video Wagering Games

Video betting games are set up to mimic a table game using adaptations of table games rules and cards.


In one version of video poker the player is allowed to inspect five cards randomly chosen by the computer. These cards are displayed on the video screen and the player chooses which cards, if any, that he or she wishes to hold. If the player wishes to hold all of the cards, i.e., stand, he or she presses a STAND button. If the player wishes to hold only some of the cards, he or she chooses the cards to be held by pressing HOLD keys located directly under each card displayed on the video screen. Pushing a DEAL button after choosing the HOLD cards automatically and simultaneously replaces the unchosen cards with additional cards which are randomly selected from the remainder of the deck. After the STAND button is pushed, or the cards are replaced, the final holding is evaluated by the game machine's computer and the player is awarded either play credits or a coin payout as determined from a payoff table. This payoff table is stored in the machine's computer memory and is also displayed on the machine's screen. Hands with higher poker values are awarded more credits or coins. Very rare poker hands are awarded payoffs of 800-to-1 or higher.


XVII. Apparatus for Playing Over a Communications System


FIG. 2 shows apparatus for playing the game. There is a plurality of player units 40-1 to 40-n which are coupled via a communication system 41, such as the Internet, with a game playing system comprising an administration unit 42, a player register 43, and a game unit 45. Each unit 40 is typically a personal computer with a display unit and control means (a keyboard and a mouse).


When a player logs on to the game playing system, their unit 40 identifies itself to the administration unit. The system holds the details of the players in the register 43, which contains separate player register units 44-1 to 44-n for all the potential players, i.e., for all the members of the system.


Once the player has been identified, the player is assigned to a game unit 45. The game unit contains a set of player data units 46-1 to 46-6, a dealer unit 47, a control unit 48, and a random dealing unit 49.


Up to seven players can be assigned to the game unit 45. There can be several such units, as indicated, so that several games can be played at the same time if there are more than seven members of the system logged on at the same time. The assignment of a player unit 40 to a player data unit 46 may be arbitrary or random, depending on which player data units 46 and game units 45 are free. Each player data unit 46 is loaded from the corresponding player register unit 44 and also contains essentially the same details as the corresponding player unit 40 and is in communication with the player unit 40 to keep the contents of the player unit and player data unit updated with each other. In addition, the appropriate parts of the contents of the other player data units 46 and the dealer unit 47 are passed to the player unit 40 for display.


The logic unit 48 of the game unit 45 steps the game unit through the various stages of the play, initiating the dealer actions and awaiting the appropriate responses from the player units 40. The random dealing unit 49 deals cards essentially randomly to the dealer unit 47 and the player data units 46. At the end of the hand, the logic unit passes the results of the hand, i.e., the wins and/or losses, to the player data units 46 to inform the players of their results. The administrative unit 42 also takes those results and updates the player register units 44 accordingly.


The player units 40 are arranged to show a display. To identify the player, the player's position is highlighted. As play proceeds, so the player selects the various boxes, enters bets in them, and so on, and the results of those actions are displayed. As the cards are dealt, a series of overlapping card symbols is shown in the Bonus box. At the option of the player, the cards can be shown in a line below the box, and similarly for the card dealt to the dealer. At the end of the hand, a message is displayed informing the player of the results of their bets, i.e., the amounts won or lost.


XVIII. Alternative Technologies

It will be understood that the technologies described herein for making, using, or practicing various embodiments are but a subset of the possible technologies that may be used for the same or similar purposes. The particular technologies described herein are not to be construed as limiting. Rather, various embodiments contemplate alternate technologies for making, using, or practicing various embodiments.


XIX. Example Embodiments

In some embodiments, the ability to obtain information about one or more events and/or one or more possible outcomes of one or more events may be useful in deciding upon a wager. In some embodiments, some players may obtain information about an outcome of an event (e.g., a game, a race, etc.). In some embodiments, the information may be used to place a wager related to the event. In some embodiments, the information may be a piece of information chosen out of a plurality of pieces of information. In some embodiments, an aggregate of the wagers placed on various possible outcomes of an event may reflect a collective wisdom about a probability that each outcome will happen based on a distribution of the information. Various embodiments may include games, devices, and/or methods that incorporate one or more information aggregation elements, one or more information distribution elements, and/or one or more other elements disclosed herein.


Information


In some embodiments, information about an outcome of an event may include any information that correlates with the outcome of the event. Information about the outcome of the event may include any information that may influence a wager on the outcome of the event. For example, information may include a positive indication of a characteristic of the outcome (e.g., the card will be red, the number will be higher than four, the winning horse will be brown, the total of the die roll will be odd, the winner of the race will be a Democrat, and so on), information may include a negative indication of the outcome (e.g., the card will not be the 7 of hearts, the number will not be higher than four, the winner of the race will not be John McCain, and so on), information may identify a specific possible outcome (e.g., the card will not be the 7 of hearts, the winner of the race will be Barack Obama, and so on), the information may identify a characteristic of the outcome (e.g., the color of the horse will be brown, the card will not be a spade, and so on), the information may include information that definitively includes and/or excludes possible outcomes (e.g., the card will not be a 7, the total will not be a 21, and so on), the information may include information that does not definitely exclude possible outcomes (e.g., the first card dealt of more than one will not be a 7, there is a 90 percent chance that the winning horse will not be brown, and so on), and so on.


