This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2004-351713, filed Dec. 3, 2004, the entire contents of which are incorporated herein by reference.
1. Field
The present invention relates to a video image encoding technique suitable to a personal computer having a television function of receiving/viewing a television broadcast.
2. Description of the Related Art
With an advance of the latest image processing technique, a personal computer equipped with a TV function of receiving/viewing a television broadcast has come to wise use. The TV function displays broadcasting program data in real time, and in addition, has a so-called recording function in general. The recording function records the program data in a built-in magnetic hard disk drive (HDD) so that user can appreciate it in his favorite time. For this reason, various proposals to enhance the quality in encoding the program data have been made (e.g., see JPN. PAT. APPLN. KOKAI Publications No. 11-266454 and No. 2004-134914).
This kind of personal computers, that is, electronic apparatus receiving and displaying broadcasted program data can not display the entire image of the program data on a display device. For this reason, it is general that the peripheral image is inevitably given outside a display area. Therefore, in fact, the peripheral image is invisible to viewers without being displayed in encoding. As a result, the peripheral image is given as noise data having a possibility of reducing the image quality of the center image given in the display area.
However, no any processing to the image outside the display area has been conventionally made to improve the image quality in the display area in encoding.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate presently preferred embodiments of the invention, and together with the general description given above and the detailed description of the embodiments given below, serve to explain the principles of the invention.
Embodiments of the present will be described below with reference to the accompanying drawings.
The configuration of an information processing apparatus according to one embodiment of the present invention will be explained below with reference to
The display unit 12 is attached to the computer body 11 to be freely rotatable over a range between an opening position and a closed position. The computer body 11 has a thin box-shaped case, and the upper surface is provided with power button 14 for powering on/off the computer 10, input control panel 15, touch pad 16, and speakers 18A; 18B.
The input control panel 15 is an input device for inputting an event corresponding to the pressed button, and has several buttons for activating several functions. The button group includes a TV activate button 15A. The TV activate button 15A is a button for activating a TV function of reproducing and recording TV broadcast program data. User presses the button 15A, and thereby, a TV application program for performing the TV function is activated.
A dedicated sub-operating system for processing AV (audio-video) data is installed in the computer 10 in addition to a general main operating system. The foregoing TV application program is a program operating on the sub-operating system.
When the user presses the power button 14, the main operating system is booted up. On the other hand, when the user presses the TV activate button 15A, the sub-operating system is booted up, and not the main operating system. Then, the TV application program is automatically executed. The sub-operating system only has a minimum function for performing an AV function. For this reason, time taken to boot up the sub-operating system is considerably shorter than time taken to boot up the main operating system. Therefore, user only presses the TV activate button to make TV viewing/recording immediately.
The computer 10 is capable of receiving and reproducing terrestrial analog TV broadcasts. The right side of the computer body 11 is provided with an antenna terminal 19 for terrestrial analog TV broadcasts.
The system configuration of the computer 10 will be explained below with reference to
As shown in
The CPU 101 is a processor for controlling the operation of the computer 10. The CPU 101 executes various application programs such as main operating system/sub-operating system and TV application program 200. Moreover, the CPU 101 executes system basic input output system (BIOS) stored in the BIOS-ROM 108. The system BIOS is a program for controlling hardware.
The NB 102 functions as a bridge device for making a connection between a local bus of the CPU 101 and the SB 104. The NB 102 has a built-in memory controller for controlling an access to the system memory 103. Moreover, the NB 102 has a function of making communications with the graphics controller 105 via accelerated graphics port (AGP) bus and serial bus confirmable to PCI Express.
The graphics controller 105 is a display controller for controlling the LCD 17 used as a display monitor of the computer 10. Video data generated by the graphics controller 105 is supplied to the video enhancer 107 to subject the video data to video processing (quality control processing) for achieve high definition. The high definition video data made by the video enhancer 107 is supplied to the LCD 17. Moreover, high definition video data made by the video enhancer 107 is sent to an external TV monitor via a connector included in the computer body 11.
