The invention relates generally to information distribution, and more particularly to distributing information using a broadcast channel and a bi-directional communication channel.
Recent advancements in modem and computer technology allow large amounts of digital data to be transmitted electronically. A number of information providers (such as newspaper and magazine publishers) and on-line information distributors have formed partnerships to deliver newspaper and other information on-line. In this system, a subscriber uses a computer and a modem to connect, through a regular phone line, to the computer of an on-line information provider. The subscriber can retrieve information, including newspaper articles, stored in the computer of the information provider.
On-line delivery of newspaper has many advantages. For example, the information can be updated throughout the day while the printed version is printed only once or twice a day. Further, it is possible to do text-based searches on the information. However, it is found that on-line delivery of newspaper and other information is slow. For example, a subscriber has to wait many seconds for a newspaper article to be delivered. The quality of the electronic newspaper is low. For example, in order to reduce storage and communication requirements, graphic images appearing in the printed version are not universally supplied in the on-line version of newspaper. One of the reasons for such poor performance is the limited bandwidth of communication channels used by on-line information distributors. Another reason is that information is centrally processed by the computer at the site of the information distributor, with the result that each subscriber only gets a small slice of the time of the computer.
The present invention uses two channels to deliver digital information: a broadcast channel and a bi-directional channel. The broadcast channel is used to deliver the bulb of the digital information to subscribers. The amount of information delivered is preferably sufficient to satisfy the needs of a large number of subscribers so that they do not have to obtain additional information using the bi-directional channel. The broadcasted information is stored on fast storage media located at subscriber sites. As a result, search and retrieval of the broadcasted information is quick. Further, the broadcasted information is processed locally using a dedicated on-site processor instead of relying on the computers of the information distributors. As a result, the load on the computers of the information distributors is reduced. If the subscribers desire to receive additional information relating to the broadcasted information, the bi-directional communication channel is used to transmit the request and the requested information.
The distribution costs of broadcast channels are typically much lower than that of a bi-directional communication channel. Consequently, the major portion of information is delivered using low cost distribution channels. For a large number of subscribers, the broadcasted information will provide all the information they normally need. Thus, expensive bi-directional communication channels are used only occasionally.
These and other features and advantages of the present invention will be fully understood by referring to the following detailed description in conjunction with the accompanying drawings.
The structure of these subscriber units are substantially identical; consequently, only one of these units, such as unit 102, is described in detail. Unit 102 contains an antenna 116 for receiving broadcast signals from satellite transponder 110, a signal/data processor 118 for performing signal and data processing functions, a monitor 120 for displaying the electronic newspaper, and an input device 122 (such as a keyboard and/or a mouse).
Signal/data processor 118 contains a transponder interface 132 for processing transponder signal received from antenna 116. Transponder interface 132 typically contains a low noise receiver for receiving high frequency (e.g., C or Ku band) transponder signal and a “universal data interface” for converting the transponder signal to digital data. The retrieved data is stored in nonvolatile storage 134, such as a hard disk or solid state flash memory. Preferably, satellite transponder 110 broadcasts the newspaper data at predetermined times. Thus, a real-time clock 136 is preferably used to turn on interface 132 at the predetermined times. Processor 118 contains a microcomputer 140 which coordinates the operation of clock 136, nonvolatile storage 134, and interface 132. Processor 118 also contains a communication interface 142 for sending and receiving digital data from central database 109 through telephone connection 106.
The time for broadcast is preferably chosen when communication load of transponder 110 is at a low level (e.g., around mid-night). As a result, the cost of information delivery is low. Alternatively, the time of broadcasting is chosen by transponder 110 because it knows when communication load is light. In this case, transponder 110 first sends a signal to signal/data processor 118 for alerting processor 118 to receive and process the newspaper information.
A user can use the input device 122 and monitor 120 to read the content of the electronic newspaper stored in nonvolatile storage 134. In this embodiment, the complete content of the newspaper is stored in nonvolatile storage 134. The term “complete content” means that the user is able to read the newspaper without relying on information stored in central database 109 (although other embodiments may deliver less than the complete content). In this aspect, system 100 functions in a similar way as the distribution of a conventional printed newspaper. However, the digital data of the electronic newspaper delivered by satellite transponder 110 preferably contains linkage reference which allows fast retrieval of additional information from central database 109.
If the newspaper information received from satellite transponder 110 is sufficient to satisfy the needs of a user, signal/data processor 118 will not activate telephone connection 106. However, if the user wishes to receive additional information relating to an item mentioned in the electronic newspaper (e.g., by selecting at the item using the input device), process 118 will retrieve the information stored in central database 109 using the embedded linkage reference.
In system 100 of the present invention, the complete content of the electronic newspaper (including graphics and other multimedia contents, if delivered) is stored in nonvolatile storage 134, which has fast access time. Further, a dedicated processor (i.e., microcomputer 140) is used to process newspaper information. On the other hand, prior art on-line newspaper distribution systems rely on modem to deliver the content of the newspaper stored in a central site. Further, the processor in the central site has to serve many users in delivering the newspaper. As a result, system 100 has superior performance compared to the prior art on-line newspaper delivery systems.