Distribution of Information


In some embodiments, information may be distributed to one or more players of a game. A player of a game may include any person or other entity that eventually places a wager on an outcome, and/or that receives information about an event and/or outcome. In some embodiments, a player may be asked to commit to placing a wager before information is distributed to the player. In other implementations, information may be distributed without such a commitment. Some players may obtain information without placing a wager.


Distribution of information may include any way of providing information to a player. In some implementations, distribution may include, for example, transmitting an electronic representation of information (e.g., to a handheld device, to a computer interface, and so on), orally telling a player the information (e.g., by an official conducting a game, and so on), distributing written information (e.g., by staff of a casino, and so on), and so on. Information may be distributed to individuals who express interest in a game (e.g., by standing at a table, by entering a gaming interface, by telling an official, and so on). Information may be distributed to individuals who enter a casino, a gaming area, stay at a hotel, buy a drink or other item, perform any other action, and so on.


In some embodiments, players may pay for the information. In other embodiments, players may receive the information for free and/or as a reward for performing another action (e.g., playing another game, buying a meal, and so on). In some embodiments, players may obtain more an initial piece(s) of information for a payment. In other embodiments players may receive the initial piece(s) of information for free. In some embodiments, after receiving an initial piece(s) of information, players may make a payment for additional information. It should be recognized that as described above, making a payment is not limited to paying a money.


In various embodiments, information may be provided in an electronic form (e.g., through the Internet, through a wireless communication network, and so on) and/or any other form (e.g., through spoken word, through a written message, and so on).


In some embodiments, information may be distributed at times with respect to an event. For example, information may be disturbed before an event begins, during an event, and/or any other time. Information may be distributed before a first wager by any participant, to respective participants before first wagers by each respective participant, before a total amount of wagers or amount of money has been wagered on the event, and so on.


In some embodiments, information may be randomly generated and/or randomly distributed to players. For example, an outcome may be chosen from a set of possible outcome (e.g., a next card that will be drawn out of 52 possible cards). Various characteristics about the outcome may be generated (e.g., color, suit, value, relative value, odd or eve, prime or non-prime, and so on). The information may be distributed randomly to players of the game (e.g., one or more pieces to each player).


In some implementation in which a player may receive additional information after receiving an initial piece of information, the total number of pieces of information (e.g., to an individual player, to all players combined, and so on) may be limited to some maximum amount. For example, the total population (e.g., all pieces of information) size of the pieces of information may be some value. The sample (e.g. distributed information to a player, to all players, and so on) size of the pieces of information that a single player may receive from the population of information may be limited to some value lower than the population size. In some implementations, for example, limiting the sample size to less than the population size for each player prevents a player from completely identifying the actual outcome. In some implementations, the pieces of information provided may be chosen so that players may not completely identify the outcome and/or may be chosen randomly. In some implementations, as the player receives more information the payment for receiving the information may increase.


In some implementations, a sample set of the pieces of information may be chosen for distribution (e.g., all, or less than all of the population of information). Such a set of information may be chosen randomly and/or according to a plan. For example, a plan may choose a set of information that does not completely identify the outcome when taken together. Then the sample set may be distributed to players. Accordingly, in such an implementations, the plurality of players even taken as a whole may not have enough information to completely identify the outcome.


Accepting Wagers


Some embodiments may accept one or more indications of wagers from one or more players. An indication of a wager may identify one or more events (e.g., a card being drawn, a player winning, one of a set of winning symbols being selected, and so on), and/or an outcome of the event (e.g., the card being drawn will be a seven, the first player will win, the slot machine will land on a winning set of symbols, and so on). The indication of the wager may identify an amount wagered. In some embodiments, the amount may be limited to some maximum amount and/or some minimum amount. Such limits may be for individual wagers, wagers of each player combined, and/or wagers of all players combined. In some embodiments, the indications of wagers may be accepted by officials running a game/casino, an electronic device, and so on.


In some embodiments, accepting indications of wagers may include accepting paper or other physical mediums on which indications of the wagers are written or otherwise described, accepting electronic data over a communication network (e.g., the Internet) that have been transmitted from a client (e.g., a computer system operated by a player), and so on.


Some players may use the one or more pieces of information they receive to influence one or more wagers. For example, a piece of information may indicate that a particular outcome is more likely to happen than another, so the player may wager that the more likely outcome will happen. In another example, the player may receive information that a particular outcome will not happen, so the player may avoid wagering on that outcome and may instead wager on other outcomes. As will be discussed below, in some embodiments, information about player wagers may be revealed to other players, and such revelation may entice players into bluffing about the information they have in order to mislead other players.


