This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2018-215516 filed Nov. 16, 2018.
The present disclosure relates to an information processing device and a non-transitory computer readable medium.
Devices that form three-dimensional objects, such as 3D printers, are becoming more widespread. Regarding the data formats used with 3D printers, formats that describe a 3D shape with a polygon mesh representation, like the Standard Triangulated Language (STL) format and the 3DS format for example, are being used widely.
Also, the applicants have proposed a data format called “FAV” that describes a 3D model to be formed by a 3D printer with a voxel representation (see Tomonari TAKAHASHI, Masahiko FUJII, “The Next-Generation 3D Printing Data Format FAV, Which Enables an Unprecedented Wide Range of Expression”, [online], Fuji Xerox Technical Report, No. 26, 2017, [retrieved Sep. 21, 2018], Internet <URL: https://www.fujixerox.co.jp/company/technical/tr/2017/pdf/s_07.pdf>). In the FAV format, voxels are given various attributes such as color, material, link strength with other voxels, and the like, thereby enabling the expression of various characteristics besides the 3D shape.
The method of generating a topology for a material disclosed in Japanese Unexamined Patent Application Publication No. 2013-65326 includes: a step of parameterizing one or multiple material characteristics of a material using a computer, in which the parameterizing step includes a step of parameterizing one or multiple strength-related material characteristics including yield strength, breaking strength, and hardness by limiting a repeating microstructure expressing the material, and a step of executing one or multiple virtual tests in which real application of at least one field to the material is simulated using different microstructures in each virtual test; and a step of simulating generating a topology for the material on the basis of the parameterization.
When considering using object data in a voxel format with a variety of different types of forming devices, a situation may occur in which the size of the voxels of the object data and the size of the voxels of the forming device do not match. To form object data with a forming device, it may be necessary to convert the resolution of the object data to data in the voxel units of the forming device. Although it may be necessary to perform this resolution conversion such that any changes in the physical properties of each part of the object are minimized, a method for this purpose has not been proposed in the related art.
Aspects of non-limiting embodiments of the present disclosure relate to a device for converting object data expressing an object in a voxel format into formable data that is usable by a forming device that uses voxels of a different size.
Aspects of certain non-limiting embodiments of the present disclosure address the features discussed above and/or other features not described above. However, aspects of the non-limiting embodiments are not required to address the above features, and aspects of the non-limiting embodiments of the present disclosure may not address features described above.
According to an aspect of the present disclosure, there is provided an information processing device including: a storage unit that stores, for each of a formative cell configured as a collection of multiple formative voxels that are a unit of formation of a forming device, specification information enabling a specification of which of multiple materials is used to form each formative voxel included in the formative cell, and physical properties of the formative cell; an acquisition unit that acquires object data expressing a three-dimensional object as a collection of data voxels; and a conversion unit that replaces the data voxels in the object data, or data cells containing multiple data voxels, with the formative cells having physical properties that are substantially the same as physical properties of the data voxels or the data cells, and thereby converts the object data into formable data that is a collection of the formative voxels.
An exemplary embodiment of the present disclosure will be described in detail based on the following figures, wherein:
<Unit Cell>
In a 3D printer that forms objects by an inkjet method, an object is formed by propelling material (for example, resin) in a molten state onto a target site forming a shape and radiating curing energy, such as ultraviolet rays for example, to cure the material. Formation is performed in units of layers, and every time the formation of one layer is completed, the formation of the next layer is performed. By propelling materials with different physical properties (mechanical properties such as strength and Young's modulus, for example) from multiple nozzles, it is possible to form an object with multiple materials. By using a model that represents a thing to be formed in units of voxels and designating for each voxel the material forming that voxel (for example, by assigning an identifier of the material to a material attribute of the voxel), the forming device becomes able to form an object by propelling material individually for each voxel in accordance with the model. In the following, the thing to be formed will be called the object, and the model representing the object as a collection of voxels will be called the object data. In the object data, by designating a material for each voxel, it becomes possible to give individual parts of the object separately desired mechanical properties.
At this point, it takes some time for the material propelled and adhered to a target site (in other words, a voxel position) to cure. During this time, the material at the site mixes somewhat with the material adhered to neighboring sites in the same layer. This does not pose a problem if the adjacent materials are the same, but if the materials are different from each other, the physical properties of the mixed part become different from the original physical properties of each of the materials.
