BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
A general architecture that implements the various features of the invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the invention and not to limit the scope of the invention.
FIG. 1 is a perspective view showing an example of an outside of a computer according to one embodiment of the present invention;
FIG. 2 is a block diagram showing a system configuration example of the computer of FIG. 1;
FIG. 3 is a block diagram showing a functional configuration example of a video playback application program for use in the computer of FIG. 1;
FIG. 4 is a block diagram showing a configuration example in a case where the invention is applied to video decoding processing according to standardization specifications based on the H.264 as a software decoder achieved by the video playback application program of FIG. 3.
FIG. 5 is a block diagram showing a structural example of a content information processing system including the video decoding apparatus shown in FIG. 4 as a video decoding unit;
FIG. 6 is a flowchart showing a basic processing example of a deblocking filter skip determining unit in FIG. 4;
FIG. 7 is a flowchart showing another basic processing example of the deblocking filter skip determining unit in FIG. 4;
FIG. 8 is a flowchart showing a processing example in a case according to pattern 3 in skip determination by information on a quantization parameter, as a first embodiment of a skip determining method of the deblocking filter skip determining unit in FIG. 4;
FIG. 9 is a flowchart showing a processing example in a case according to pattern 2 in skip determination by information on a quantization parameter, as a second embodiment of the skip determining method of the deblocking filter skip determining unit in FIG. 4;
FIG. 10 is a flowchart showing a processing example in a case according to pattern 1 of a third method in skip determination by information on an encoding mode, as a third embodiment of the skip determining method of the deblocking filter skip determining unit in FIG. 4;
FIG. 11 is a flowchart showing a processing example in a case according to pattern 2 of the third method in skip determination by information on an encoding mode, as a fourth embodiment of the skip determining method of the deblocking filter skip determining unit in FIG. 4;
FIG. 12 is a flowchart showing a processing example in a case according to pattern 1 of a fourth method in skip determination by information on an encoding mode, as a fifth embodiment of the skip determining method of the deblocking filter skip determining unit in FIG. 4;
FIG. 13 is a flowchart showing a processing example in a case according to pattern 2 (or 3) of the fourth method in skip determination by information on an encoding mode, as a sixth embodiment of the skip determining method of the deblocking filter skip determining unit in FIG. 4;
FIG. 14 is a flowchart showing a processing example in a case according to pattern 1 of a first method in skip determination by information on an encoding mode, as a seventh embodiment of the skip determining method of the deblocking filter skip determining unit in FIG. 4;
FIG. 15 is a flowchart showing a processing example in a case according to pattern 2 of the first method in skip determination by information on an encoding mode, as an eighth embodiment of the skip determining method of the deblocking filter skip determining unit in FIG. 4;
FIG. 16 is a flowchart showing a processing example in a case according to pattern 1 of a second method in skip determination by information on an encoding mode, as a ninth embodiment of the skip determining method of the deblocking filter skip determining unit in FIG. 4; and
FIG. 17 is a flowchart showing a processing example in a case according to pattern 3 (or 2) of the second method in skip determination by information on an encoding mode, as a tenth embodiment of the skip determining method of the deblocking filter skip determining unit in FIG. 4.