Aggregation of Wagering Information


In some embodiments, wagering information may be collected. Collecting wagering information may include collecting information about some or all wagers placed in relation to an event. The collected information may include, for example, a number of wagers placed on each possible outcome, an amount of money placed on each possible outcome, a number of players that wagered on each possible outcome, and so on. In some embodiments, information about the players that place the wagers may also be collected. For example, the information that a player knows about the outcomes, as discussed above, may be collected when the player places a wager, demographic information about the player may be collected (e.g., for advertising purposes), and so on. The collection of information may take place throughout the wagering, information distributing, and/or occurrence of an event. The information may be collected, for example, by an official of a casino, by an electronic device accepting wagers, and so on.


In some embodiments, collection may include transmitting data to a computer system. Collection may include, for example, transmitted data for inclusion in a computer database, including information in a computer database, organizing information in a computer database, accessing information in a computer database, altering information in a computer database, and so on. Such a computer database may be operated by a game provider (e.g., a casino, an online provider, and so on). In some embodiments, collecting information may include recording information on a paper or other medium (e.g., by casino staff, and so on).


In some implementations, based on the collected information, a distribution of wagers may be known. The distribution of wagers may reflect a collective wisdom related to the distributed information. For example, the outcome with the most wagers may be the outcome that is most likely given the information distributed, similar outcomes may have the next most wagers, and drastically different outcomes may have the least wagers. It should be recognized that this distribution of wagers may not occur, but that it may be the most likely distribution. Such a distribution may be used to determine odds, fees, payouts and/or other terms related to wagers. For example, a wager may be a pari-mutuel wager in which the number of wagers on an outcome is directly related to a payout for an outcome, a fee charged to place a wager may be higher if the outcome being wagered on is associated with a high amount of other wagers, a house edge for a wager on an outcome may be increased for new wagers on an outcome as more players wager on that outcome, and so on.


In some implementations player behavior may be determined from such information (e.g., individual player's bets, bets by people with types of information, bets by people with specific items of information, and so on). Such information may be used to adjust parameters of a game, monitor players for collusion, and so on.


Distribution of Aggregated Information


In some embodiments, some or all collected information about wagers may be distributed. For example, after a player makes a wager on an outcome, information about the wager may be revealed. The information may include the identity of the player, the wagered on outcome, the amount wagered, the time the wager was placed, other wagers placed by the player, and so on. In some implementations, an amount wagered on each possible outcome of an event up to the current time and/or during some time period may be distributed. In some embodiments, players may be required to make a payment for this information.


In some implementations, this information may reflect the collective wisdom about a likelihood of an actual outcome of an event based on the sample information distributed to all players. Players may view this information and use it to decide how to wager, in addition to and/or as an alternative to the information they may have about the outcome of the event, which may be private to them.


In some embodiments, this information may be published. Publication may take the form of a streaming of electronic data, a ticker (e.g., on a building, on a TV station, around a casino, and so on), a display on an electronic monitor, a printed publication, a spoken word, and so on. The publication may be continuously updated, updated periodically, and so on.


In some implementations, such collected wager information may be distributed (e.g., for all wagers). In other implementations, wager information for a limited window of wagers may be distributed (e.g., wagers that were placed in the last 5 minutes, etc.). In some implementations, players may make a payment for increasing a window size, moving a window in a desired time direction (e.g., greater payment for a window nearer to an event), and/or otherwise adjusting characteristics of the window of information.


In some implementations, the information each player was given may be revealed. For example, the number of pieces of information a player was given before placing a wager may be distributed. In some implementations, the average amount of information each player that wagered on an outcome was given before placing a wager on the outcome may be revealed. In some implementations, the amount of information that the latest player that wagered on an outcome, and/or information about the player that placed the largest wager on an outcome, and/or information about any other player may be revealed. In some implementations, players may be required to make a payment.


In some implementations, in addition to and/or as an alternative to the number of pieces of information received by a player, the actual information may be revealed. Making a payment may be required for a player to receive such information in some implementations. The payment may be higher to reveal the number of pieces of information than for other information. Obtaining such information may be useful, for example, if a player suspects another player of bluffing, if a player believes information about a particular event may be useful in making his or her own decision on a wager, and so on.


In some implementations, a player may keep information about themselves, about a wager, and/or about an outcome private from other players. Keeping such information private may include keeping the information from being included in collected information, keeping the number of pieces of information known by the player before placing the wager private, keeping the information known to the player before making the wager private, and so on. In some implementations, keeping such information private may require a player to make a payment. Keeping such information private may be useful in bluffing other players, for example.


Incentives for Wagers


In some implementations, incentives may be used to encourage behavior, and/or disincentives may be used to discourage behavior. Incentives may include, for example, increased payouts, better odds, payments to players, more information, decrease cost of information, more wagering options, a lower house edge, and so on. Disincentives may include, for example, a fee, worse odds, decreased payouts, increased prices, restricted information, restricted actions, additional terms, a higher house edge, and so on.