Also, since the format of each individual layer takes some time, at the point in time when a material is propelled onto a target site from a nozzle, the material of the voxel in the layer below that material has cured enough such that mixing does not occur. However, how much the cured material and the material propelled on top adhere to each other varies depending on the combination of the top and bottom materials.
In addition, the material propelled and adhered to a target site is irradiated with curing energy such as ultraviolet rays, thereby promoting the curing of the material. At this point, the curing energy emitted from a radiation source is radiated from above the layer of material, but attenuates as the energy proceeds deeper from the surface of the material, and the curing action also attenuates accordingly. For this reason, the extent of cure is different depending on the depth, even inside a single formed voxel.
For example, in the case of performing a structural analysis of an object on the basis of object data in which a material is designated for each voxel, given the various circumstances described above, if one assumes that the individual voxels are formed uniformly from each corresponding material, an appropriate analysis result may not be obtained. In contrast, if a structural analysis model is constructed to account for the mixing of materials between adjacent voxels, the degree of adhesion between layer, and the extent of cure according to the depth inside a layer described above for the individual voxels of the object model, an accurate analysis may be performed. However, since the structural analysis model becomes complex, the analysis ends up taking a long time.
Also, in the case in which the object data and the forming device have different resolutions, or in other words, the voxels of the object data and the voxels of the forming device have different sizes, the object expressed by the object data may not be formed completely correctly by the forming device in some cases. Particularly, in the case in which the resolution of the object data is finer than the resolution of the forming device, the parts where the materials of individual voxels are different in the object data will not be reproduced correctly by the forming device in principle. Note that in the forming device, a “voxel” refers to the smallest unit solid in the formation by the forming device.
However, if a cluster containing multiple voxels close to each other is treated as a unit, it is possible to reproduce, with a forming device, voxels or voxel clusters having physical properties (for example, mechanical properties) that are substantially the same as the physical properties of that cluster in the object data. In other words, the physical properties of a cluster are largely determined from the material of each voxel included in the cluster, the mixing between these voxels, the adhesion between layers, and the depth-direction distribution of the extent of cure in a layer. In the case of computing the physical properties of a voxel cluster in object data and reproducing the voxel cluster with the voxels of a forming device, if the materials of the individual voxels are decided such that the physical properties are substantially the same as the physical properties of the voxel cluster, an object reproducing the physical properties of the object data in units of voxel clusters is formed.
For several reasons like the above, the exemplary embodiment introduces a “unit cell” containing multiple voxels close to each other. A unit cell is a cube or a rectangular cuboid containing multiple voxels adjacent to each other. For example, consider the unit cell 20 illustrated in
Additionally, a larger unit cell may also be used, such as a unit cell containing 3×3×3=27 voxels adjacent to each other, or a unit cell containing 4×4×4=64 voxels. However, as the voxels included in the unit cell become more numerous, the combinations of materials of the voxels forming the unit cell become more numerous, which causes the calculation time for computing the physical properties for each combination to become much longer.
In the exemplary embodiment, for example, by treating a unit cell as the unit of structural analysis and replacing unit cells of the object data with unit cells of the forming device with substantially the same physical properties, the above issues are addressed.
<Physical Properties of Unit Cell>
In the technique of the present exemplary embodiment, to utilize a unit cell, the physical properties of the unit cell are found by experiment, calculated by simulation, or a combination of the two. The physical properties of a unit cell are computed from the combination of the following three elements.
(1) Mixing of Material Between Adjacent Voxels in the Same Layer
Consider the two voxels 10a and 10b adjacent to each other in the same layer illustrated by example in
In this case, as illustrated in
To compute the physical properties of two adjacent voxels that include such mixing, as illustrated in
For example, in the case of experiment, the mixed region is specified by adjacently propelling different materials at the same time for example at the resolution of a forming device (for example, a 3D printer) that forms a three-dimensional object, and observing the microstructure of the formed result with an electron microscope or the like. Also, the strength and other physical properties of the mixed region may be measured. In the case of numerical simulation, the mixed region is specified by constructing an analytical model of when different materials are formed adjacently at a voxel size corresponding to the resolution of the forming device, and by analyzing the analytical model using multiphase flow analysis techniques such as the volume of fluid (VOF) method and the moving particle semi-implicit (MPS) method. Subsequently, from information about the mixed region specified in this way, the width of the mixed region 14 in the case of creating a model like in
In the illustrated example, the model is provided with a single mixed region 34 between the original region 32a of only the material 12a and the original region 32b of only the material 12b, but multiple mixed regions having different mix ratios may also be provided in the arrangement direction of the voxels 10a and 10b.
