The present disclosure relates to an information processing device, an information processing method and a computer program product.
Content clustering is widely known as a grouping technique in which, for example, photographs are grouped based on whether their image capturing positions or image capturing times are close to each other. The amount of content held by a user has increased dramatically along with an increase in capacity of a storage device, and the like. In order to easily search or view a large amount of content, technology has been developed that allows automatic content clustering.
For example, Patent Literature 1 discloses a technology in which clustering of image content items is automatically performed based on the image capturing position, and the generated clusters are further grouped using the image capturing date and time. Patent Literature 2 discloses a technology in which clustering of image content items is automatically performed based on the image capturing date and time.
However, there is a case in which the name that is automatically assigned to the cluster by the above-described technology is not necessarily the name that the user wants. In this type of case, the user adds editing to the name that has been automatically assigned to the cluster. A user interface (UI) that is used at this time requires further improvements in operability.
To address this, the present disclosure provides an information processing device, an information processing method and a computer program product that are novel and improved and that are capable of editing a cluster name by a more intuitive and simple operation.
An information processing device, method and computer program product use a display controller that causes a display device to display a cluster name having a data item association with a cluster of at least one data item. An operation acquisition portion is configured to acquire information associated with a user operation performed on the cluster. An editing portion edits the cluster name and data item association in accordance with the user operation. As a consequence the associations between data items may easily be formed along with associated cluster names formed.
Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the appended drawings. Note that, in this specification and the appended drawings, structural elements that have substantially the same function and structure are denoted with the same reference numerals, and repeated explanation of these structural elements is omitted.
Note that the explanation will be given in the order shown below.
1. First embodiment
2. Second embodiment
3. Third embodiment
4. Fourth embodiment
5. Fifth embodiment
6. Sixth embodiment
7. Seventh embodiment
8. Hardware configuration
9. Supplement
Firstly, a first embodiment of the present disclosure will be explained with reference to
(Device Configuration)
The information processing device 10 is, for example, a personal computer (PC), a game console, a digital camera, a video camera, a mobile phone, a smart phone, a tablet terminal, a car navigation system, a personal digital assistant (PDA), or the like. The information processing device 10 includes an operation acquisition portion 11, a cluster editing portion 12, a cluster name editing portion 13, a display control portion 14 and a display portion 15.
The operation acquisition portion 11 acquires information about an operation performed by a user on a data display, a cluster display or a cluster name display that are displayed on the display portion 15. The operation acquisition portion 11 takes the form of, for example, an input device such as a touch panel or a mouse, or an interface that acquires information from the input device. The operation acquisition portion 11 provides information about the acquired operation to the cluster editing portion 12 or to the cluster name editing portion 13. Further, the operation acquisition portion 11 may provide the information about the acquired operation to the display control portion 14.
The cluster editing portion 12 edits a cluster in accordance with the information about the operation acquired by the operation acquisition portion 11. The cluster editing portion 12 takes the form of, for example, a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM) or the like of the information processing device 10. Position data item of a feature space is classified in the cluster. The cluster editing portion 12 performs, for example, cluster generation, combining, division, deletion and the like, as editing of the cluster. The cluster editing portion 12 reflects an editing result on cluster information 16, and at the same time, the cluster editing portion 12 provides the editing result to the display control portion 14.
The cluster name editing portion 13 edits a cluster name in accordance with the information about the operation acquired by the operation acquisition portion 11. The cluster name editing portion 13 takes the form of, for example, the CPU, the RAM, the ROM or the like of the information processing device 10. The cluster name is a name assigned to the cluster. The cluster name editing portion 13 performs, for example, a change of the length of the cluster name and a change of content of the cluster name, as editing of the cluster name. The cluster name editing portion 13 reflects an editing result on the cluster information 16, and provides the editing result to the display control portion 14.
The display control portion 14 causes the display portion 15 to display at least one of the data display, the cluster display and the cluster name display. The display control portion 14 takes the form of, for example, the CPU, the RAM, the ROM or the like of the information processing device 10. The display control portion 14 changes the cluster display or the cluster name display to be displayed on the display portion 15, in accordance with the editing result of the cluster or the cluster name by the cluster editing portion 12 or the cluster name editing portion 13. Further, the display control portion 14 may display, on the display portion 15, the information about the operation acquired by the operation acquisition portion 11, for example, a trajectory of a pointing operation.
At least one of the data display, the cluster display and the cluster name display is displayed on the display portion 15 by the display control portion 14. The display portion 15 takes the form of, for example, an output device of the information processing device 10. The display portion 15 visually presents to the user the position data item of the feature space, the cluster and the cluster name. Note that the display portion 15 need not necessarily be included in the information processing device 10. The information processing device 10 may communicate with the display portion 15 that takes the form of a separate display device, and may display the data display, the cluster display or the cluster name display on the display portion 15.
The cluster information 16 is information that includes information about the position data item of the feature space, information about the cluster whose position data item is classified, and information about the cluster name. The cluster information 16 is stored, for example, in a storage device of the information processing device 10. Note that the cluster information 16 need not necessarily be held inside the information processing device 10, and the information processing device 10 may acquire the cluster information 16 from storage on a network according to need.
While the above described embodiment includes the operation acquisition portion 11, display control portion 14, cluster editing portion 12, and cluster name editing portion 13 in a common device, an alternative embodiment uses a remote server, or group of servers, in a cloud resource to perform all or some of the functions performed by the display control portion 14, cluster editing portion 12, and cluster name editing portion 13. Communications between the operation acquisition portion 11, and display portion 14 with the other portions are performed via wired or wireless network connections such as through an Internet connection.
(Generation of Clusters)
In
In (a) of
Further, when the operation acquisition portion 11 is a touch panel, the operation acquisition portion 11 may enter a cluster editing mode from a normal mode when the operation acquisition portion 11 detects a user's touch on a specific section, such as a lower left corner section of the display portion 15, and may acquire the trajectory 120, as shown in (a) of
As a result, it is possible to identify a case in which the user wants to edit the cluster. Thus, it is possible to achieve both the operability of a drag operation etc. in the normal mode and the operability of the cluster editing using the trajectory 120 in the cluster editing mode.
Further, the operation acquisition portion 11 provides information about the trajectory 120 to the cluster editing portion 12 and the display control portion 14. When the cluster editing portion 12 acquires the information about the trajectory 120, the cluster editing portion 12 determines how to edit the cluster based on the shape of the trajectory 120. On the other hand, when the display control portion 14 acquires the information about the trajectory 120, the display control portion 14 causes the display portion 15 to display the trajectory 120 as shown in (a) of
In the example shown in (a) of
In (b) of
At this time, the display control portion 14 may delete the image icons 110 contained in each of the cluster displays 130 from the display portion 15. By doing this, overlap between each cluster display 130 and the image icons 110 can be inhibited, and visibility can be improved. In addition, it is possible to reduce the number of objects to be displayed on the display portion 15 by the display control portion 14, and highspeed display is achieved.
Further, the display control portion 14 may move the displayed map 100 in accordance with the cluster display 130. For example, the display control portion 14 matches the center of the map 100 with the center of the cluster display 130. When there are a plurality of the cluster displays 130, the display control portion 14 may match the center of the map 100 with the center of the plurality of cluster displays 130.
Further, the display control portion 14 may change the scale of the displayed map 100 in accordance with the cluster display 130. For example, the display control portion 14 displays the map 100 at a maximum scale under the condition that the diameter of the cluster display 130 is smaller than the short side of the map 100. However, when there are a plurality of the cluster displays 130, the display control portion 14 may set the scale of the map 100 such that all the plurality of cluster displays 130 are displayed.