In some embodiments, it may be desired, for example, to establish an early set of wagers. To establish such an early set of wagers, some implementations may provide players that wager early with an incentive to place wagers early and/or provide a disincentive to place wagers late. For example, the cost (e.g., a fee, odds, etc.) of placing a wager may be increased. The increases may be tied to time (e.g., as the event becomes nearer, the cost goes up) and/or amount of other wagers placed (e.g., as more people wager, or more money is wagered, the cost goes up), and so on. In some implementations, restrictions may be placed on later wagers that were not placed on early wagers (e.g., a minimum amount of a wager may increase, a maximum amount of a wager may decrease, a maximum amount of information that may be known may decrease, a cost of information may increase, and so on).


It may be recognized that in some embodiments, players may use information obtained about an outcome to influence other players' behavior. For example, a player that places a wager may be revealing information to other players in embodiments in which aggregated information about wagers is distributed. In such implementations, players may use the information about the others players' wagers to influence their own wagers. Because each other player may have different information about the actual outcome, the aggregated information may reflect a common wisdom about what the outcome may be given the information distribution.


Accordingly, players may use this public information along with their own private information about the outcome to place a wager that may be more accurate than a wager with only their own information. By placing such a wager, however, the player may be revealing their information to other players who may then be able to place even more accurate wagers.


In some embodiment in which terms of a wager are affected by the number of wagers/amount of wagers on each outcome (e.g., higher payout if the wager is on a wager in which fewer people wagered, pari-mutuel, and so on), it may be advantageous for a player to attempt to bluff other players into placing wagers that the player believes will be losing wagers. Accordingly, some players may place wagers that go against the information they have about an outcome to mislead other players into placing similar wagers (e.g., bet on a 7 when your information indicates that a 7 will not be the result).


In some embodiments, truthfully placing wagers may be incentivized and/or bluffing through wager placement may be disincentivized. In some implementations, for example, bluffing may be taxed by a charge of a fee if a player places a wager that goes against the information the player has been given. In some implementations, bluffing may not be allowed. In some implementations bluffing may not be discouraged. In some implementations, bluffing may only be allowed at some times.


In some implementations, an end point for a period in which wagering is allowed may not be fixed. For example, in some implementations, an end point of a wagering period may be randomly chosen between two points in time. The players may not know the end of the wagering period and/or the points in time. By varying the wagering period end in such a way, players may be less likely to bluff because they may be unsure of the amount of time that bluff will be effective and unsure if they will be able to place a truthful wager before the end of the wagering period.


In some embodiments, incentives and/or disincentives may be provided through a computer interface and/or through an official running a game (e.g., a casino staff member, and so on). Such incentives and/or disincentives may be provided by changing information shown through a computer display, verbally informing a player of an incentive, and so on.


Artificially Populating Information


In some embodiments, aggregate information about wagers may be artificially generated. For example, in some implementations, one or more computer programs may generate artificial wagers. The artificial wagers may be based on one or more pieces of information about an outcome of an event. In some implementations, the computer programs may include artificially intelligent computer programs. Such computer programs may simulate the wagering of human players. In some implementations, such computer programs may use historical information about wagering by players in previous games to generate artificial wagers. In some implementations, such artificial wagering may not affect the odds, payouts, and/or fees associated with wagers by players. In other implementations, such artificial wagering may have such effect(s). In some implementations, such wagering may go on throughout a wagering period. In some implementations, such wagering may occur before a wagering period to artificially populate aggregate information. Such programs that act as humans are sometimes referred to as “bots.”


Long Shot Bias


In some situations, players may believe that an outcome is more or less likely than aggregated information makes it appear. For example, an outcome that the aggregated information treats as almost impossible may be viewed as not as unlikely by a player. It is recognized that humans may generally bias options that are treated as below a threshold possibility as if they were more likely than the treatment they are given and likewise may treat outcomes that are more likely than a threshold likeliness as less likely than they are treated. Accordingly, in embodiments in which odds and or prices are set based on the aggregate information, if the aggregate information would set a likelihood below a threshold likelihood, the outcome may instead be treated as the likelihood value or between the actual value and the threshold value to more closely align itself with the perceptions of players. In some implementations, such a threshold value may include a 5% of wagers, a 1% of wagers, a 1/10% of wagers, and/or any other value.


In some embodiments, if a most wagered on outcome reaches a percentage of wagers above a threshold, a non-highest likely wager may become available. In such situations, players may view the highest likelihood wager as being too likely and may avoid such wagers even if the likelihood is accurate based on the distributed information. Accordingly, players may want to bet against that wager. A bet on the other wagers may be wanted by such players. So, some embodiments may provide players with the option to bet against a highest wagered for outcome (e.g., all the time during a wagering period, at times when the highest wagered for outcome has been wagered for above a threshold, and so on). In some implementations, the threshold may include 75% of wagers being placed on an outcome, 90% of wagers being placed on an outcome, 95% of wagers being placed on an outcome, 99% of wagers being placed on an outcome, 99.9% of wagers being placed on an outcome, and so on.