For example, the two voxels 10 and 10b may be considered to form a single cell, and if the structural analysis model 30 is used to perform homogenization analysis (also called the homogenization method), physical properties may be calculated for when the cell is treated as containing a single material. In homogenization analysis, by periodically disposing a structural analysis model while setting boundary conditions, and performing a numerical simulation on the periodically disposed structural analysis models, the physical properties for the case in which the structure indicated by the models is formed from a single material (hereinafter also called the “equivalent material physical properties”) are computed.
In the case in which the materials of the adjacent voxels 10a and 10b are the same, the physical properties do not change even if the materials mix with each other. Consequently, it is sufficient to generate the physical properties of the structural analysis model 30 that accounts for the mixing of materials or the homogenization analysis result of the model for each combination of two different materials.
(2) Adhesion of Adjacent Voxels Between Layers
Adhesion information about voxels adjacent to each other between two adjacent layers is found by experiment or numerical simulation.
By experiment, for example, a sample is formed for each combination of two materials by propelling and curing droplets of material in a first layer, and then propelling and curing droplets of material in a second layer on top of the first layer. Subsequently, by running mechanical test on the samples, adhesiveness evaluation indexes such as one or both of the peel strength and the shear strength between layers are measured.
By numerical simulation, the adhesive state between a cured material in a first layer and a cured material in a second layer deposited on top of the first layer is analyzed by a technique such as molecular dynamics or nanosimulation, and adhesiveness evaluation indexes are computed from the analysis result.
In the analysis of the mixing of materials between adjacent voxels in the same layer described above, only combination of different materials are investigated, but for the indexes of the adhesive state of adjacent voxels between layers, voxels of the same material are also investigated.
(3) Differences in the Extent of Cure According to Depth
As described above, the extent of cure of a material is different depending on the depth from the surface hit by curing energy such as ultraviolet rays (that is, the distance in the direction of travel of the curing energy). Accordingly, by experiment or numerical simulation for each material, as illustrated in
For example, by experiment, the relationship between the amount of curing energy and the extent of cure (also called the reaction rate) is measured for each material by infrared spectrum measurement using Fourier-transform infrared spectroscopy (FT-IR) or the like. Since the amount of curing energy (for example, the intensity of ultraviolet rays) at each depth from the surface inside a voxel may computed according to the Beer-Lambert law, the extent of cure at each depth may be computed from the measurement result and the amount of energy at each depth.
The physical properties of a unit cell are calculated using a structural analysis model indicating a state of bonding between the multiple voxels forming the unit cell. The three elements described above are reflected in the structural analysis model.
For example, consider the case of a unit cell containing 2×2×2 voxels illustrated by example in
By performing homogenization analysis on the structural analysis model of the unit cell constructed in this way, the equivalent material physical properties of the unit cell are calculated.
Note that as described above, the size of the unit cell is not limited to 2×2×2 and may also be a larger size such as 3×3×3 or 5×5×5 for example, but if the size is increased in this way, the structural analysis model of the unit cell becomes complex, which increases the amount of calculation (for example, the calculation time) taken by structural analysis.
<Higher-Order Cell>
If voxel groups are replaced with the 2×2×2 unit cells illustrated by example above, the number of component elements in the object is reduced by approximately ⅛. However, this still may be too many component elements in some cases.
On the other hand, if the size of the unit cell is increased to 5×5×5 or 8×8×8 or the like for example, the number of component elements in the object may be reduced, but as described above, increasing the size of the unit cell increases the amount of calculation taken to calculate the physical properties of the unit cell.
Accordingly, a “higher-order cell” is introduced. A higher-order cell is a cell containing multiple adjacent unit cells. For example, let a cell containing 2×2×2 adjacent unit cells be designated a level 1 (in other words, a first-order) cell. The unit cells are level 0 (in other words, zeroth-order) cells so to speak. By a similar rule, higher-level cells may be introduced recursively, such as a level 2 cell containing 2×2×2 adjacent level 1 cells, and a level 3 cell containing 2×2×2 adjacent level 2 cells.