In this way, the display control portion 14 moves the displayed map 100 in accordance with the cluster display 130 before and after the editing, or changes the scale of the displayed map 100. Thus, a subsequent editing operation can be easily performed on the edited cluster display 130.
On the other hand, the cluster editing portion 12 may provide the information about the generated clusters to the cluster name editing portion 13, and the cluster name editing portion 13 may generate a cluster name for each of the generated clusters. Note that any known technique can be used to generate the cluster name, although the data items share a common data item association or feature attribute with other data items in the cluster. In this case, the cluster name editing portion 13 provides information about the generated cluster name to the display control portion 14, and the display control portion 14 displays the cluster name in the vicinity of the corresponding cluster display 130, as a cluster name display 140.
(Combining of Clusters)
In (a) of
In the example shown in (a) of
In (b) of
Here, the cluster editing portion 12 provides the information about the generated new cluster to the display control portion 14, and the display control portion 14 causes the display portion 15 to display the cluster display 130 that shows the new cluster. Here, in a similar way to the example of the cluster generation, the display control portion 14 may move the displayed map 100 or change the scale of the displayed map 100, in accordance with the cluster display 130 obtained after combining the clusters.
Further, the display control portion 14 may delete the cluster displays 130 that show the original two clusters contained in the new cluster, from the display portion 15. By doing this, overlap between each of the cluster displays 130 can be inhibited, and visibility can be improved. In addition, it is possible to reduce the number of objects to be displayed on the display portion 15 by the display control portion 14, and highspeed display is achieved. Disappearance of the original cluster displays 130 and appearance of the new cluster display 130 may be performed using animations such as fade-out and fade-in. By doing this, it is possible to visually show the user that the cluster combining is being performed.
On the other hand, when the information about the original clusters is held in the cluster information 16, the display control portion 14 may continue to display, on the display portion 15, the cluster displays 130 that show the original two clusters contained in the new cluster. By doing this, it is possible to visually show the user that the new cluster and the original two clusters have a parent-child relationship.
Further, the cluster editing portion 12 may provide the information about the generated cluster to the cluster name editing portion 13, and the cluster name editing portion 13 may generate a cluster name for the generated cluster. Note that any technique can be used to generate the cluster name. In this case, the cluster name editing portion 13 provides information about the generated cluster name to the display control portion 14, and the display control portion 14 displays the cluster name display 140 in the vicinity of the corresponding cluster display 130. In the example shown in (b) of
(Division of Cluster)
In the first example, the cluster is divided using the information about the cluster tree structure held in the cluster information 16. More specifically, the cluster is divided by changing the cluster displayed as the cluster display 130 from a parent cluster to child clusters in the tree structure.
In (a) of
In the example shown in (a) of
In (b) of
Further, the display control portion 14 may move the displayed map 100 in response to the division of the cluster. For example, the display control portion 14 matches the center of the map 100 with the center of the cluster display 130 before the division.
Further, the display control portion 14 may change the scale of the displayed map 100 in response to the division of the cluster. For example, the display control portion 14 displays the map 100 at a maximum scale under the condition that the diameter of the cluster display 130 before the division is smaller than the short side of the map 100.
On the other hand, the cluster editing portion 12 may provide the information about the divided clusters to the cluster name editing portion 13, and the cluster name editing portion 13 may generate cluster names for the divided clusters. Note that any known technique can be used to generate the cluster names. In this case, the cluster name editing portion 13 provides information about the generated cluster names to the display control portion 14, and the display control portion 14 displays each of the cluster name displays 140 in the vicinity of the corresponding cluster display 130. When the cluster names are held in the cluster information 16 together with the information about the cluster tree structure, the cluster name editing portion 13 need not necessarily generate new cluster names, and the cluster names held in the cluster information 16 may be provided to the display control portion 14.
In the second example, in a similar way to the first example, the cluster is divided using the information about the cluster tree structure held in the cluster information 16. However, the second example is different from the first example in that the clusters after the division are selected by the user from child clusters of the tree structure.
In (a) of
On the other hand, the operation acquisition portion 11 acquires the trajectory 120.
The operation acquisition portion 11 provides information about the trajectory 120 to the cluster editing portion 12 and the display control portion 14. The display control portion 14 causes the display portion 15 to display the trajectory 120 as shown in (a) of
In the example shown in (a) of
Further, in the example shown in (a) of
In (b) of
More specifically, the cluster editing portion 12 divides the cluster that is shown in (a) of
In this way, when the cluster after the division is a cluster obtained by combining a plurality of sub-clusters, for example, the cluster editing portion 12 may generate cluster information after the division by adding a node to the cluster tree structure. In this case, a new node “Kita-karuizawa and Minami-karuizawa” can be added between the node “Nishi ward, Kanagawa ward” and the nodes “Kita-karuizawa” and “Minami-karuizawa” in the tree structure.
Further, for example, the cluster editing portion 12 may generate the cluster information after the division by changing nodes of the cluster tree structure. In this case, the nodes “Kita-karuizawa” and “Minami-karuizawa” of the tree structure can be combined and replaced by the new node “Kita-karuizawa and Minami-karuizawa”.
On the other hand, at this time, the display control portion 14 deletes the cluster display 130 showing the cluster before the division, from the display portion 15. Also in this case, in a similar way to the first example, the appearance and disappearance of the cluster display 130 may be performed using animations. Further, the display control portion 14 may move the displayed map 100 or change the scale of the displayed map 100 in accordance with the cluster division.
In addition, in a similar way to the first example, the cluster editing portion 12 may provide the information about the divided clusters to the cluster name editing portion 13, and the cluster name editing portion 13 may generate cluster names for the divided clusters. The generated cluster names are provided to the display control portion 14 and the display control portion 14 can display on the display portion 15 the cluster names as the cluster name displays 140.
In the third example, unlike the first example and the second example, the cluster need not necessarily have a tree structure.
In (a) of
In the example shown in (a) of
Further, in the example shown in (a) of
In (b) of
At this time, the display control portion 14 deletes the cluster display 130 showing the cluster before the division, from the display portion 15. The image icons 110 may continue to be displayed in order to indicate the image content items contained in the cluster shown by each of the cluster displays 130. Alternatively, the image icons 110 may be removed in order to improve visibility and increase display speed.
Also in this case, in a similar way to the first example, the appearance and disappearance of the cluster display 130 may be performed using animations. Further, the display control portion 14 may move the displayed map 100 or change the scale of the displayed map 100 in accordance with the cluster division.
(Deletion of Cluster)
In (a) of
In the example shown in (a) of
In the present embodiment, both the cluster division and the cluster deletion are performed when the trajectory 120 traverses the cluster display 130. The movement that traverses the cluster display 130, which is performed by the user using the trajectory of a pointing operation, is movement that intuitively evokes both the division and the deletion of the cluster. Therefore, it is desirable that, while the trajectory 120 traversing the cluster display 130 is used as a trigger for both the division and the deletion of the cluster, it is determined whether the cluster is to be divided or the cluster is to be deleted, based on some kind of standard that feels natural to the user.
Given this, the cluster editing portion 12 determines whether the cluster is to be divided or the cluster is to be deleted, based on the number of times the trajectory 120 traverses the cluster display 130. More specifically, when the trajectory 120 traverses the cluster display 130 once, the cluster editing portion 12 divides the cluster. On the other hand, when the trajectory 120 traverses the cluster display 130 a plurality of times, the cluster editing portion 12 deletes the cluster. At this time, the cluster editing portion 12 may delete the image content items contained in the deleted cluster, together with the cluster. In this case, the above-described determination based on the number of times traversing is performed may include a determination as to whether only the cluster is to be deleted or the cluster and the image content items are to be deleted together. For example, when the trajectory 120 traverses the cluster display 130 two or three times, the cluster editing portion 12 may delete only the cluster, and when the trajectory 120 traverses the cluster display 130 four or more times, the cluster editing portion 12 may delete the cluster and the image content items contained in the cluster.