In some embodiments, a set of outcomes may be offered in a single wager. For example, a plurality of high likelihood outcomes may be offered as a single wager. In some implementations, the highest set of likely outcomes may be grouped to create a wager above a threshold value, so that players believe the likelihood is too high. In some embodiments, a set of all or some remaining outcomes may be offered for a price slightly higher than the likelihoods associated therewith to reflect the long shot bias players may be willing to pay for.


Multiple Events


In some embodiments, a game may be related to multiple events that may be wagered on. In some embodiments, a wager on the first event may be required before a particular time. In some embodiments, if a player is going to wager on both the first and the second event, the player may be required to place a wager on the second event with the wager on the first event. In some embodiments, if a player is going to wager on the first event at all, the player maybe required to wager on the second event with the first event wager, before the first event takes place, and/or at some other time related to the first event. In some implementations, one or both of the events may include information aggregation elements described herein. By arranging two events in such a way, players may be incentivized to place a wager on the later event earlier than they would without the two events being tied together. In some implementations, placing a wager on the second event after the deadline and/or first event may require a player to make a payment. In some implementations, the second event wagers may be used to subsidize the first event, thereby making it a more favorable payout. Accordingly, more players may be incentivized to wager in the first event and accordingly place second event wagers earlier than they might otherwise. In some implementations, the first event may not include information aggregation elements.


Further Examples of Games


It should be understood that various embodiments may include any traditional game (e.g., sporting events, card games other casino games, events, and so on) modified to include information aggregation elements. Various embodiments may include a pari-mutuel game and/or a non-pari-mutuel game. Such games may include games in which players generally know private information about an outcome. Some example games may include races, fights, other sporting events, stock market events, current events and/or artificially manufactured events (e.g., a staged fight, a staged interaction, and/or any other staged event). It should be recognized that any event may be manufactured in a live and/or computer generated way. In such games, the information about outcomes may be provided artificially as described above. The information may include typical types of information that may be known by players (e.g., horse X is good in this track) and/or additional types (e.g., the winning horse will be brown). In some embodiments, games may include games in which players generally do not have private information about an outcome. For example, some games may include random events, card games, drawing games, slot games, casino games, lotteries, and so on. In such games, players may be provided with information that they typically might not have. For example, players may be provided with information about a card count, about current card or cards in a deck, information about a full or partial card ordering in a deck (e.g., the 7 is before the 5, orders includes the 5, directly followed by the 7, the next two cards are the 5 and the 7, and so on), cards that any player of the game has in hand, discarded cards, a random number generator algorithm, a random number generator seed, information about weights of balls that may be drawn, information about positions of balls in a tank from which they may be drawn, information about a speed of a slot reel, information about friction applied to a slot reel, information about an order of numbers selected for a lottery, information about values of numbers selected for a lottery, and so on. It should be recognized that any information about any game may be used in various embodiments.


In some embodiments, a game may include a game in which players determine which action to take. In such a game, players may choose from a plurality of actions (e.g. hit, stand, move to the right, and so on). Players may choose an action by looking at the actions other players are taking, which may be distributed as collected information described above, and/or from information about the correct action to take, which may be distributed as information about outcomes as described above. In some implementations, players may be required to take a correct action before a period of time passes. In some implementations, players that take the correct action may win and/or move on to a next round. In some implementations, a last player or players remaining after a number of rounds may win.


Further Embodiments

The following should be interpreted as further embodiments and not as claims.