The physical properties of a level 1 cell are computed by using a structural analysis model constructed from the unit cell group included therein. For each unit cell in the model, the equivalent material physical properties of each unit cell are set. Subsequently, by performing homogenization analysis on the structural analysis model, the equivalent material physical properties of the level 1 cell are computed. Similarly, the physical properties of a level k cell (where k is an integer equal to or greater than 1) are calculated by performing homogenization analysis using a structural analysis model constructed from the level (k−1) cell group included therein.
Note that an upper limit on the cell levels to apply to object data is set within a range in which the cells are treated as a microstructure with respect to the size of the object expressed by the object data, or in other words, within a range in which sufficiently numerous cells (that is, a number equal to or greater than a predetermined threshold value) may be disposed repeatedly in a region corresponding to the object.
<Resolution Conversion>
In the object data processing device 100, a basic data storage unit 102 stores basic data that acts as the material for computing the physical properties of the unit cell. The stored basic data includes data about the three elements described earlier (mixing of material in the same layer, adhesion between layers, and curing information according to depth). Examples of basic data for the three elements are illustrated in
In the basic data storage unit 102, information found by experiment or the like for various combinations of materials used by various forming devices 200 is stored. Note that since the information about the three elements described above may also vary depending on the size of the voxels, in such cases, information about these three elements may be found by experiment or the like for each of several different size ranges, and registered in the basic data storage unit 102.
The description will now return to
From the information about the materials used by the forming device 200 input from the forming device information input unit 104 and the basic data stored in the basic data storage unit 102, the cell information calculation unit 106 calculates information such as the physical properties of unit cells formable with the materials used by the forming device 200 and higher-order cells configurable from these units cells. In other words, for each of the unit cells formable from these materials, a structural analysis model of the unit cell is constructed using the information about the three elements described above, and by analysis using the model, the physical properties of these individual unit cells (that is, level 1 cells) are computed. Note that in the case in which the basic data storage unit 102 holds the information about the three elements described above for multiple size ranges of voxels, the cell information calculation unit 106 calculates the physical properties of unit cells using the information about the three elements in a size range corresponding to the resolution of the forming device 200.
Also, on the basis of the information about the unit cells computed in this way, the cell information calculation unit 106 calculates the physical properties of all level 2 cells configurable by combining these units cells as described above. Also, from the information about the level 2 cells, the physical properties of all configurable level 3 cells are calculated. With this arrangement, the physical properties of higher-order cells are calculated for the levels which have a possibility of being used. The calculated information about the unit cells and higher-order cells is saved in a cell information database (DB) 108.
In
In the foregoing, the cell information calculation unit 106 uses information inside the basic data storage unit 102 to compute information about the formative cells of each level dynamically from information about the forming device 200 that acts as the target, but this is merely one example. Instead, information about the formative cells may be computed in advance for each model of the forming device 200, and this information may be registered in the cell information DB 108 in association with a model ID.
Returning to the description of
The cell replacement unit 112 replaces the voxels of the object data or unit cells or higher-order cells containing these voxels (in other words, data cells) with formative cells. With this arrangement, the object data becomes a representation of an object as a collection of formative cells.
The resolution conversion unit 114 converts the individual formative cells included in the object data into a collection of voxels of the forming device 200. With this arrangement, the object data becomes data in the resolution of the forming device 200. The result of the conversion by the resolution conversion unit 114 is input into the forming device 200.
The above describes one example of the configuration of the object data processing device 100. Next, an example of the processes performed by this device will be described.
Next,
In this procedure, the cell replacement unit 112 first acquires information about the size of the formative voxels of the forming device 200 from the forming device information input unit 104 (S102). Subsequently, sizes of the data voxels and the formative voxels are compared (S104). In the case in which the data voxels are at least as large as the formative voxels, the cell replacement unit 112 computes a level k (where k is an integer equal to or greater than 1) at which the formative cells become the same size as the data voxels from among the formative cells of each level configured from the formative voxels (S106). Also, to simplify the description at this point, the level of the data voxels which is originally level 0 is taken to be level k (S108).
Next, for each level k data cell (in the first process loop, the data voxels themselves) included in the object data, the cell replacement unit 112 searches the cell information DB 108 for a level k formative cell having the same physical properties as the level k data cell (S110). The cell replacement unit 112 divides the object data into individual pieces the size of the level k data cell, and performs the process in S110 for each level k data cell obtained thereby.
