Information
-
Patent Grant
-
6780030
-
Patent Number
6,780,030
-
Date Filed
Thursday, February 13, 200321 years ago
-
Date Issued
Tuesday, August 24, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 439 92
- 361 818
- 174 35 R
- 174 35 GC
- 174 51
-
International Classifications
-
Abstract
An SG pattern is provided at the circumference of the outermost layer of a printed circuit board and the SG pattern is connected to a frame ground of a case by grounding plates so that the space between connection points is smaller than a distance determined by a signal wavelength. The grounding plates are disposed at three sides other than the side at which a connector mounting plate is disposed to hold the printed circuit board therebetween by leaf spring-like contacts. The mounting plate is connected to the SG pattern to be electrically connected to the grounding plate.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to information processing equipment for inhibiting electromagnetic interference (hereinafter referred to as “EMI”) and, in particular, it relates to information processing equipment, such as a personal computer, for inhibiting electromagnetic noise from printed circuit boards.
2. Description of the Related Art
Conventionally, in information processing equipment such as desktop or notebook personal computers, it is required to inhibit electromagnetic noise. However, in such information processing equipment, as the operating frequency increases, it becomes more and more difficult to prevent the electromagnetic noise or EMI from leaving printed circuit boards.
On the other hand, for the purpose of preventing the EMI, along with legal regulations in each country, international standards such as CISPR (Comite International Special des Pertubations Radioelectrique, or The International Special Committee on Radio Interference in the IEC (International Electrotechnical Commission)) are established and, in Japan, a domestic standard is specified by VCCI (Voluntary Control Council for Interference by Information Technology Equipment). In order to satisfy such standards, it is important to reduce undesired electromagnetic radiation.
Conventionally, a printed circuit board used for a main board of a personal computer is mounted on a plurality of bosses provided on the bottom surface of a case, and is fastened by screws onto the bosses, wherein a signal ground pattern (hereinafter referred to as the “SG pattern”) of the printed circuit board is connected to a frame ground on the bottom surface of the case via the bosses so that impedance is lowered to prevent the EMI.
In order to reduce the electromagnetic radiation due to resonance by connecting the SG pattern of the printed circuit board to the frame ground as described above, it is necessary to establish an appropriate distance between connection points according to the operating frequency in use. At present, as the operating frequency increases as CPUs become faster, for the prevention of EMI, it is necessary to connect the SG pattern of the printed circuit board to the frame ground of the case at multiple points and at minimum spacing ({fraction (1/10)} or less of a clock frequency wavelength λ). As an example, as the wavelength is 30 cm at a clock frequency of 1 GHz, the spacing between the connection points must be as small as 3 cm or less.
However, when the spacing is reduced by increasing the number of the conventional bosses for mounting the printed circuit board, there is a problem in that productivity is reduced as the area cost is increased and the mounting efficiency is reduced because more screws must be used.
In order to solve such problem, the following technique is known.
Unexamined Patent Publication (Kokai) No. 10-255912 (published on Sep. 25, 1998) discloses a technique for preventing undesired electromagnetic radiation by forming a ground pattern inside a printed circuit board and bringing a contact plate spring member in a connector housing into contact with said ground pattern. Thus, it discloses that a line or a surface contact, instead of a point contact, between the SG pattern and the frame ground is effective for preventing electromagnetic radiation.
However, in this technique, the SG pattern is grounded to the frame ground from one side of the connector via the housing.
Further, Unexamined Patent Publication (Kokai) No. 8-228088 (published on Sep. 3, 1996) discloses a technique for establishing electrical connection between a printed circuit board and a shield case by holding the printed circuit board between Q-shaped protruding guides at three sides of the shield case.
However, this technique necessitates a special process, for the shield case itself, for connection to the printed circuit board, and only three sides of the shield case are shielded.
Still further, examples of prior art include the following.
Unexamined Patent Publication (Kokai) No. 11-220263 discloses a printed circuit board wherein a plurality of ground layers are provided and a power supply layer and a signal layer are sandwiched by the plurality of ground layers.
Unexamined Patent Publication (Kokai) No. 9-64581 discloses a single-layer printed circuit board wherein a grounded circumferencial circuit is provided along the circumference of the board, as well as a multi-layer printed circuit board wherein there is a through-hole that communicates with a grounded circumferencial circuit that is provided at the circumference of the board surface.
Unexamined Patent Publication (Kokai) No. 8-162853 discloses a technique for connecting ground patterns, formed as a plurality of inside layers of a multi-layer printed circuit board, to each other by through-holes and metalized walls.
SUMMARY OF THE INVENTION
In view of the above problem, it is an object of the present invention to provide information processing equipment using a versatile grounding plate that can shield four sides of a printed circuit board securely, and with a simpler configuration, for inhibiting or preventing EMI due to electromagnetic noise in information processing equipment.
In order to achieve the above object, the present invention provides information processing equipment, comprising a printed circuit board mounted in a case, wherein a signal ground pattern is formed at the circumference of the printed circuit board, a connector mounting plate is electrically fixed to one side of the printed circuit board and connected to the signal ground pattern, grounding plates that comprise elastic contacts having a connecting spacing that is smaller than a value determined by a signal wavelength are disposed at the other three sides of the printed circuit board, and the signal ground pattern of the printed circuit board is grounded to a frame pattern of the case.