The SB 104 controls various devices on a low pin count (LPC) bus and on a peripheral component interconnect (PCI) bus. The SB 104 further has a built-in integrated drive electronics (IDE) controller for controlling HDD 110 and DVDD 111. Moreover, the SB 104 has a function of making communications with the sound controller 106.
The sound controller 106 is a sound generator device. The sound controller 106 outputs reproducing audio data to speakers 18A, 18B, and external 5.1-channel speaker system connected via a connector.
The card controller 112 controls cards such as PC card and secure digital (SD) card. The wireless LAN controller 113 is a wireless communication device, which makes wireless communications of the IEEE 802.11 standard. The IEEE 1394 controller 114 makes communications with external apparatus via a serial bus of the IEEE 1394 standard. The EC 115 is a single-chip microcomputer, which is integrated with embedded controller for power management and keyboard controller for controlling keyboard 13 and touch pad 16. The EC 115 has a function of powering on/off the computer 10 in accordance with the user's operation of the power button 14. Moreover, the EC 115 powers on the computer 10 in accordance with the user's operation of the TV activete button 15A.
The analog TV tuner 116 is a tuner module, which receives analog broadcast programs. The analog TV tuner 116 receives a specific channel broadcast signal from TV broadcast signals input via the antenna terminal 19. Broadcast program data received by the analog TV tuner 116 is subjected to the following processing under the control of the TV application program 200. Specifically, the data is supplied to the video enhancer 107 to be displayed on the LCD 17. Moreover, the data is transferred to the system memory 103 via the PCI bus to be encoded by the TV application program, and thereafter, recorded on the HDD 110.
In other words, the computer 10 encodes the broadcast program data using the TV application program 200 like software. Moreover, the computer 10 uses the TV application program 200 to carry out image processing for improving the image quality of the encoded broadcast program data as a preprocess.
In order to achieve the foregoing painting, the BIOS-ROM 108 of the computer 10 is stored with screen size information showing a display area size. The preprocessor 201 acquires the screen size information stored in the BIOS-ROM 108 to calculate a painting range of the broadcast program data image output from the analog TV tuner 116. Moreover, the BIOS-ROM 108 is stored with MPEG macro block size information, which is a processing unit (hereinafter, macro block size) when the MPEG encoder 202 executes encoding. When calculating the painting range, the preprocessor 201 takes the macro block size into consideration. The principle of calculating the painting range based on the macro block size will be explained below with reference to
In
In this case, the preprocessor 201 does not calculate the entire portion outside the display area shown by the broken line as a painting range, but calculates the painting range in the following manner. Specifically, considering processing efficiency of the MPEG encoder 202, the preprocessor 201 gradually broadens the painting range by macro block size over a range from the image end shown by the solid line to the display area shown by the broken line. As seen from
The preprocessor 201 acquires screen size information and MPEG macro block size information from the BIOS-ROM 108 (step S1, S2). Based on the acquired screen size information and MPEG macro block size information, the preprocessor 201 calculates a painting range (step S3). In this case, the preprocessor 201 calculates the painting range with respect to an image outside the display area to improve the quality of the image existing in the display area.
Then, the preprocessor 201 successively inputs image data output from the analog TV tuner 116 (step S4). Thereafter, the preprocessor 201 executes painting of the calculated range as an encoding preprocess (step S5). The preprocess by the preprocessor 201 is carried out, and thereafter, the MPEG encoder 202 encodes the image data (step S6). The procedures from step S4 to step S6 are repeated as long as image data input from the analog TV tuner 116 continues (NO of step S7). If image data input from the analog TV tuner 116 ends (YES of step S7), the procedure ends.
The computer 10 executes image processing with respect to image data outside the display area as the encoding preprocess. By doing so, it is possible to improve the image quality of the image data in the display area.
In the foregoing embodiment, painting making zero the luminance of image data is given as the preprocess; however, the present invention is not limited to the preceding method. For example, the following modification is readily made; specifically, color data is converted into a specific value to be unified to predetermined color. Moreover, even if the macro block size has not been considered, it is possible to sufficiently achieve the original purpose, that is, improvement of the image quality in the display area. In addition, the painting range may be preset without calculating it.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2004-351713 | Dec 2004 | JP | national |