Field of the Invention
The present invention relates in general to the field of information handling system image capture, and more particularly to an information handling defocus tracking video.
Description of the Related Art
As the value and use of information continues to increase, individuals and businesses seek additional ways to process and store information. One option available to users is information handling systems. An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information. Because technology and information handling needs and requirements vary between different users or applications, information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated. The variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
Portable information handling systems are built into portable housings with integrated input/output (I/O) devices, such as a touchscreen liquid crystal display (LCD). In particular, tablet and smartphone portable information handling systems are built into planar housings with a display presenting information as visual images at one side of the planar housing. End users have migrated towards the relatively small planar housings used by smartphones to provide a convenient handheld mobile device for basic processing functions, such as web surfing and reading emails. In addition to providing convenient processing capability, portable information handling systems have taken over a number of information processing functions that were often handled by other devices. Most prominently, portable information handling systems have taken over the role of mobile telephones by providing end users with a handset to place telephone calls. Web browsing and email are supported through the wireless telephone provider's network. Portable information handling systems often include GPS receivers and access to maps to replace handheld navigation devices. Another common feature for portable information handling systems is an integrated camera to take digital pictures and videos.
The relatively small size of smartphone and tablet devices has made the cameras in these devices popular with end users. As digital light sensors have improved, the images captured by the cameras have improved in quality. Typically, camera resolution is discussed in terms of the number of megapixels captured with each image. A greater number of megapixels means a greater number of light data points used to recreate a captured image. However, measuring camera quality just based upon sensor pixel size is misleading. Even the best camera sensor will take a low quality picture if light for the sensor is captured by a poor lens. Since smartphones and tablets are built with thinness as a goal, manufacturers have some difficulty assembling quality lens into the systems. Generally, as a result, the quality of portable information handling system pictures and videos tends to suffer. End users generally understand the limitations of portable information handling system cameras and accept that lower quality as a tradeoff for convenience.
One solution for lower quality images captured by portable information handling systems is post processing of the images to remove or correct data that tends to have lower quality. For example, videos from portable information handling systems tend to shake because end users have difficulty holding the system still while information is captured. Stabilization software or firmware attempts to correct poor video quality by massaging pixels into the location that would have resulted if the camera was held still. Other post processing techniques aid in correcting contrast, brightness and blurriness by replacing pixel values captured by a camera with pixel values that represent what likely should have been captured. Although post processing can provide improved image quality, the steps needed to accomplish post processing tend to add complexity that often outweighs the benefits to end users. Generally, if an end user desires high quality images, the end user resorts to dedicated camera systems that offer greater user control over lens functions, such as longer focal length and focus control.
Therefore, a need has arisen for a system and method which provide an information handling system having simplified post-processing of images captured by a camera.
In accordance with the present invention, a system and method are provided which substantially reduce the disadvantages and problems associated with previous methods and systems for capturing images with an information handling system. Defined objects detected in an image by focus blur at the object edge are applied for post processing of the image with focus blurring outside the defined object to create viewing effects that highlight visual image elements as desired by an end user.
More specifically, a portable information handling system processes information with a processor that executes instructions stored in memory to present information as visual images at a display, such as with processing performed by a graphics processing unit (GPU). A focus mapper analyzes images presented by the graphics processor to detect defined objects in the image based upon blur that accompanies the transition from focus of the object and its surrounding. The focus mapper tracks defined objects selected by an end user by analyzing the image blur so that a focused image adjuster adjusts presentation of the image outside the selected defined objects, such as by blurring the those portions to add a defocused appearance. Other types of adjustments include changing the color of the defocused appearance, such as by applying black and white coloring, adding meta data to the selected defined areas for presentation at the image, and defining an active area in the display that prioritizes one or more defined objects as the focused object in the visual image while defocusing other defined objects.
The present invention provides a number of important technical advantages. One example of an important technical advantage is that a visual image has an adjusted appearance based upon selected defined objects identified with blurring along the object edges. Defocus of a visual image outside of the selected defined object edges provides a visual presentation that highlights the defined object. Additional impactful visual effects are provided by applying adjustments to the visual image based upon the selected defined object. For example, metadata associated with defined objects provides presentation of user-defined information in association with a defined object. As another example, defined objects may be further highlighted with alternative visual effects within and outside of the defined object, such as by applying black and white color effects outside of a defined area. Where multiple defined objects are highlighted, priority definitions may be applied to select one defined object for highlighting relative to another, such as based upon the portion of the visual image in which the defined object is presented. End users are provided with an automated tool that enhances presentation of desired portions of visual images that are taken by cameras with otherwise limited image capture quality.
The present invention may be better understood, and its numerous objects, features and advantages made apparent to those skilled in the art by referencing the accompanying drawings. The use of the same reference number throughout the several figures designates a like or similar element.
Post processing of visual information at a portable information handling system highlights defined objects tracked with defocus mapping. For purposes of this disclosure, an information handling system may include any instrumentality or aggregate of instrumentalities operable to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, or other purposes. For example, an information handling system may be a personal computer, a network storage device, or any other suitable device and may vary in size, shape, performance, functionality, and price. The information handling system may include random access memory (RAM), one or more processing resources such as a central processing unit (CPU) or hardware or software control logic, ROM, and/or other types of nonvolatile memory. Additional components of the information handling system may include one or more disk drives, one or more network ports for communicating with external devices as well as various input and output (I/O) devices, such as a keyboard, a mouse, and a video display. The information handling system may also include one or more buses operable to transmit communications between the various hardware components.
Referring now to
Referring now to
In order to highlight defined objects selected by an end user, portable information handling system 10 includes a focus mapper 32 and focused image adjuster 34 that cooperate to post process visual information with defocusing of non-highlighted areas. Focus mapper 32 and focus adjuster 34 are, for example, firmware and/or software instructions executing on GPU 30, CPU 22 and/or other processing components to adjust visual information for presentation at display 14. Visual information may be adjusted in real time as captured by a camera or may be adjusted after capture and storage in memory. A user chooses a scene from a displayed image, such as a display still image or video, selects an area or element that is identifiable by focus mapper 32 as a defined object, and then focused image adjuster 34 defocuses or blurs the original image data or video frame, with additional visual information similarly processed through the remainder of video frames that include the identifiable object. Focus mapper 34 tracks defined objects using a focus map of each individual image or frame in visual information and applies defocus to the visual image outside of the defined objects selected for focus by an end user.
Focus mapper 34 identifies and tracks defined objects by leveraging a selected of known models of defocus theory, such as active illumination, coded aperture, inverse diffusion and interpolation theories. Generally, the defined object or defined objects are identified and tracked by analyzing an image or video frame within a video with a mixture of focused and defocused objects, detecting the edges of focused object(s) to estimate a focus map based on edge blurriness, which is depicted explicitly by each defocus theory. Individual image frames of a video have a focus map related over time with similar defocus regions and shapes that track from the selected images of an original video frame so that defocus is applied across multiple frames over time. Focused image adjuster 34 adds blurring to the visual information outside of the defined objects as tracked by focus mapper 32 over time. In addition, as set forth in greater detail below, focused image adjuster 34 may apply other types of adjustments with or in the place of defocus adjustment. For example, a user may select from adjustments 38 based on a focused area, a defocused area, a color area, meta data associated with an area and an active area defined in the display. An acceleration adjuster 36 cooperates with focus mapper 32 to correct image impacts from large accelerations at information handling system 20 as set forth in greater detail in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Although the present invention has been described in detail, it should be understood that various changes, substitutions and alterations can be made hereto without departing from the spirit and scope of the invention as defined by the appended claims.