At this point, in the case in which a material name is set for each data voxel of the object data, it is sufficient to calculate the physical properties of the level k data cell by a method similar to the case of the unit cells and the higher-order cells of each level for the formative cells described above by the cell information calculation unit 106. In this case, if basic data about the three elements such as the in-layer mix information (see
In S110, in the case in which a level k formative cell having completely the same physical properties as the level k data cell does not exist, a search is performed to find a level k formative cell having the closest physical properties within an allowable range as a formative cell with substantially the same physical properties. For example, an allowable range is determined for individual physical properties such as strength, Young's modulus, and Poisson's ratio, level k formative cells having physical properties within the allowable ranges from the physical properties of the level k data cell for all of the physical properties are extracted, and the cell having physical properties closest to the physical properties of the level k data cell from among the extracted cells is specified. Note that in the case in which a level k formative cell having physical properties within the allowable range from the physical properties of the level k data cell is not found, the level k data cell may not be replaced with a formative cell.
Next, the cell replacement unit 112 determines whether or not level k formative cells having substantially the same physical properties have been found in S110 for all level k data cells included in the object data (S112). In the case in which the determination result is No, the object data is divided into individual pieces the size of the level (k+1) data cell (in other words, level (k+1) data cells are configured from adjacent level k data cell groups inside the object), and the physical properties of each level (k+1) data cell are calculated by the cell information calculation unit 106 (S114). Subsequently, the level number k is incremented by 1 (S116), and the flow returns to the process of S110.
In the case in which the determination result of S112 is Yes, the cell replacement unit 112 replaces each level k data cell with each level k formative cell found to have substantially the same physical properties (S118). In other words, the ID of the replacing level k formative cell is associated with each level k data cell included in the object data. The process of the cell replacement unit 112 then ends.
In the case in which the determination result of S104 is No, as illustrated in
Next, for each level k data cell included in the object data, the cell replacement unit 112 searches the cell information DB 108 for a level k formative cell having substantially the same physical properties as the level k data cell (S128). It is determined whether or not level k formative cells having substantially the same physical properties have been found in S128 for all level k data cells included in the object data (S130). In the case in which the determination result is No, the object data is divided into individual pieces the size of the level (k+1) data cell, and the physical properties of each level (k+1) data cell are calculated by the cell information calculation unit 106 (S132). Subsequently, the level number k is incremented by 1 (S134), and the flow returns to the process of S128.
In the case in which the determination result of S130 is Yes, the cell replacement unit 112 replaces each level k data cell with each level k formative cell found to have substantially the same physical properties (S136). The process of the cell replacement unit 112 then ends.
By the replacement in S136, each part of the object data originally containing data voxels is replaced with formative cells configured from formative voxels having substantially the same physical properties.
In S106 of
Namely, in this example, the size of the least common multiple of the side lengths of the data voxels and the formative voxels is computed. Subsequently, for each of the data voxels and the formative voxels, unit cells having the size of the least common multiple are configured. For example, in the case in which the ratio of the side lengths of the data voxels and the formative voxels is 3:2, a length of 6 relative to a side length of 1 for the formative voxels is computed as the least common multiple. In this case, for the data voxels, unit cells are configured as a 2×2×2 arrangement of voxels, while for the formative voxels, unit cells are configured as a 3×3×3 arrangement of voxels. Note that for higher-order cells, both the data cells and the formative cells are configured according to the same rule, such as configuring the level (k+1) cells as a 2×2×2 arrangement of level k cells for example. In this way, instead of S106 and S120, it is sufficient to perform a process of causing the sizes of the unit cells for the data voxels and the formative voxels to agree with each other. In this case, the cell information calculation unit 106 calculates the physical properties for each of the data and formative unit cells, and also calculates the physical properties for higher-order cells. Note that basic data (particularly in-layer mix information (
Next, as one example of the application process (that is, S200 of
In the procedure of
Next, the resolution conversion unit 114 determines whether or not the decomposition of S202 has reached level 0, or in other words the level of the formative voxels (S204), and if level 0 has not been reached, k is decreased by 1 (S206), and the flow returns to the process of S202. In the case in which the determination result of S204 is Yes, the object data decomposed (replaced with lower-order cells) by S202 has become a representation of an object as a collection of formative voxels. In other words, the object data is a representation of an object in the resolution of the forming device 200, which is called “formable data”. The resolution conversion unit 114 outputs the formable data to the forming device 200 (S208). The forming device 200 forms the object in accordance with the formable data.