Note that the number of times that is used as the standard for determination is not limited to the above-described example. For example, as in the second example and the third example of the cluster division, when the cluster is divided by the trajectory 120 classifying the sub-cluster displays 135 and the image icons 110 contained in the cluster display 130, it is likely to be necessary for the trajectory 120 to have a complicated shape in order to allow classification. Therefore, a larger number of times may be used as the standard for determination. Further, in order to inhibit the cluster from being deleted by an erroneous operation, the trajectory 120 may have to traverse the cluster display 130 three times or more, for example, before the cluster can be deleted.
In (b) of
Here, the disappearance of the cluster display 130 and the appearance of the image icons 110 may be performed using animations such as fade-in and fade-out, in a similar way to the above-described examples of the cluster division. The display control portion 14 may move the displayed map 100 in response to the deletion of the cluster. For example, the display control portion 14 may match the center of the map 100 with the center of the cluster display 130 before the deletion.
Further, the display control portion 14 may change the scale of the displayed map 100 in response to the deletion of the cluster. For example, the display control portion 14 may display the map 100 at the maximum scale under the condition that the diameter of the cluster display 130 before the deletion can fit within the short side of the map 100.
In this way, in the present embodiment, information about the user's operation on the cluster display 130 can be acquired as the trajectory 120 of the pointing operation, and various types of cluster editing can be performed depending on the shape of the trajectory 120. Thus, the user can add various types of editing to the cluster displayed as the cluster display 130, by performing an intuitive operation.
Next, a second embodiment of the present disclosure will be explained with reference to
(Combining of Clusters by Movement of Cluster Display)
In (a) of
In (b) of
In the example shown in (b) of
For example, when the operation acquisition portion 11 acquires information about a drag operation performed on the touch panel by the user, at a point in time at which the user's drag operation is released in a state where the plurality of cluster displays 130 overlap with each other as shown in (b)
Further, for example, when the operation acquisition portion 11 acquires information about the flick operation performed on the touch panel by the user, at a point in time at which the plurality of cluster displays 130 overlap with each other, the cluster editing portion 12 may determine that the clusters shown by the plurality of cluster displays 130 are to be combined.
As shown in (b) of
In (c) of
When moving from displaying (b) to (c) of
(Combining of Clusters by Pinch Operation)
In (a) of
In (b) of
In the example shown in (b) of
When the cluster display 130a and the cluster display 130b overlap with each other, the cluster editing portion 12 may determine that the clusters shown by the cluster display 130a and the cluster display 130b are to be combined, regardless of whether the user is continuing to touch the cluster display 130a and the cluster display 130b.
When the user's touch on the cluster display 130a and the cluster display 130b is released in a state where the cluster display 130a and the cluster display 130b overlap with each other, the cluster editing portion 12 may determine that the clusters shown by the cluster display 130a and the cluster display 130b are to be combined.
As shown in (b) of
In (c) of
When moving from displaying (b) to (c) of
(Division of Cluster by Pinch Operation)
In (a) and (b) of
In the example shown in (a) and (b) of
Further, the cluster editing portion 12 may change how much the cluster is divided up in accordance with a speed of the pinch operation performed by the user. In the present embodiment, the cluster is divided using the information of the tree structure held in the cluster information 16. More specifically, the division of the cluster is performed such that the cluster displayed as the cluster display 130 is changed from a higher level cluster to a lower level cluster in the tree structure. At this time, how much the cluster is divided up is determined based on how far the cluster is to be displayed below the original cluster.
As an example, let us consider a case in which the cluster to be displayed is changed from the original cluster to a child cluster that has the original cluster as a parent, namely, a case in which the original cluster is changed to a directly lower cluster, and a case in which the original cluster is changed to a grandchild cluster, namely, a case in which the original cluster is changed to a two-level lower cluster. In this case, the grandchild cluster is a cluster that is divided up more than the child cluster. Therefore, it will be apparent that the child cluster is divided up relatively less while the grandchild cluster is divided up more.
In the example shown in (a) and (b) of
In (c) of
In (d) of
When moving from displaying (c) to (d) of
In (e) of
In (f) of
(Change of Cluster Hierarchy by Expanding and Contracting Operation)
In (a) of
In (b) of
In (c) of
When in the state shown in (c) of
Here, if the user intends to display a higher level cluster than the cluster shown by the cluster display 130, there are some cases when it is necessary to change the scale of the map 100 and as a result the display becomes complicated. For that reason, the cluster editing portion 12 may be set to not change the cluster display 130 even when information about the pinch-out operation is acquired by the operation acquisition portion 11 in the initially displayed state shown in (a) of
In this way, in the example shown in
Here, the pinch-in and pinch-out operations with respect to the display of the display portion 15 are normally used to contract and expand the display of the display portion 15. In other words, the pinch-in and pinch-out operations are operations to contract and expand the display including the cluster display 130. In order to distinguish between a case in which this type of contracting and expanding operations are used to contract and expand the display and a case in which this type of contracting and expanding operations are used to change the hierarchy of the cluster display 130, the operation acquisition portion 11 may be set to enter the cluster editing mode from the normal mode when the operation acquisition portion 11 acquires information about a predetermined operation performed by the user.
In this case, for example, in the normal mode, the operation acquisition portion 11 provides information about the pinch operation performed by the user to the display control portion 14, and the display control portion 14 changes the scale of the map 100 in response to the information about the pinch operation. On the other hand, in the cluster editing mode, as described above, the operation acquisition portion 11 provides information about the pinch operation performed by the user to the cluster editing portion 12, and the cluster editing portion 12 provides information about the clusters in different hierarchies in response to the information about the pinch operation.
The predetermined operation for the operation acquisition portion 11 to enter the cluster editing mode from the normal mode can be a long pressing operation or a tapping operation on the cluster display 130, for example. Further, the predetermined operation can be an operation on an “editing start” button that is separately displayed, for example. Furthermore, the predetermined operation can be continuation of the user's touch on the specific section of the display portion 15 in a similar way to the first embodiment.
(Division of Cluster by Movement Operation)
In (a) of
Normally, in order to improve visibility of the cluster display 130, the sub-cluster displays 135a need not necessarily be displayed. In this case, when the operation acquisition portion 11 acquires information about a predetermined operation performed by the user, the display control portion 14 may enter the cluster editing mode from the normal mode, and may display the sub-cluster displays 135a. The operation acquisition portion 11 acquires, as the information about the predetermined operation, for example, information about the duration of pressing or tapping on the cluster display 130, an operation on the “editing start” button that is separately displayed, continuation of the user's touch on the specific section of the display portion 15, or the like.
In the example shown in (a) of
In (b) of
In (c) of
Here, for example, the display control portion 14 may be set to return from the cluster editing mode to the normal mode, and to delete the sub-cluster displays 135 from the display portion 15, in accordance with an operation similar to the operation to switch the display control portion 14 from the normal mode to the cluster editing mode. Further, in a similar way to the above-described example of the first embodiment, the display control portion 14 may move the displayed map 100 or may change the scale of the displayed map 100 in accordance with the cluster division.