    • A. A method comprising:
      • determining a set of information about an outcome of an event, in which each piece of information identifies a characteristic of the outcome;
      • providing a first piece of the information to a first player;
      • receiving a payment from a second player;
      • in response to receiving the payment, providing the second player with the first piece of information; and
      • receiving a wager related to the event from the second player.
    • A.1. The method of claim A, in which the event includes a pari-mutuel game.
    • A.1.1. The method of claim A.1, in which the pari-mutuel game includes at least one of a card game, a race, a sporting event, and a casino game.
    • A.2. The method of claim A, in which the event includes a non-pari-mutuel game.
    • A.3. The method of claim A, in which the event includes an event related to at least one of a card game, a slot game, a lottery game, a casino game, a race, and a sporting event.
    • A.4. The method of claim A, in which the wager includes a wager on the outcome, and the method further comprises determining a payout for the wager.
    • A.4.1. The method of claim A.4, in which determining the payment includes determining the payout based, at least in part on at least one of a time the wager was placed, a number of wagers placed before the wager, and an amount of information known by the second player.
    • A.5. The method of claim A, in which the method further comprises receiving a second wager from the first player and providing an indication of the second wager to the second player.
    • A.5.1. The method of claim A.5, in which providing the indication of the second wager includes providing an indication of a distribution of wagers related to the event that have been placed.
    • A.6. The method of claim A, in which the first piece of information includes at least one of a value of a card, a suit of a card, a color of a card, a characteristic of a ball, a color of a horse, a characteristic of a horse, and a characteristic of a participant in a sporting event.
    • A.7. The method of claim A, further comprising providing the second player with a second piece of the information.
    • B. A method comprising:
      • determining a set of information about an outcome of an event, in which each piece of information identifies a characteristic of the outcome;
      • providing a first piece of the information to a first player;
      • receiving a wager from the first player; and
      • requiring a payment for the wager, in which the payment is based, at least in part on a number of players that placed wagers before the first player.
    • B.1. The method of claim B, in which the event includes a pari-mutuel game.
    • B.1.1. The method of claim B.1, in which the pari-mutuel game includes at least one of a card game, a race, a sporting event, and a casino game.
    • B.2. The method of claim B, in which the event includes a non-pari-mutuel game.
    • B.3. The method of claim B, in which the event includes an event occurring in at least one of a card game, a slot game, a lottery game, a casino game, a race, and a sporting event.
    • B.4. The method of claim B, in which the wager includes a wager on the outcome, and the method further comprises determining a payout for the wager.
    • B.4.1. The method of claim B.4, in which determining the payment includes determining the payout based, at least in part on at least one of a time the wager was placed, a number of wagers placed before the wager, and an amount of information known by the player.
    • B.5. The method of claim B, further comprising providing, to the player, an indication of a distribution of wagers related to the event that have been placed.
    • B.6. The method of claim A, in which the first piece of the information includes at least one of a value of a card, a suit of a card, a color of a card, a characteristic of a ball, a color of a horse, a characteristic of a horse, and a characteristic of a participant in a sporting event.
    • B.7. The method of claim A, further comprising allowing the first player to purchase a second piece of the information.
    • C. A method comprising:
      • determining a set of information about an outcome of an event, in which each piece of information identifies a characteristic of the outcome;
      • providing a first piece of the information about the outcome to a first player; and
      • receiving a wager related to the event from the first player, in which the odds of the wager are based, at least in part on when the wager is placed.
    • C.1. The method of claim C, in which the odds of the wager are based, at least in part, on a time related to the occurrence of the event.
    • C.2. The method of claim C, in which the odds of the wager are based, at least in part, on a number of other wagers placed on the event before the wager.
    • C.3. The method of claim C, in which the event includes a pari-mutuel game.
    • C.3.1. The method of claim C.3, in which the pari-mutuel game includes at least one of a card game, a race, a sporting event, and a casino game.
    • C.4. The method of claim C, in which the event includes a non-pari-mutuel game.
    • C.5. The method of claim C, in which the event includes an event occurring in at least one of a card game, a slot game, a lottery game, a casino game, a race, and a sporting event.
    • C.6. The method of claim C, in which the wager includes a winning wager, and the method further comprises determining a payout for the wager.
    • C.6.1. The method of claim C.6, in which determining the payment includes determining the payout based, at least in part on at least one of a time the wager was placed, a number of wagers placed before the wager, and an amount of information known by the player.
    • C.7. The method of claim C, further comprising providing, to the player, an indication of a distribution of wagers related to the event that have been placed.
    • C.8. The method of claim C in which the first piece of information includes at least one of a value of a card, a suit of a card, a color of a card, a characteristic of a ball, a color of a horse, a characteristic of a horse, and a characteristic of a participant in a sporting event.
    • C.9. The method of claim C, further comprising allowing the first player to purchase a second piece of the information.
    • D. A method comprising:
      • determining a set of information about an outcome of an event, in which each piece of information identifies a characteristic of the outcome;
      • providing a first piece of the information to a first player;
      • receiving a wager related to the event from the first player;
      • determining if the wager is consistent with the first piece of information; and
      • requiring a payment for the wager based on the determination of whether the wager is consistent with the first piece of information.
    • D.1. The method of claim D, in which the payment is charged only if the wager is not consistent with the first piece of information.
    • D.2. The method of claim D, in which the event includes a pari-mutuel game.
    • D.2.1. The method of claim D.2, in which the pari-mutuel game includes at least one of a card game, a race, a sporting event, and a casino game.
    • D.3. The method of claim D, in which the event includes a non-pari-mutuel game.
    • D.4. The method of claim D, in which the event includes an event occurring in at least one of a card game, a slot game, a lottery game, a casino game, a race, and a sporting event.
    • D.5. The method of claim D, in which the wager includes a winning wager, and the method further comprises determining a payout for the wager.
    • D.5.1. The method of claim D.5, in which determining the payment includes determining the payout based, at least in part on at least one of a time the wager was placed, a number of wagers placed before the wager, and an amount of information known by the player.
    • D.6. The method of claim D, further comprising providing, to the player, an indication of a distribution of wagers related to the event that have been placed.
    • D.7. The method of claim D, in which the first piece of information includes at least one of a value of a card, a suit of a card, a color of a card, a characteristic of a ball, a color of a horse, a characteristic of a horse, and a characteristic of a participant in a sporting event.
    • D.8. The method of claim D, further comprising allowing the first player to purchase a second piece of the information.