<Increasing Varieties of Physical Properties>
In the case in which the forming device 200 forms an object using m types of materials (where m is an integer equal to or greater than 2) with different physical properties for example, when considered simply, only m varieties of physical properties may be realized. At this point, in the case in which object data containing voxel groups having n varieties of physical properties which are more than m is input, according to the simple thinking described above, the object may not be formable. In this example, there is proposed a data conversion technique for making it possible to accurately form an object expressed by object data, even in the case in which the varieties of physical properties of each part of the object data is greater than the varieties of physical properties of the group of materials used by the forming device 200.
The device configuration of the object data processing device 100 for this example may be similar to that illustrated in
Namely, the cell replacement unit 112 first initializes a control variable k to 1 (S140). Next, the cell replacement unit 112 divides the object data into individual level k data cells (S142), and causes the cell information calculation unit 106 to calculate the physical properties of each level k data cell of the division result. It is sufficient to perform this calculation by a method similar to the method of calculating the physical properties in S114 of
Next, the cell replacement unit 112 reads out the physical properties of each level k formative cell from the cell information DB 108 (S144). At this point, a level k formative cell is a formative cell of the same size as a level k data cell. In the case in which the formative voxels and the data voxels are different sizes, a level of formative cells stored in the cell information DB 108 is substituted such that formative cells of the same size as the level k data cells are treated as level k.
Subsequently, for all level k data cells included in the object data, the cell replacement unit 112 determines whether or not a level k formative cell having substantially the same physical properties as the physical properties of the data cell exists (S146). In the case in which the determination result is No, the physical properties of each part of the object data may not be expressed successfully with combinations of the materials of the forming device 200 at the granularity of level k. Accordingly, the cell replacement unit 112 raises the level by 1 (that is, increments k by 1) (S147), and performs the processes of S142 to S146 again. Since raising the level causes the size of the formative cells to become larger, the combinations of materials forming the formative cells increase. With this arrangement, since the variations of the physical properties of the formative cells increase, the probability of finding a formative cell having physical properties that are substantially the same as the physical properties of each part of the object data rises.
In the case in which the process loop of S142 to S147 is repeated in this way and the determination of S146 becomes Yes, the cell replacement unit 112 replaces each level k data cell of the object data with a level k formative cell having substantially the same physical properties (S148). With this arrangement, object data representing an object as a collection of level k formative cells is obtained. This object data is input into the resolution conversion unit 114.
The resolution conversion unit 114 converts this object data into formable data in units of formative voxels according to the process of
<Structural Analysis of Object>
Next, to reduce the load of the structural analysis of object data, an example of replacing voxel groups included in the object data with unit cells or higher-order cells will be described.
The cell replacement unit 112a, by replacing voxel groups in object data input from the object data input unit 110 with unit cells or higher-order cells, greatly reduces the number of elements (that is, data cells) in the object data compared to the case of voxel units. If voxel units are used, the component elements in the object data become extremely numerous, the assignment of materials in units of component elements and the combinations of arrangements of these elements become massive, and the structural analysis model increases in scale. Accordingly, in this example, by constructing a structural analysis model after first converting the object data from units of voxels to larger-sized units of unit cells or higher-order cells, the scale of the structural analysis model is moderated.
An example of a processing procedure executed by the cell replacement unit 112a is illustrated in
In this process, the cell replacement unit 112a divides the object data to process into individual regions of uniform physical properties (S150). For example, in the case in which physical properties are set for each data voxel of the object data, the object data is divided into multiple regions having the same physical properties. In this case, the individual regions are collections of voxels having completely the same physical properties, for example. In addition, a criterion that the physical properties be completely the same may also not be not set in this way, and a collection of voxels whose physical properties are considered to be the same with a predetermined variation (for example, variance value) or less may also be treated as a single region. Also, in the case in which a material is set for each voxel of the object data, a contiguous part containing voxels of the same material may be treated as a single region, for example. Also, a range in which the same combination of multiple materials periodically repeats without being limited to the same material may also be treated as a single region. In this case, it is sufficient to treat repeating combination of materials as a single unit and compute the physical properties of the region by the same method as when computing the physical properties of unit cells. These regions are used in a determination of whether or not the level k cells satisfy the criteria of a microstructure described later.