In this way, in the example shown in
Note that, as described above, in the present embodiment, a user's operation that is different from that of the first embodiment is used to edit the cluster and cluster editing is also different from that of the first embodiment. Therefore, the present embodiment can be achieved in combination with the first embodiment. In this case, the cluster editing portion 12 performs cluster generation, combining, division, deletion or the like, in accordance with the trajectory 120 of the user's pointing operation that is acquired by the operation acquisition portion 11 in the cluster editing mode, and the cluster editing portion 120 also performs cluster combining, division or the like, in accordance with a drag, flick or pinch operation etc. on the cluster display 130, information about which is acquired by the operation acquisition portion 11.
Next, a third embodiment of the present disclosure will be explained with reference to
(Display of Clusters as Nodes of Tree Structure)
In
At this time, nodes 161a corresponding to the clusters displayed as the cluster displays 130 on the map 100 can be displayed with a different color from other nodes 161b. In the example shown in
In this way, in the present embodiment, in addition to the cluster display using the cluster displays 130 on the map 100, the cluster display using the nodes 161 on the tree structure display 160 is also provided to the user. Thus, in a visually understandable manner, it is possible to provide the user with information about the entire clusters included in the tree structure, as well as information about the clusters that are displayed as the cluster displays 130.
In the example shown in
(Display of Movement Between Nodes of Tree Structure)
As described above, in the present embodiment, it is possible to select the cluster to be displayed as the cluster display 130 on the map 100, from among the clusters displayed as the nodes 161 on the tree structure display 160. In response to this selection, the display control portion 14 moves the displayed map 100 or changes the scale of the displayed map 100, for example, and thereby changes the cluster display 130 to be displayed. Movement of the map 100 or changing of the scale of the map 100 performed in this type of case is hereinafter referred to as transition of the display of the map 100.
In the example shown in
This type of transition of the display will be specifically explained using the example shown in
Here, a common top level node of the node 161 “Osaki” and the node 161 “Nakafurano town” is the node 161 “Japan”. Therefore, until the cluster of the node 161 “Japan” is displayed as the cluster display 130 on the display portion 15, the display control portion 14 continues the transition of the display of the map 100 to display the cluster of a higher level of the node 161 as the cluster display 130.
After the cluster of the node 161 “Japan” has been displayed as the cluster display 130 on the display portion 15, the display control portion 14 changes the display such that the clusters of the lower level nodes 161 are sequentially displayed as the cluster displays 130. Specifically, the display control portion 14 causes the display portion 15 to display the cluster of the node 161 “Hokkaido” as the cluster display 130. Next, the display control portion 14 causes the display portion 15 to display, as the cluster display 130, the cluster of the node 161 “Sorachi county” that is a lower level node of “Hokkaido”. Further, the display control portion 14 causes the display portion 15 to display, as the cluster display 130, the cluster of the target node 161 “Nakafurano town” that is a lower level node of “Sorachi county”.
In the above-described example, if the transition of the display of the map 100 is not easily seen because of a space between the hierarchies of the nodes 161, the display control portion 14 may interpolate another display of the map 100 between the display of a parent node and the display of a child node. For example, between the display of the map 100 when the cluster of the node 161 “Shinagawa ward” is displayed as the cluster display 130 and the display of the map 100 when the cluster of the node 161 “Tokyo Metropolis” is displayed as the cluster display 130, if at least one of the scale and the position differs significantly from a range in which the user feels that he/she can easily see the displays, the display control portion 14 interpolates another display of the map 100 between these displays.
Note that the position of the map 100 to be interpolated can be obtained by linear interpolation based on the position of the map 100 when the parent node is displayed and the position of the map 100 when the child node is displayed. Further, the scale of the map 100 to be interpolated may be obtained by linear interpolation based on the scale of the map 100 used to display the parent node and the scale of the map 100 used to display the child node. Alternatively, the scale of the map 100 to be interpolated may be set based on a predetermined zoom level.
The predetermined zoom level is a zoom level that is set in advance in the display control portion 14 in order to display the map 100. The predetermined zoom level will be explained using an example in which a maximum scale of the display is set at a zoom level “0” and the zoom level increases as the scale reduces. In this example, the zoom level used to display the cluster of the node 161 “Osaki” is “18”, and the zoom level used to display the cluster of the node 161 “Shinagawa ward”, which is a higher level node of the node 161 “Osaki”, is “17”. In this case, the display control portion 14 changes the display from “Osaki” to “Shinagawa ward” without interpolating the display of the map 100. On the other hand, the zoom level used to display the cluster of the node 161 “Tokyo Metropolis”, which is a higher level node of the node 161 “Shinagawa ward”, is “15”. In this case, if the display control portion 14 directly changes the display from “Shinagawa ward” to “Tokyo Metropolis”, the zoom level jumps from “17” to “15” and the transition of the display may give the user an abrupt impression. To address this, the display control portion 14 interpolates the display of the map 100 with the zoom level “16” between these displays. The center position of the display of the map 100 to be interpolated can be obtained by linear interpolation based on the center position of the map 100 when “Shinagawa ward” is displayed and the center position of the map 100 when “Tokyo Metropolis” is displayed. Further, the zoom level used to display the cluster of the node 161 “Sorachi county” is “15”, and the zoom level used to display the node 161 “Nakafurano town”, which is a lower level node of the node 161 “Sorachi county”, is “19”. In this case, the display control portion 14 interpolates the displays of the map 100, whose zoom levels are “16”, “17” and “18”, between these displays. In this way, a plurality of displays of the map 100 may be interpolated by the display control portion 14.
With the displays described above, it is possible to visually show the user how the clusters, which are displayed as the cluster displays 130 on the map 100, are changing. Note that, in order to more visually show the change of the displayed clusters, the display control portion 14 may, for example, display the nodes 161 corresponding to the parent node and the child node that are displayed before and after the display change, using a different color from the other nodes 161. Alternatively, the display control portion 14 may display, on the display portion 15, at least one of the names of the nodes 161 corresponding to the parent node and the child node that are displayed before and after the display change.
(Division of Cluster on Tree Structure Display)
In
In the example shown in
It should be noted here that deletion of the link in the tree structure indicates deletion of a parent-child relationship between the nodes. More specifically, in the above example, the cluster editing portion 12 deletes the parent-child relationship between the node 161 “Neighborhood” and the node 161 “Yokohama station”. As a result, the cluster of the node 161 “Yokohama station” changes to an individual cluster that is not included in the cluster of the node 161 “Neighborhood”. In other words, this link deletion is processing that divides the sub-cluster “Yokohama station” from the cluster “Neighborhood”. The cluster editing portion 12 reflects this editing result on the cluster information 16. Note that, when the divided node 161 “Yokohama station” has child nodes, a parent-child relationship with the child nodes can be maintained and an individual tree structure can be formed, in which the node 161 “Yokohama station” serves as a root node.
Further, the cluster editing portion 12 may provide the above-described editing result to the display control portion 14, and the display control portion 14 may display the cluster “Yokohama station” independently from the cluster “Neighborhood” on the cluster display 130 that is displayed on the map 100. In this way, the display control portion 14 may reflect a result of the cluster editing performed by the user operating the tree structure display 160, on the cluster display 130 of the map 100 in real time. Conversely, the display control portion 14 may reflect a result of the cluster editing performed by the user operating the cluster display 130, on the tree structure display 160 in real time. In summary, the cluster display 130 and the tree structure display 160 can be interactive displays for cluster editing.
(Generation and Combining of Clusters on Tree Structure Display)
In (a) of
Here, the operation acquisition portion 11 acquires information about an operation that the user uses to select a given position on the tree structure display 160. Here, information about an operation, such as double tap etc., can be obtained. The operation acquisition portion 11 provides the acquired information about the operation to the cluster editing portion 12 and the display control portion 14. In accordance with the information about the operation, the display control portion 14 displays a new node 161n in a position that is selected by the user on the tree structure display 160. On the other hand, in response to the information about this operation, the cluster editing portion 12 recognizes that the new node 161n has been added to the cluster tree structure. However, the position of the new node 161n in the tree structure has not yet been determined.
