The description herein relates generally to information handling systems (“IHSs”) and more particularly to an IHS that includes a power supply unit with a power converting for supplying power to multiple outputs.
As the value and use of information continues to increase, individuals and businesses seek additional ways to process and store information. One option is an information handling system (“IHS”). An IHS generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes. Because technology and information handling needs and requirements may vary between different applications, IHSs may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated. The variations in IHSs allow for IHSs to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, IHSs may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
An IHS typically includes a power supply unit for supplying power to its various components. In one example, a power supply unit includes a power converter (e.g., a transformer based power converter) with multiple outputs. The power supply unit regulates (e.g., by adjusting a duty cycle for a switch) the multiple outputs so that voltage levels for the outputs are maintained within a previously determined range.
Such power converter with multiple outputs may be subject to problems associated with regulating voltage levels of the multiple outputs. For example, with a typical power converter including multiple outputs, the power supply unit regulates voltage levels of the multiple outputs in response to voltage feedback from its primary output. In a situation whereby the primary output has a relatively low load, and one or more of the power supply unit's other (e.g., secondary) outputs have relatively high loads, duty cycle for the switch for regulating the multiple outputs may not be sufficiently high to provide volt-seconds to all outputs to ensure proper regulation.
What is needed is a method and an IHS that includes a power supply unit with a power converter having multiple outputs, without the disadvantages discussed above.
Accordingly, a method, a power supply unit and an information handling system (“IHS”) is provided. The method includes, providing a power converter for supplying power to a first output and a second output. The method also includes providing a switch, coupled to the power converter, for regulating power supplied to the first and the second outputs, in response to a duty cycle. Moreover, the method includes providing a control circuit, coupled to the switch, for receiving an indication of current level at the second output and in response to the indication of current level at the second output, adjusting the duty cycle.
For purposes of this disclosure, an information handling system (“IHS”) may include any instrumentality or aggregate of instrumentalities operable to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, entertainment, or other purposes. For example, an IHS may be a personal computer, a PDA, a consumer electronic device, a network server or storage device, a switch router or other network communication device, or any other suitable device and may vary in size, shape, performance, functionality, and price. The IHS may include memory, one or more processing resources such as a central processing unit (“CPU”) or hardware or software control logic. Additional components of the IHS may include one or more storage devices, one or more communications ports for communicating with external devices as well as various input and output (I/O) devices, such as a keyboard, a mouse, and a video display. The IHS may also include one or more buses operable to transmit communications between the various hardware components.
The IHS 100 also includes a power supply unit 115 coupled to the system board 115. The power supply unit 115 receives power form a power source, as depicted in
Each of the input devices 210, the display device 215, the storage device 220, the memory device 225, and the network controller 230 is coupled to the processor 205, and to one another. Also, in one example, the IHS 100 includes various other electronic circuitry for performing other operations of the IHS 100, such as a print device (e.g., a ink-jet printer or a laser printer) for printing visual images on paper.
The input devices 210 include, for example, a conventional keyboard and a pointing device (e.g., a “mouse”, a roller ball, or a light pen). A user operates the keyboard to input alphanumeric text information to the processor 205, and the processor receives such information from the keyboard. A user also operates the pointing device to input cursor-control information to the processor 205, and the processor 205 receives such cursor-control information from the pointing device.
As discussed above, a power converter with multiple outputs may be subject to problems associated with regulating voltage of such outputs. In one example, such problems are associated with the increase in load current slew rate and decrease in output impedance requirements of such multiple output power converters. Future system processor and video power trends in the industry indicate that such requirements are likely to continually increase and decrease in the future.
One conventional technique for alleviating such problems includes providing excess capacitance in the power converter. However, such technique increases cost and size of the power converter.
In the illustrative embodiment, a power converter utilizes current mode control to increase volt-second availability to its multiple outputs. Accordingly,
The power converter 300 includes an input 305 and a transformer 310. The transformer 310 includes a primary inductor (i.e., winding) 315 and secondary windings 320 and 325. Also, the power converter 300 includes a switch 330, an inductor 335, and an inductor 340, a switch 345, a switch 350, a switch 355, a switch 360, an output 365, a load 370, an output 375, a load 380, a control circuit 385, a current feedback line 390, and a voltage feedback line 395.
The input 305 is for receiving current from a power source. An example of such power source includes a DC power source (e.g., a battery or a AC/DC rectifier). The transformer 310 is for supplying power to the multiple outputs 365 and 375. In one example, the transformer 310 is a step-down (e.g., 10:1) power converter. In another example, the transformer 310 is a step-up power converter.
In a switching operation, the control circuit 385 repeatedly opens and closes the switch 330 in response to a duty cycle. Such duty cycle is adjustable by the control circuit 385 so that voltage levels at the multiple outputs 365 and 375 are regulated.
The control circuit 385 adjusts the duty cycle in response to voltage level indication received via the voltage feedback line 395 and also in response to current level indication received via the current feedback line 390. As depicted in
The outputs 365 and 375 are subject to decreases or increases (e.g., “drops”) in their voltage levels caused by resistance and leakage inductance. Accordingly, in response to the current level received via the current feedback 390, the control circuit 385 adjusts the duty cycle for the switch 330 so that the regulator 300 compensates for such anticipated decreases or increases in the voltage levels.
With a relatively fast transient on load 380, such feedback appears as output “ripple” voltage on the primary output 365. With a conventional switching regulator, feedback of such situation is provided to a control circuit (e.g., a control circuit substantially similar to the control circuit 385) by detecting a voltage level drop, as compared to a reference voltage, at the primary output 365. In response to receiving an indication of such voltage level drop, the control circuit increases its duty cycle. However, in some situations, such technique of detecting the voltage level drop is not reliable (e.g., because of a “lag”), and causes the voltage level to drop (or rise in the case of a load release) beyond a desired level.
Accordingly, in the illustrative embodiment,
For clarity,
As the control circuit 385 adjusts the duty cycle in response to current level at the output 375, the switch 330 is utilized to provide regulation of levels of voltage at the outputs 365 and 375. In response to switch 330 being on, switches 345 and 350 are on and switches 355 and 360 are off. In response to switch 330 being off, switches 345 and 350 are off and switches 355 and 360 are on. Other implementations of this embodiment may include half-bridge, full-bridge and flyback converters, etc. instead of the forward converter as illustrated. In one example, the control circuit 385 closes the switch 345 and opens the switch 355 to increase voltage level at the output 365 by providing the output 365 with current. In such example, the control circuit 385 opens the switch 345 and closes the switch 355 to decrease voltage level at the output 365 to maintain the output 365.
Similarly, the control circuit 385 closes the switch 350 and opens the switch 360 to increase voltage level at the output 375. Also, the control circuit 385 opens the switch 350 and closes the switch 360 to decrease voltage level at the output 375. In the above examples, the switches 345, 350, 355. and 360 are coupled to the control circuit 385.
In
Although illustrative embodiments have been shown and described, a wide range of modification, change and substitution is contemplated in the foregoing disclosure. Also, in some instances, some features of the embodiments may be employed without a corresponding use of other features. Accordingly, it is appropriate that the appended claims be constructed broadly and in manner consistent with the scope of the embodiments disclosed herein.