Next, the cell replacement unit 112a initializes the control variable k to 1 (S152), and for each region of the object data, computes the number of level k data cells (in the first loop, equal to the unit cells) to fill the region, and determines whether or not the number is at least a threshold value (S154). This determination determines whether or not the level k data cells are of a size considered to be a microstructure for the individual regions (in other words, the cells are considered to be sufficiently small enough with respect to the region that it is safe to ignore the internal structure of the cells themselves). If a sufficiently large number of level k data cells may be repeatedly arranged inside a region, the cells are considered to be a microstructure for that region. If the level k data cells are considered to be a microstructure for all regions included in the object data, then converting the object data from a representation in units of voxels to a representation in units of level k data cells will not pose a large problem in terms of structural analysis. The number of level k data cells to fill a region that is subjected to the determination of S154 may be the total number of level k data cells arranged in the three-dimensional region. Additionally, the number may also be a representative value computed from the numbers of level k data cells that are arrangeable in each of the three directions of the length, width, and depth of the region. For the representative value, for example, representative values (such as average values, maximum values, or minimum values for example) of the number of arrangeable cells in each direction may be averaged for the three directions and used, or a representative value other than an average value, such as the maximum value among the representative values for each of the directions, may be used.
In the case in which the determination result of S154 is Yes, the cell replacement unit 112a increments k by 1 (S156), and makes the determination of S154 again. In other words, in this case, it is determined whether or not the data cells one level larger are considered to be a microstructure for the object.
By repeating the loop of S154 and S156, the highest level of data cells considered to be a microstructure for the object is specified. In other words, in the case in which the determination result of S154 becomes No, since the level k data cells at that point are not considered to be a microstructure for the object data, the previous level (k−1) is the highest level that is considered to be a microstructure. The cell replacement unit 112a converts the object data to data in units of level (k−1) data cells (S158). In other words, each region of the object data is replaced by level (k−1) data cells having physical properties that are substantially the same as that region. Since the level (k−1) data cells contain sufficiently numerous data voxels and have many variations of expressible physical properties, level (k−1) data cells able to express the physical properties of each region are normally found. However, as a precaution, the cell information calculation unit 106 may calculate the variations of physical properties expressible by the level (k−1) data cells, and check whether or not physical properties substantially the same as the physical properties of each region are included among the variations. Additionally, if there is a region having physical properties not expressible by the variations, the replacement process of S158 may be stopped, and the user may be notified.
The cell replacement unit 112a outputs the object data resulting from the replacement in S158 to the model configuration unit 116.
The model configuration unit 116 converts the object data received from the cell replacement unit 112a into a structural analysis model as one application process (that is, S200 of
Subsequently, the constructed structural analysis model is output to an analyzing device 300. The analyzing device 300 performs structural analysis calculations using the structural analysis model. The structural analysis model constructed from data cell groups has fewer structural elements than a structural analysis model constructed from the object data in units of voxels, and furthermore, fine-grained elements such as the mixing of materials between adjacent voxels do not have to be analyzed.
In the procedure of
Also, in the procedure of
As yet another example, the size of the data cells for structural analysis may also be decided with reference to the size of a shape element included in the object. In other words, in some cases, the shape of an object includes small shape elements such as projections, and a minimum value of the size of such individual shape elements may be treated as an upper limit on the size of the data cells. With this arrangement, the shape of the object is expressed in units of data cells down to the smallest shape element of the object. In one example, the cell replacement unit 112a may replace each region of the object data with a collection of level k data cells of a size corresponding to the size of the minimum value. Also, in the procedure of
Also, as yet another example of a process by the cell replacement unit 112a,
In this process, similarly to S150 in the procedure of
Next, the cell replacement unit 112a initializes a control variable n denoting the region to 1 (S162). The subsequent processes from S163 to S168 are executed on the region assigned the number 1. In the following the region assigned the number n will be designated the region n.
In this process, the cell replacement unit 112a initializes a control variable k to 1 (S163), and for the region n of the object data, searches for a level k cell having physical properties considered to be the same as the physical properties of the region n (S164). The level k cells searched at this point may be level k formative cells or level k data cells. In the case of using level k formative cells as the level k cells at this point, in S164, it is sufficient to reference a database (that is, the cell information DB 108 of
In the case in which the determination result of S164 is Yes, the cell replacement unit 112a increments k by 1 (S165), treats the level k cells of the next larger level as the cells to process, and performs the determination of S164 again.