In (b) of
In (c) of
On the other hand, the display control portion 14 reflects, on the cluster display 130 and the cluster name display 140, the information about the cluster and the cluster name provided from the cluster editing portion 12 and the cluster name editing portion 13, respectively. More specifically, the display control portion 14 displays, on the map 100, the cluster display 130 and the cluster name display 140 that show the newly generated cluster “Home and neighborhood, Yokohama station”. The clusters “Home”, “Neighborhood” and “Yokohama station” shown as the cluster displays 130 in (b) of
Further, the display control portion 14 also reflects these pieces of information on the display of the tree structure display 160. More specifically, the display control portion 14 displays the name “Home and neighborhood, Yokohama station” for the new node 161n, and displays the link between the new node 161n and the node 161 “Home and neighborhood” and the link between the new node 161n and the node 161 “Yokohama station”. Further, in response to the change of the cluster display 130, the display control portion 14 displays the node “Home and neighborhood, Yokohama station” that was displayed as the node 161n, as the node 161a with a different color from the other nodes 161b.
(Deletion of Cluster on Tree Structure Display)
In (a) of
Here, the operation acquisition portion 11 acquires the trajectories 120 of the user's pointing operations, which traverse the nodes 161 displayed on the tree structure display 160 a plurality of times. The operation acquisition portion 11 provides information about the trajectories 120 to the cluster editing portion 12 and the display control portion 14. The display control portion 14 causes the display portion 15 to display the trajectories 120 as shown in (a) of
In (b) of
Further, the display control portion 14 reflects the above-described change on the display of the tree structure display 160. Specifically, the display control portion 14 deletes, from the tree structure display 160, the deleted nodes 161 “Home and neighborhood, Yokohama station” and “Yokohama station”, and the display of the links connected to these nodes 161. Further, the display control portion 14 displays the node 161a “Home and neighborhood” that is newly displayed as the cluster display 130, using a different color from the other nodes 161b.
In this way, in the present embodiment, the cluster indicated by the node 161 can be edited by the user performing an operation on the node 161 on the tree structure display 160. Thus, the user can perform cluster editing while visually and comprehensively grasping information of all of the clusters included in the tree structure.
Note that, as described above, in the present embodiment, the tree structure display 160 is displayed in addition to the map 100 that is also displayed in the first and second embodiments. Therefore, the present embodiment can be achieved in combination with the first and second embodiments. In this case, the cluster editing portion 12 is set so that the cluster editing can be performed in accordance with both the user's operation on the cluster display 130 on the map 100, and the user's operation on the node 161 on the tree structure display 160. The display control portion 14 interactively reflects the result of the cluster editing on each of the displays.
Although the third embodiment was initially described with respect to geographic features, the scope of the embodiment should not be so limited. For example, instead of geographic clusters, the tree structure could be used for organizing genealogy information. For example, a family tree has people as its nodes and parents forming tree branches. Data, such as birth records, photos, videos, and other information associated with one or more people in the family may be associated with different nodes in the family tree. The structure and processes described in
In this embodiment, to assist in generating meta-data that is associated with a photo, for example, as available in SONY digital still cameras, face detection is used to associate people's faces with preregistered family members. The preregistration is done on a local computer, or a remote server. When a photo is taken, the face recognition feature compares the captured face, and associates face and then associates in memory the face with the photograph. The association may be performed with meta-data or a tag. Photos with common meta-data or tags are then included in a common cluster, such as with a family tree. For example, a child's photograph would be associated not only with other photos of the child, but also through a sibling-relationship, parent relationship, and grandparent relationship. Thus, the child's photo may be a particular data item, but a group of photos of the child may be grouped in a cluster with the child's name. That cluster may then be combined with other clusters of siblings as part of a “children” cluster. Likewise, when the children cluster is combined with a parents cluster, a “family” cluster is created, using the family name.
Next, a fourth embodiment of the present disclosure will be explained with reference to
(Tree Structure of Cluster Names)
In the present embodiment, the cluster name is generated using one or a plurality of names in a given hierarchy in the hierarchical structure of this type of address information. First, when names in the “ward” hierarchy are used to generate a cluster name, the names in the “ward” hierarchy that are included in the address information A of each content are extracted. As a result, names N5-1 to N5-5 respectively indicating “Nishi ward”, “Kanagawa ward”, “Midori ward”, “Kawasaki ward” and “Saiwai ward” are extracted. Therefore, the cluster name that is generated using the names in the “ward” hierarchy is, for example, “Nishi ward, Kanagawa ward, Midori ward, Kawasaki ward, Saiwai ward”.
Next, when names in the “city” hierarchy are used to generate a cluster name, the names in the “city” hierarchy that are included in the address information A of each content are extracted. As a result, names N4-1 and N4-2 respectively indicating “Yokohama city” and “Kawasaki city” are extracted. Therefore, the cluster name that is generated using the names in the “city” hierarchy is, for example, “Yokohama city, Kawasaki city”.
Next, when names in the “prefecture” hierarchy are used to generate a cluster name, the names in the “prefecture” hierarchy that are included in the address information A of each content are extracted. As a result, a name N3 indicating “Kanagawa prefecture” is extracted. In summary, in the example shown in
(Cluster Name Change by Movement Operation)
In (a) of
In (b) of
The cluster name editing portion 13 reflects the change of the cluster name on the cluster information 16, and provides information about the new cluster name to the display control portion 14. The display control portion 14 causes the display portion 15 to display the provided new cluster name as the cluster name display 140. Specifically, the display control portion 14 changes a text 142 of the cluster name display 140 from “Yokohama city, Kawasaki city” to “Kanagawa prefecture”. At this time, the display control portion 14 may adjust the size of a frame 141 of the cluster name display 140 in accordance with the text 142 after the change, without changing the display position of the frame 141.
Here, if the operation acquisition portion 11 acquires information about an operation that the user uses to move the cluster name display 140 further to the right, the cluster name editing portion 13 generates a cluster name using a name in a hierarchy that is even higher up. Specifically, the cluster name editing portion 13 generates a cluster name using “Kanto region”, which is the name in the “region” hierarchy that is one-level higher than the “prefecture” level name “Kanagawa prefecture” used for the cluster name display 140 in (b) of
In (c) of
In this way, the cluster name editing portion 13 changes the hierarchy of the name used as the cluster name display 140, in accordance with a user's operation that moves the cluster name display 140. In the example shown in
Note that the names displayed as the cluster name display 140 are not limited to the examples of the three hierarchies shown in
In this way, the hierarchy of the cluster name is changed in response to the operation that moves the cluster name display 140. Thus, for example, the user can easily switch whether to simplify the cluster name by using the name in a higher level hierarchy indicating a larger district, or to show the content of the cluster in more detail by jointly using the names in a lower level hierarchy indicating a smaller district. Further, a case in which the name in a higher level hierarchy is used and a case in which the names in a lower level hierarchy are used are respectively associated with different directions of the operation that moves the cluster name display 140. As a result, the operation to change the hierarchy can be performed more intuitively.