If it is desirable to limit circulation of the newspaper to a certain class of subscribers only (e.g., paid subscribers), the data transmitted by transponder 110 could be encrypted. As a result, only subscribers who have a decryption key are able to read the newspaper. In this case, microcomputer 140 also performs decryption functions.
” symbol) and followed by a linkage reference enclosed by another special symbol (e.g., the “
” symbol). These symbols are invisible to the users and is recognizable only by microcomputer 140.
When an underlined term in
If the speed of searching and retrieving data by central database 109 is fast, it may not be necessary to include linkage reference in the information broadcasted by transponder 110. In this case, the user selects (e.g., using the mouse) words and terms he/she is interested in. Signal/data processor 118 transmits the selected items to central database 109, which searches for matches in its database. Matched information is sent to subscriber unit 102 for processing.
The bi-directional channel also allows updating of the broadcasted information. There is typically a time difference between the broadcast and display of information. New information gathered during this time difference can be stored in central database 109 and later transmitted to signal/data processor 118.
In this embodiment of the present invention, satellite transponder 110 is used as the vehicle to electronically broadcast newspaper. However, other broadcast distribution methods can be used. In the present invention, broadcast is defined as one-to-many distribution of information. The broadcast distribution channels do not have to be electrical. For example, the present invention allows the distribution of CDROMs encoded with digital information to the subscriber sites. In the case of electrical broadcast communication channels, both wired and wireless can be used. Preferably, unidirectional channels are used for broadcast because of their low cost; however, the present invention does not preclude the use of bi-directional communication channels (such as telephone lines) as means for distributing broadcast (i.e., one to many) information.
Current technology allows the size of antenna 116 to be as small as 2 feet. The costs of antenna 116 and transponder interface 132 is already low enough to be within the reach of small business or a typical household. The newspaper publisher has to pay for the use of the transponder. However, the cost is comparable to the printing and distribution costs of printed newspaper. It is anticipated that the costs of the newspaper distribution system in accordance with the present invention will be lowered as the number of subscribers increases.
In some locations, it may not be desirable to use wired communication channel to link an earth station to subscribers. In such case, wireless communication channel could be used.
In one embodiment of system 200, teletext technology is used to link earth station 234 and subscriber units 242 and 244. Thus, earth station 234 could be located adjacent to a television transmission station. The digital data received by earth station 234 can be integrated to the vertical blanking interval of a TV signal, which is broadcasted using an antenna 238. Subscriber units 242 and 244 receive the signal using antennas 239, and 240, respectively. The digital data is then retrieved. Various improvements and refinements of the teletext technology are well known and can be incorporated into system 200.
It should be obvious to a person skilled in the art that systems 100 and 200 are not limited to the distribution of a newspaper. Further, electronic newspapers of the future may contain contents which are not available in the printed version, such as video and other multimedia compositions. Other information, such as magazines, graphic images, electronic mails, computer games, multimedia work, or interactive movies, could also be advantageously distributed using a system similar to systems 100 and 200. For example, if it is desirable to distribute interactive movies, the non-interactive portion can be broadcasted while the interactive portion is delivered using a bi-directional channel.
There has thus shown and described a novel information distribution system. Many changes, modifications, variations and other uses and applications of the subject invention will become apparent to those skilled in the art after considering this specification and the accompanying drawings. All such changes, modifications, variations, uses, and applications are covered by the scope of this invention which is limited only by the appended claims.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
This application is a continuation of application Ser. No. 10/322,624, filed Dec. 19, 2002; which is a continuation of application Ser. No. 10/079,257, filed Feb. 19, 2002 (now abandoned); which is a continuation of application Ser. No. 09/699,022, filed Oct. 27, 2000 (now abandoned), which is a continuation of application Ser. No. 09/480,226, filed Jan. 10, 2000 (now U.S. Pat. No. 6,347,215); which is a continuation of Ser. No. 08/939,368, filed Sep. 29, 1997 (now U.S. Pat. No. 6,021,307); which is a continuation-in-part of application Ser. No. 08/644,838, filed May 10, 1996 (now abandoned); which is a continuation-in-part of application Ser. No. 08/279,424, filed Jul. 25, 1994 (now abandoned); all of which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 10322624 | Dec 2002 | US |
Child | 11644492 | Dec 2006 | US |
Parent | 10079257 | Feb 2002 | US |
Child | 10322624 | Dec 2002 | US |
Parent | 09699022 | Oct 2000 | US |
Child | 10079257 | Feb 2002 | US |
Parent | 09480226 | Jan 2000 | US |
Child | 09699022 | Oct 2000 | US |
Parent | 08939368 | Sep 1997 | US |
Child | 09480226 | Jan 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08644838 | May 1996 | US |
Child | 08939368 | Sep 1997 | US |
Parent | 08279424 | Jul 1994 | US |
Child | 08644838 | May 1996 | US |