Claims
  • 1. An apparatus comprising: at least one processor configured to control: determining a plurality of pieces of information that define an outcome for a future game by a plurality of aspects, in which each piece of information of the plurality of pieces of information describes a respective aspect of the plurality of aspects;prior to revealing the outcome, displaying, over a communication network, on a graphical user interface of a first device of a first player of the future game, a first piece of information of the plurality of pieces, in which the first piece is different from another piece of the plurality of pieces displayed, over the communication network, on a graphical user interface of another device of another player of the future game, prior to revealing the outcome, in which the first piece of information identifies a first aspect of the outcome, and in which the another piece of information identifies another aspect of the plurality of aspects;prior to revealing the outcome, displaying, over the communication network, on the graphical user interface of the first device, a second piece of the plurality of pieces;receiving in real time, over the communication network from a remote computing device, current wager information for the future game;continuously updating in real time, over the communication network, display of the current wager information on the graphical user interface of the first device;receiving a wager in the future game, over the communication network, from the first device after the first and second pieces and the current wager information are displayed at the first device, in which the wager includes an amount bet that the outcome is a particular outcome; andwhen the wager is determined to be a winning wager, determining a payout for the wager based on a time the wager is placed, in which the payout is in proportion to an amount of time between the time the wager is placed and a first time when the outcome is revealed.
  • 2. The apparatus of claim 1, in which the future game includes a pari-mutuel game.
  • 3. The apparatus of claim 2, in which the pari-mutuel game includes at least one of a card game, a race, a sporting event, or a casino game.
  • 4. The apparatus of claim 1, in which the future game includes a non-pari-mutuel game.
  • 5. The apparatus of claim 1, in which the future game includes an event occurring in at least one of a card game, a slot game, a lottery game, a casino game, a race, or a sporting event.
  • 6. The apparatus of claim 1, in which the payout is determined based at least in part on at least one of a number of wagers placed before the wager or an amount of information known by the first player when the wager is placed.
  • 7. The apparatus of claim 1, in which the at least one processor is configured to control: displaying, on the graphical user interface of the another device, an indication of a distribution of wagers that have been placed in the future game.
  • 8. The apparatus of claim 7, in which the distribution of wagers includes a distribution of wagers in the future game placed by the another player and a plurality of other second players prior to the wager being placed.
  • 9. The apparatus of claim 1, in which the payout is determined based on a number of wagers placed before the wager.
  • 10. The apparatus of claim 9, in which the number of wagers includes wagers in the future game placed by the another player and a plurality of other second players.
  • 11. The apparatus of claim 1, in which the payout is determined based on an amount of information known by the first player.
  • 12. The apparatus of claim 11, in which the payout is determined based on a number of pieces of information of the plurality of pieces of information provided to the first player, and in which the payout is inversely proportional to the number of pieces of information.
  • 13. The apparatus of claim 1, in which the at least one processor is configured to control: identifying to the another player a second time and a third time;identifying to the another player that no wagers in the future game will be accepted after a fourth time that falls between the second time and the third time without identifying the fourth time to the first player;determining the fourth time; andpreventing further wagers related to the future game after the fourth time without identifying the fourth time to the another player.
  • 14. The apparatus of claim 1, in which the at least one processor is configured to control: receiving a second wager in the future game from the another player after the another piece of information is provided to the another player, in which the second wager includes a second amount bet that the outcome is a second particular outcome;in response to receiving the second wager, determining that the second particular outcome is defined by a particular aspect that cannot occur in any outcome including the another aspect; andrequiring a payment from the another player, in which the payment includes a cost of placing the second wager resulting from a determination that the second particular outcome is defined by a given particular aspect that cannot occur in any outcome including the another aspect, in which the cost is separate from the second amount bet and includes at least one of a monetary cost or a less favorable odds for at least one wager.
  • 15. The apparatus of claim 14, in which the at least one processor is configured to control: in response to receiving the wager, determining that the particular outcome is defined by a second particular aspect that can occur in outcomes including the first aspect; anddetermining that a second payment of the cost for placing the wager is not required.