(Selection from Cluster Name List)
In (a) of
The cluster name list display 143 can be displayed when the cluster name editing portion 13 provides the display control portion 14 with information about two or more names that can be displayed as the cluster name display 140. In the example shown in (a) of
In (b) of
In the text 142 of the cluster name display 140 that is displayed in this case, a section corresponding to “Yokohama city” is displayed in a larger size and a section corresponding to “Kawasaki city” is displayed in a smaller size. This indicates that, among the image content items included in the cluster shown by the cluster display 130, more image content items are included in the district of “Yokohama city” than in the district of “Kawasaki city”. In this way, the display control portion 14 may acquire attribute information of a plurality of names used as the cluster names from the cluster name editing portion 13, and may change a display manner of displaying characters of the text 142 in accordance with the number of pieces of the attribute information. In the example shown in (b) of
In the above-described example, the attribute information is not limited to the number of image content items included in the district indicated by the name. The attribute information can be, for example, the category of the name (a commercial facility, a public facility, a housing facility, a sightseeing spot etc.), the area, the population, or the number of households of the district indicated by the name, the popularity of the district indicated by the name, whether or not the district indicated by the name is one of the metropolis, a capital city and a city designated by ordinance, or the number of times the name is selected by the user's editing operation.
Further, in the above-described example, the change of the display manner of the characters of the text 142 is not limited to a change in the character size. The change of the display manner can be made, for example, by changing the font type (Ming-style typeface, Gothic typeface etc., for example), changing the color, changing to a bold face, or adding an under line.
In this way, the display manner of the characters of the text 142 is changed in accordance with the attribute information of the name. Thus, the name that is chosen for the district is likely to feel appropriate to the user, such as a district including more image content items, a more prominent district or the like, can be distinctly displayed on the cluster name display 140. Further, it is possible to distinctly display, on the cluster name display 140, the name of the district that is likely to be requested by the user, such as the name of the district which is included in the category specified by the user when capturing the image content items or which has been used several times previously by the user.
(Cluster Name Change by Pinch Operation)
In (a) of
In (b) of
In (c) of
Note that, in this case, the newly displayed name is not a name that is obtained by simply adding the name in the lower level hierarchy to the name displayed in (b) of
On the other hand, when the operation acquisition portion 11 acquires information about a pinch-in operation performed on the cluster name display 140, the display control portion 14 reduces the size of the frame 141. The cluster name editing portion 13 provides the display control portion 14 with information about the name that is obtained by deleting the name in the lowest level hierarchy from the name displayed as the cluster name display 140. When the size of the frame 141 becomes too small to fully display the text 142, the display control portion 14 changes the cluster name of the text 142 to the shorter cluster name provided from the cluster name editing portion 13. More specifically, when the information about the pinch-in operation is acquired, the display of the display portion 15 changes from (c) to (b), or from (b) to (a) of
In this way, in the present embodiment, in response to the user's operation performed on the cluster name display 140, it is possible to edit the cluster name that is generated using the names having the hierarchical structure of addresses or the like. Thus, the user can change the hierarchy of the displayed name by an intuitive operation, and can easily search the cluster name that is considered to be suitable for expressing the cluster.
Note that, as described above, the cluster name display 140 is operated in the present embodiment unlike the first to third embodiments. Therefore, the present embodiment can be achieved in combination with the first to third embodiments. For example, when the present embodiment is combined with the first embodiment or the second embodiment, the information processing device 10 is set such that the processing of the first or second embodiment is performed for the operation on the cluster display 130, and the processing of the present embodiment is performed for the operation on the cluster name display 140. Further, when the present embodiment is combined with the third embodiment, the information processing device 10 is set such that editing of the cluster and the cluster name is performed in accordance with an operation performed with respect to the cluster display 130 and the cluster name display 140 on the map 100, and in accordance with an operation performed with respect to the nodes 161 on the tree structure display 160. In this case, an editing result of the cluster and the cluster name is interactively reflected on each of the displays of the cluster display 130, the cluster name display 140 and the tree structure display 160.
Next, a fifth embodiment of the present disclosure will be explained with reference to
In (a) of
In (b) of
In (c) of
In this way, in the present embodiment, it is possible to edit the name displayed as the cluster name display 140 in accordance with the user's operation performed with respect to the nodes 161 on the tree structure display 160. Thus, the user can edit the cluster name while visually and comprehensively grasping information of all of the clusters included in the tree structure.
Note that, as described above, the present embodiment has a similar configuration to the third embodiment. Therefore, in a similar way to the third embodiment, the present embodiment can be achieved in combination with each of the other embodiments.
Next, a sixth embodiment of the present disclosure will be explained with reference to
In (a) of
Here, the operation acquisition portion 11 acquires the trajectory 120 of a pointing operation performed by the user. The trajectory 120 surrounds the two cluster displays 230 “Top of Mt. Fuji” and “Foot of Mt. Fuji”. The operation acquisition portion 11 provides information about the trajectory 120 to the cluster editing portion 12 and the display control portion 14. The display control portion 14 causes the display portion 15 to display the trajectory 120 as shown in (a) of
In (b) of
In this way, in the present embodiment, the projection of the cluster onto a two-dimensional plane in the three-dimensional space 200, which is a three-dimensional feature space, is displayed as the cluster display 230, and the cluster is edited in accordance with an operation performed on the cluster display 230. In a similar way, if the projection of a cluster onto a two-dimensional plane in a chosen dimensional feature space is displayed as a cluster display and the cluster is edited in accordance with an operation performed on the cluster display, the configuration similar to that of the above-described first to fifth embodiments can be applied not only to the case of the map 100, which is a two-dimensional feature space, but also to a chosen dimensional feature space.
Next, a seventh embodiment of the present disclosure will be explained with reference to
In
(Generation of Folder)
In (a) of
On the other hand, when the cluster editing portion 12 acquires the information about the trajectory 320, the cluster editing portion 12 determines how to edit the folder based on the shape of the trajectory 320. In the example shown in (a) of
In (b) of
On the other hand, the cluster editing portion 12 provides the information about the generated folder to the cluster name editing portion 13, and the cluster name editing portion 13 generates a folder name for the generated folder. For example, the cluster name editing portion 13 generates a folder name “text A and text B” by jointly using the file names contained in the folder. The cluster name editing portion 13 provides information about the generated folder name to the display control portion 14, and the display control portion 14 displays the folder name in the vicinity of the corresponding folder icon 330, as a folder name display 340.
(Combining of Folders)
In (a) of
In the example shown in (a) of
In (b) of
Here, the cluster editing portion 12 provides information about the generated new folder to the display control portion 14, and the display control portion 14 causes the display portion 15 to display the folder icon 330 that indicates the new folder. Further, the display control portion 14 deletes, from the display portion 15, the folder icons 330 indicating the original two folders that are contained in the new folder.
On the other hand, the cluster editing portion 12 provides the information about the generated folder to the cluster name editing portion 13, and the cluster name editing portion 13 generates a folder name for the generated folder. For example, the cluster name editing portion 13 generates a folder name “text and music” by jointly using the folder names contained in the generated folder. The cluster name editing portion 13 provides information about the generated folder name to the display control portion 14, and the display control portion 14 displays the folder name in the vicinity of the corresponding folder icon 330, as the folder name display 340.
(Division of Folder)
In the first example, the folder is divided using information of the folder tree structure that is held in the cluster information 16. More specifically, the folder is divided by changing the folder displayed as the folder icon 330 from a parent folder to child folders in the tree structure.
In (a) of
In the example shown in (a) of
In (b) of
On the other hand, the cluster editing portion 12 provides information about the folders after the division to the cluster name editing portion 13, and the cluster name editing portion 13 acquires folder names of the folders after the division that are held in the cluster information 16, and provides the folder names to the display control portion 14. The display control portion 14 displays, as the folder name displays 340, the provided folder names in the vicinity of the corresponding folder icons 330.