In the case in which the determination result of S164 becomes Yes as a result of repeating the loop of S164 and S165, the level k cells found at that point are cells of the smallest size having physical properties considered to be the same as the region n. The cell replacement unit 112a replaces the group of voxels inside the region with the level k cells found in S164 (S166).
Next, the cell replacement unit 112a determines whether or not the control variable n has reached the total number N of regions (S167). In the case in which the determination result is No, the cell replacement unit 112a increments n by 1 (S168), and repeats the process from S163.
In the case in which the determination result of S167 becomes Yes, the process of replacing voxel groups with cells has been completed for all regions n included in the object data. The cell replacement unit 112a outputs the object data resulting from the replacement to the model configuration unit 116. The model configuration unit 116 converts the object data received from the cell replacement unit 112a into a structural analysis model as one application process (that is, S200 of
<Design Support>
Next, an example of a device that provides design support using information about unit cells and higher-order cells will be described. With the device in this example, if a user designates the physical properties of each region of the object, the device automatically assigns materials to the individual voxels to achieve the physical properties.
An object shape input unit 120 receives the input of shape information about an object. The shape information is information indicating the shape of the object, and is generated by a computer-aided design (CAD) system for example. The shape information does not include information about the material and physical properties of each part of the object.
A physical property designation reception unit 122 receives the designation of physical properties from the user with respect to each region of the object indicated by the input object shape information. Also, the physical property designation reception unit 122 searches the cell information DB 108 for formative cells having physical properties that are substantially the same as the physical properties designated for a region, and by filling the region with repetitions of the formative cells, associates the IDs of the formative cells with that region of the object. A formable data generation unit 124 decomposes the formative cells of each region of the object into units of formative voxels according to a process similar to the process of resolution conversion illustrated in
In the above configuration, the physical property designation reception unit 122 may also display a list of the physical properties of each level k formative cell registered in the cell information DB 108 on a user interface (UI) screen that receives the designation of the physical properties of each region of the object from the user. The user selects the physical properties to assign to each region from the list.
As illustrated in
At this point, the physical property designation reception unit 122 may limit the formative cell selection options listed on the menu 430 to only the formative cells of level k or below that are considered to be a microstructure given the size of the sub-object 414 selected by the user. Also, in this case, the selection options listed on the menu 430 may also be limited to only the formative cells corresponding to levels less than or equal to the size of a minimum shape such as a projection included in the sub-object 414.
Also, on the menu 430, the selection options may be displayed sorted in ascending or descending order of a physical property. In this case, for each region, the user chooses the selection option closest to the physical property the user wants to impart to the region from among the selection options sorted by the physical property. Additionally, the physical property designation reception unit 122 may also display a menu 430 illustrating selection options (that is, pairs of formative cells and physical properties) classified by each level k.
The above describes functions such as resolution conversion, a function of increasing variations of physical properties, structural analysis, and design support provided in an object data processing device, as well as device configurations and processing procedures for achieving such functions. Herein, the object data processing device is not required to include all of the functions described above. The object data processing device may have only one of the functions of resolution conversion, the function of increasing variations of physical properties, structural analysis, and design support described above, or may have two or more of the above functions.
The object data processing device illustrated by example above is realized by causing a computer to execute a program expressing each function described above, for illustrative purposes. Herein, the computer includes hardware having a circuit configuration in which a microprocessor such as a CPU, memory (first storage) such as random access memory (RAM) and read-only memory (ROM), a controller that controls a fixed storage device such as flash memory, a solid-state drive (SSD), or a hard disk drive (HDD), various input/output (I/O) interfaces, a network interface that controls connections to a network such as a local area network, and the like are interconnected via a bus or the like, for example. A program stating the processing content of each of these functions is saved to the fixed storage device such as flash memory via the network or the like, and installed in the computer. By having the CPU or other microprocessor load the program stored in the fixed storage device into RAM and execute the program, the function module group exemplified in the foregoing is realized.
The foregoing description of the exemplary embodiment of the present disclosure has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiment was chosen and described in order to best explain the principles of the disclosure and its practical applications, thereby enabling others skilled in the art to understand the disclosure for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the disclosure be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2018-215516 | Nov 2018 | JP | national |