  • 16. The apparatus of claim 1, in which the future game includes at least one of a card game, a race, a sporting event, or a casino game;in which the payout is determined based at least in part on at least one of a number of wagers placed before the wager or an amount of information known by the first player when the wager is placed;in which the at least one processor is configured to control:providing, to the another player, an indication of a distribution of wagers that have been placed in the future game, in which the distribution of wagers includes a distribution of wagers in the future game placed by the another player and a plurality of other second players prior to the wager being placed, andin which the another piece of information includes at least one of a value of a card, a suit of a card, a color of a card, a characteristic of a ball, a color of a horse, a characteristic of a horse, or a characteristic of a participant in a sporting event;identifying to the another player a second time and a third time;identifying to the another player that no wagers in the future game will be accepted after a fourth time that falls between the second time and the third time without identifying the time to the another player;determining the fourth time;preventing further wagers related to the future game after the fourth time without identifying the fourth time to the another player;receiving a second wager in the future game from the another player after the another piece of information was provided to the another player, in which the second wager includes a second amount bet that the outcome is a second particular outcome;in response to receiving the second wager, determining that the second particular outcome is defined by a particular aspect that cannot occur in any outcome including the another aspect;requiring a payment from the another player, in which the payment includes a cost of placing the second wager resulting from the determination that the second particular outcome is defined by a given particular aspect that cannot occur in any outcome including the another aspect, in which the cost is separate from the second amount bet and includes at least one of a monetary cost or a less favorable odds for at least one wager;in response to receiving the wager, determining that the particular outcome is defined by a second particular aspect that can occur in outcomes including the first aspect; anddetermining that a second payment of the cost for placing the wager is not required.
  • 17. A method comprising: controlling, by at least one processor: determining a plurality of pieces of information that define an outcome for a future game by a plurality of aspects, in which each piece of information of the plurality of pieces of information describes a respective aspect of the plurality of aspects;prior to revealing the outcome, displaying, over a communication network, on a graphical user interface of a first device of a first player of the future game, a first piece of the plurality of pieces, in which the first piece is different from another piece of the plurality of pieces displayed, over the communication network, on a graphical user interface of another device of another player of the future game, prior to revealing the outcome, in which the first piece of information identifies a first aspect of the outcome, and in which the another piece of information identifies another aspect of the plurality of aspects;prior to revealing the outcome, displaying, over the communication network, on the graphical user interface of the first device, a second piece of the plurality of pieces;receiving in real time, over the communication network from a remote computing device, current wager information for the future game;continuously updating in real time, over the communication network, display of the current wager information on the graphical user interface of the first device;receiving a wager in the future game, over the communication network, from the first device after the first and second pieces and the current wager information are displayed at the first device, in which the wager includes an amount bet that the outcome is a particular outcome; andwhen the wager is determined to be a winning wager, determining a payout for the wager based on a time the wager is placed, in which the payout is in proportion to an amount of time between the time the wager is placed and a first time when the outcome is revealed.
  • 18. An apparatus comprising: at least one processor configured to control: determining a plurality of pieces of information that define an outcome for a game during the game by a plurality of aspects, in which each piece of information of the plurality of pieces of information describes a respective aspect of the plurality of aspects;prior to revealing the outcome, displaying, over a communication network, during the game, on a graphical user interface of a first device of a first player, a first piece of information of the plurality of pieces, in which the first piece is different from another piece of the plurality of pieces displayed, over the communication network, during the game, on another graphical user interface of another device of another player, prior to revealing the outcome, in which the first piece of information identifies a first aspect of the outcome, and in which the another piece of information identifies another aspect of the plurality of aspects;prior to revealing the outcome, displaying, over the communication network, during the game, on the graphical user interface of the first device, a second piece of the plurality of pieces;receiving in real time, over the communication network from a remote computing device, during the game, current wager information for the game;continuously updating in real time, over the communication network, during the game, display of the current wager information on the graphical user interface of the first device;receiving a wager on the game, over the communication network, during the game, from the first device after the first and second pieces and the current wager information are displayed at the first device, in which the wager includes an amount bet that the outcome is a particular outcome; andwhen the wager is determined to be a winning wager, determining a payout for the wager based on a time the wager is placed, in which the payout is in proportion to an amount of time between the time the wager is placed and a first time when the outcome is revealed.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/337,478 filed Jun. 3, 2021, which is a continuation of U.S. patent application Ser. No. 16/272,031 filed Feb. 11, 2019 (now U.S. Pat. No. 11,030,856 issued Jun. 8, 2021, which is a continuation of U.S. patent application Ser. No. 15/224,814 filed Aug. 1, 2016 (now U.S. Pat. No. 10,229,558 issued Mar. 12, 2019), which is a continuation of U.S. patent application Ser. No. 13/345,982 filed Jan. 9, 2012 (now U.S. Pat. No. 9,406,190 issued Aug. 2, 2016) which is a continuation of U.S. patent application Ser. No. 12/172,310, filed Jul. 14, 2008 (now U.S. Pat. No. 8,092,301 issued Jan. 10, 2012), each of which are hereby incorporated by reference herein in its entirety.

US Referenced Citations (2)
Number Name Date Kind
20080258388 Schugar Oct 2008 A1
20080258389 Friedman Oct 2008 A1
Related Publications (1)
Number Date Country
20230274612 A1 Aug 2023 US
Continuations (5)
Number Date Country
Parent 17337478 Jun 2021 US
Child 18143124 US
Parent 16272031 Feb 2019 US
Child 17337478 US
Parent 15224814 Aug 2016 US
Child 16272031 US
Parent 13345982 Jan 2012 US
Child 15224814 US
Parent 12172310 Jul 2008 US
Child 13345982 US