In (a) of
In the example shown in (a) of
Further, in the example shown in (a) of
In (b) of
(Deletion of Folder)
In (a) of
In the example shown in (a) of
In the present embodiment, both the folder division and the folder deletion are performed when the trajectory 320 traverses the folder icon 330. The movement that traverses the folder icon 330, which is performed by the user using the trajectory of a pointing operation, is movement that intuitively evokes both the division and the deletion of the folder. Therefore, it is desirable that, while the trajectory 320 traversing the folder icon 330 is used as a trigger for both the division and the deletion of the folder, it is determined whether the folder is to be divided or the folder is to be deleted based on some kind of standard that feels natural to the user.
Given this, the cluster editing portion 12 determines whether the folder is to be divided or the folder is to be deleted based on the number of times the trajectory 320 traverses the folder icon 330. More specifically, when the trajectory 320 traverses the folder icon 330 once, the cluster editing portion 12 divides the folder. On the other hand, when the trajectory 320 traverses the folder icon 330 multiple times, the cluster editing portion 12 deletes the folder. At this time, the cluster editing portion 12 may delete the files contained in the deleted folder, together with the folder. In this case, the above-described determination based on the number of times traversing is performed may include a determination as to whether only the folder is to be deleted or the folder and the files are to be deleted together. For example, when the trajectory 320 traverses the folder icon 330 two or three times, the cluster editing portion 12 may delete only the folder, and when the trajectory 320 traverses the folder icon 330 four or more times, the cluster editing portion 12 may delete the folder and the files contained in the folder.
Note that the number of times that is used as the standard for determination is not limited to the above-described example. For example, as in the second example of the folder division, when the folder is divided by the trajectory 320 classifying the thumbnail displays 331 contained in the folder icon 330, it is likely to be necessary for the trajectory 320 to have a complicated shape in order to allow classification. Therefore, a larger number of times may be used as the standard for determination. Further, in order to inhibit the folder from being deleted by an erroneous operation, the trajectory 320 may have to traverse the folder icon 330 three times or more, for example, before the folder can be deleted.
In (b) of
In this way, in the present embodiment, information about the user's operation on the folder icon 330 can be acquired as the trajectory 320 of the pointing operation, and various types of folder editing can be performed depending on the shape of the trajectory 320. Thus, the user can add various types of editing to the folder displayed as the folder icon 330, by performing an intuitive operation.
Next, a hardware configuration of the information processing device 10 according to an embodiment of the present disclosure described above will be described in detail with reference to
The information processing device 10 includes a CPU 901, a ROM 903, and a RAM 905. Furthermore, the information processing device 10 may also include a host bus 907, a bridge 909, and external bus 911, an interface 913, an input device 915, an output device 917, a storage device 919, a drive 921, a connection port 923, and a communication device 925.
The CPU 901 functions as a processing device and a control device, and controls the overall operation or a part of the operation of the information processing device 10 according to various programs recorded in the ROM 903, the RAM 905, the storage device 919 or a removable storage medium 927. The ROM 903 stores programs to be used by the CPU 901, processing parameters and the like. The RAM 905 temporarily stores programs to be used in the execution of the CPU 901, parameters that vary in the execution, and the like. The CPU 901, the ROM 903 and the RAM 905 are connected to one another through the host bus 907 configured by an internal bus such as a CPU bus.
The host bus 907 is connected to the external bus 911 such as a PCI (Peripheral Component Interconnect/Interface) bus via the bridge 909.
The input device 915 is input means to be operated by a user, such as a mouse, a keyboard, a touch panel, a button, a switch, a lever or the like. Further, the input device 915 may be remote control means that uses an infrared or another radio wave, or it may be an externally-connected appliance 929 such as a mobile phone, a PDA or the like conforming to the operation of the information processing device 10. Furthermore, the input device 915 is configured from an input control circuit or the like for generating an input signal based on information input by a user with the operation means described above and outputting the signal to the CPU 901. A user of the information processing device 10 can input various kinds of data to the information processing device 10 or instruct the information processing device 10 to perform processing, by operating the input device 915.
The output device 917 is configured from a device that is capable of visually or auditorily notifying a user of acquired information. Examples of such device include a display device such as a CRT display device, a liquid crystal display device, a plasma display device, an EL display device or a lamp, an audio output device such as a speaker or a headphone, a printer, a mobile phone, a facsimile and the like. The output device 917 outputs results obtained by various processes performed by the information processing device 10, for example. To be specific, the display device displays, in the form of text or image, results obtained by various processes performed by the information processing device 10. On the other hand, the audio output device converts an audio signal such as reproduced audio data or acoustic data into an analogue signal, and outputs the analogue signal.
The storage device 919 is a device for storing data configured as an example of a storage unit of the information processing device 10. The storage device 919 is configured from, for example, a magnetic storage device such as a HDD (Hard Disk Drive), a semiconductor storage device, an optical storage device, or a magneto-optical storage device. This storage device 919 stores programs to be executed by the CPU 901, various types of data, and various types of data obtained from the outside, for example.
The drive 921 is a reader/writer for a recording medium, and is incorporated in or attached externally to the information processing device 10. The drive 921 reads information recorded in the attached removable storage medium 927 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, and outputs the information to the RAM 905. Furthermore, the drive 921 can write in the attached removable storage medium 927 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory. The removable storage medium 927 is, for example, a DVD medium, an HD-DVD medium, or a Blu-ray (registered trademark) medium. The removable storage medium 927 may be a CompactFlash (CF; registered trademark), a flash memory, an SD memory card (Secure Digital Memory Card), or the like. Alternatively, the removable storage medium 927 may be, for example, an electronic appliance or an IC card (Integrated Circuit Card) equipped with a non-contact IC chip.
The connection port 923 is a port for allowing devices to directly connect to the information processing device 10. Examples of the connection port 923 include a USB (Universal Serial Bus) port, an IEEE 1394 port, a SCSI (Small Computer System Interface) port, and the like. Other examples of the connection port 923 include an RS-232C port, an optical audio terminal, an HDMI (High-Definition Multimedia Interface) port, and the like. With the externally connected device 929 connected to this connection port 923, the information processing device 10 directly obtains various types of data from the externally connected device 929, and provides various types of data to the externally connected device 929.
The communication device 925 is a communication interface configured from, for example, a communication device for connecting to a communication network 931. The communication device 925 is, for example, a wired or wireless LAN (Local Area Network), a Bluetooth (registered trademark), a communication card for WUSB (Wireless USB), or the like. Alternatively, the communication device 925 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), a modem for various communications, or the like. This communication device 925 can transmit and receive signals and the like in accordance with a predetermined protocol, such as TCP/IP, on the Internet and with other communication devices, for example. The communication network 931 connected to the communication device 925 is configured from a network or the like connected via wire or wirelessly, and may be, for example, the Internet, a home LAN, infrared communication, radio wave communication, satellite communication or the like.
Heretofore, an example of the hardware configuration of the information processing device 10 has been shown. Each of the structural elements described above may be configured using a general-purpose material, or may be configured from hardware dedicated to the function of each structural element. Accordingly, the hardware configuration to be used can be changed as appropriate according to the technical level at the time of carrying out each of the embodiments described above.
It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and alterations may occur depending on design requirements and other factors insofar as they are within the scope of the appended claims or the equivalents thereof.
Additionally, the present technology may also be configured as below.
(1)
An information processing device comprising:
a display controller configured to cause a display device to display a cluster name having a data item association with a cluster of at least one data item;
an operation acquisition portion configured to acquire information associated with a user operation performed on the cluster; and
an editing portion that edits the cluster name and data item association in accordance with the user operation.
(2)
The information processing device of (1), wherein
said operation acquisition portion directly receives the user operation through a local interface from the user.
(3)
The information processing device of (1) or (2), wherein
said operation acquisition portion receives the user operation from a remote device.
(4)
The information processing device of any one of (1) to (3), wherein
said operation acquisition portion includes a touch panel on which the user operation is registered.
(5)
The information processing device of any one of (1) to (4), wherein
the user operation registers a trajectory of a user pointing operation, and
said editing portion forms the cluster name including data item association for data items within the trajectory of the user operation when the trajectory surrounds the data items.
(6)
The information processing device of any one of (1) to (5), wherein
the user operation registers a trajectory of a user pointing operation, and said editing portion merges two or more clusters into a larger cluster when the trajectory of the user operation surrounds the two or more clusters, and creates a cluster name for the larger cluster that includes a common data item association for data items in the larger cluster.
(7)
The information processing device of any one of (1) to (6), wherein
the user operation registers a trajectory of a user pointing operation, and
said editing portion divides a larger cluster into two or more clusters when the trajectory of the user operation bisects the larger cluster, and creates respective cluster names for the two or more clusters that includes common data item associations for data items in the two or more clusters.
(8)
The information processing device of any one of (1) to (7), wherein the user operation registers a drag or flick operation, and
said editing portion removes the cluster when the trajectory of the user operation traces a predetermined pattern over the cluster, and removes the cluster name from the cluster and displays separate data items previously contained in the cluster.
(9)
The information processing device of (4), wherein
the user operation registers a drag or flick operation, and
said editing portion merges two or more clusters into a larger cluster when a drag, flick, or pinch operation urges the two or more clusters toward each other, and creates a cluster name for the larger cluster that includes a common data item association for data items in the larger cluster.
(10)
The information processing device of (4) or (9), wherein the user operation registers a drag or flick operation, and
said editing portion divides a larger cluster into at least two smaller clusters when a pinch-out operation is performed on the larger cluster, and removes the cluster name from the larger cluster and displays separate cluster names for the at least two smaller clusters.
(11)
The information processing device of any one of (1) to (10), wherein
the display controller displays the data items in a tree structure,
the user operation registers a trajectory of a user pointing operation, and
said editing portion at least one of adds, deletes and changes a node in the tree structure in response to the trajectory of the user operation across the tree structure.
(12)
The information processing device of any one of (1) to (11), wherein
a display controller is configured to display the cluster in a dimensional feature space by transformation of the cluster into the dimensional feature space.
(13)
The information processing device of (12), wherein
the dimensional feature space is a geographic space and said data items are geographic data items.
(14)
The information processing device of any one of (1) to (13), wherein:
said data items are files, and said cluster is a folder that contains the files.
(15)
The information processing device of any one of (1) to (14), wherein:
said files are photographs, and
said display controller includes a face recognition operator that detects respective faces of people in said photographs and associates said photographs with the cluster.
(16)
An information processing device including:
a display control portion that causes a display portion to display both or one of a data display that shows position data item of a feature space and a cluster display that shows a cluster including the position data item;
an operation acquisition portion that acquires information about an operation performed by a user on the data display or the cluster display; and
a cluster editing portion that edits the cluster in accordance with the information about the operation.
(17)
The information processing device according to (16), wherein
the operation acquisition portion acquires a trajectory of a pointing operation performed by the user.
(18)
The information processing device according to (17), wherein
when the trajectory traverses the cluster display, the cluster editing portion divides or deletes the cluster.
(19)
The information processing device according to (18), wherein
the cluster editing portion determines whether the cluster is to be divided or the cluster is to be deleted, based on the number of times the trajectory traverses the cluster display.
(20)
The information processing device according to (18) or (19), wherein
the display control portion causes the display portion to display a display that shows the position data item or another cluster that is included in the cluster, and
the cluster editing portion divides the cluster in accordance with a classification of a display that shows the position data item or the another cluster classified by the trajectory.
(21)
The information processing device according to any one of (17) to (20), wherein
when the trajectory surrounds the data display or the cluster display, the cluster editing portion generates a new cluster that contains the position data item or the cluster.
(22)
The information processing device according to any one of (16) to (21), wherein
the operation acquisition portion acquires information about a pinch operation performed by the user on the cluster display.
(23)
The information processing device according to (22), wherein
the display control portion compresses or elongates the cluster display and causes the cluster display to be displayed in accordance with the information about the pinch operation, and
when the cluster display is compressed or elongated at a ratio equal to or greater than a predetermined ratio or a number of times equal to or greater than a predetermined number of times, the cluster editing portion divides the cluster.
(24)
The information processing device according to (23), wherein
the cluster editing portion changes how much the cluster is divided up in accordance with a speed of the pinch operation.
(25)
The information processing device according to any one of (16) to (24), wherein the operation acquisition portion acquires information about an operation that the user uses to move a cluster display.
(26)
The information processing device according to (25), wherein
when the cluster display overlaps with another cluster display as a result of the operation for the movement, the cluster editing portion combines the cluster and a cluster shown by the another cluster display.
(27)
The information processing device according to (25) or (26), wherein the display control portion causes the display portion to display a display that shows another cluster containing the cluster, and
when the cluster display is moved to an outside of the display that shows the another cluster as a result of the operation for the movement, the cluster editing portion divides up the cluster from the another cluster.
(28)
The information processing device according to any one of (16) to (27), wherein
the operation acquisition portion acquires information about an operation where the user causes a display including the cluster display to expand or contract,
the cluster editing portion acquires, from information of a cluster group which has a tree structure and which includes the cluster, information of another cluster which is at a higher level or a lower level of the cluster in the tree structure, in accordance with the information about the operation for the expansion or the contraction, and the display control portion causes the display portion to display, in place of the cluster display, a cluster display showing the another cluster.
(29)
The information processing device according to (28), wherein
the display control portion maintains a scale of the display including the cluster display.
(30)
The information processing device according to any one of (16) to (29), wherein the cluster editing portion acquires information of a cluster group which has a tree structure and which includes the cluster, and
the display control portion causes the cluster display to be displayed as a node of the tree structure.
(31)
The information processing device according to (30), wherein
the operation acquisition portion acquires a trajectory of a pointing operation performed by the user, and
when the trajectory traverses a link of the tree structure, the cluster editing portion updates the information of the cluster group in a manner that the link is released.
(32)
The information processing device according to (30) or (31), wherein the operation acquisition portion acquires a trajectory of a pointing operation performed by the user, and
when the trajectory connects a plurality of the nodes, the cluster editing portion updates the information of the cluster group in a manner that a link is set between the nodes.
(33)
The information processing device according to any one of (16) to (32), wherein the cluster editing portion acquires information of a cluster group which has a tree structure and which includes the cluster, and
when the cluster display is changed to another cluster display showing another cluster of the cluster group, the display control portion causes the display portion to sequentially display cluster displays that show clusters on a path from the cluster to the another cluster in the tree structure.
(34)
An information processing method including:
causing a display portion to display both or one of a data display that shows position data item of a feature space and a cluster display that shows a cluster including the position data item;
acquiring information about an operation performed by a user on the data display or the cluster display; and
editing the cluster in accordance with the information about the operation.
(35)
A program that includes instructions that command a computer to perform:
a function of causing a display portion to display both or one of a data display that shows position data item of a feature space and a cluster display that shows a cluster including the position data item;
a function of acquiring information about an operation performed by a user on the data display or the cluster display; and
a function of editing the cluster in accordance with the information about the operation.
Number | Date | Country | Kind |
---|---|---|---|
2011-128360 | Jun 2011 | JP | national |
2011-128361 | Jun 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP12/03419 | 5/25/2012 | WO | 00 | 10/23/2013 |