Further, there is also provided information processing equipment, comprising a printed circuit board mounted in a case, wherein a signal ground pattern is formed at the circumference of the printed circuit board, signal ground vias are provided in the signal ground pattern, a connector mounting plate is fixed to one side of the printed circuit board and electrically connected to the signal ground pattern, and grounding plates that comprise comb-like contacts having a connecting spacing that is smaller than a value determined by a signal wavelength are disposed at the other three side of the printed circuit board so that the signal ground pattern is grounded to a frame pattern of a case by inserting and electrically connecting the comb-like contacts to the signal ground vias.
BRIEF DESCRIPTION OF THE DRAWINGS
The above object and features of the present invention will be more apparent from the following description of the preferred embodiments, and with reference to the accompanying drawings, wherein:
FIG. 1
is a partially cutaway perspective view of a case of an information processing equipment according to a first embodiment of the present invention;
FIG. 2
shows a grounding plate according to the first embodiment of the present invention;
FIG. 3
is a schematic view showing electrical connection between the grounding plates and a printed circuit board according to the first embodiment of the present invention;
FIG. 4
is a diagram showing the printed circuit board comprising a mounting plate according to the first embodiment of the present invention;
FIG. 5
shows a part where the mounting plate and the printed circuit board are fixed to each other;
FIG. 6
shows how the printed circuit board that is provided with the mounting plate is inserted and fixed to the grounding plates according to the first embodiment of the present invention;
FIG. 7
shows another example of the grounding plate according to the first invention of the present invention;
FIG. 8A
is a schematic view showing electrical connection between grounding plates and a printed circuit board according to a second embodiment of the present invention;
FIG. 8B
is a schematic view showing a cross section of the printed circuit board used in the second embodiment of the present invention;
FIG. 9
shows a ground plate and a printed circuit board according to a third embodiment of the present invention;
FIG. 10
shows how the printed circuit board
13
to which the mounting plate is fixed is inserted and fixed to the grounding plates
13
according to the third embodiment of the present invention;
FIG. 11A
shows an example wherein a SG pattern is formed on an inside layer of the printed circuit board according to the third embodiment of the present invention;
FIG. 11B
is a schematic view showing a cross section of the printed circuit board;
FIG. 12
shows an example of a conventional information processing equipment to which the present invention can be applied;
FIG. 13
shows another example of a conventional information processing equipment to which the present invention can be applied;
FIG. 14A
shows a conventional printed circuit board disposed in a case; and
FIG. 14B
shows an electrical connection between the conventional printed circuit board and the case.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Before describing the embodiments of the present invention, the related art and the disadvantages therein will be described with reference to the related figures.
Conventionally, information processing equipment, such as the examples shown in
FIGS. 12 and 13
, are well known.
FIG. 12
shows a desktop personal computer that comprises a CRT
121
as a display, wherein a removable disk drive
123
such as a FD drive or a CD drive is provided in a main body, and a printed circuit board on which a CPU and other parts are mounted is disposed therein.
FIG. 13
shows a notebook personal computer that comprises a liquid crystal display
131
, a keyboard
132
and a FD drive
133
and a printed circuit board, on which a CPU and other parts are mounted, is disposed under the keyboard
132
.
FIGS. 14A and 14B
are schematic views showing the relationship between the printed circuit board and the case for preventing EMI in the conventional information processing equipment.
As shown in
FIG. 14A
, the printed circuit board
61
such as a main board of a personal computer is mounted on a plurality of bosses
63
provided on the bottom surface of the case
62
. The printed circuit board
61
is composed of laminated sheets wherein printed wiring is applied to each of the laminated sheets and various electronic parts (not shown) are mounted on the printed circuit board. Further, the printed circuit board
61
is provided with a plurality of through holes
64
that correspond to screw holes on the plurality of bosses
63
and ground pads
65
are provided around the through holes
64
. The inside surfaces of the through holes
64
and the ground pads
65
are treated to be conductive and a signal ground pattern (hereinafter referred to as the “SG pattern”) which is not shown is connected to them. At least the bottom surface of the case
62
is electrically conductive and constitutes a frame ground.
Then, as shown in
FIG. 14B
, the printed circuit board
61
is secured to the case
62
and the SG pattern of the printed circuit board
61
is connected to the frame ground by screws
66
fastening the printed circuit board
61
to the case
62
so that the impedance can be decreased and EMI can be prevented.
As described above, in the information processing equipment, as the operating frequency increases as CPUs become faster, for the prevention of EMI, it is necessary to connect the SG pattern of the printed circuit board to the frame ground of the case at multiple points and at minimum spacing ({fraction (1/10)} or less of a clock frequency wavelength λ). In the conventional information processing equipment, when the spacing is reduced by increasing the number of bosses for mounting the printed circuit board, there is a problem in that productivity is reduced because area cost is increased and the mounting efficiency is also reduced because more screws must be used.
Next, embodiments that implement the present invention will be described. The present invention is intended to solve the above problems.
FIG. 1
is a partially cutaway schematic perspective view of a case for information processing equipment according to a first embodiment of the present invention.
A printed circuit board
11
is enclosed in a case
31
and a conductive mounting plate
25
to which connectors and the like are attached is provided at one side of the printed circuit board.
At the circumference of the top surface of the outermost layer of the printed circuit board
11
, an SG pattern
11
a
is provided. The SG pattern
11
a
is configured to be wider than signal wiring patterns. Besides the SG pattern
11
a
of the printed circuit board
11
, electronic parts
15
such as integrated circuits are mounted and the signal wiring patterns are provided as usual (though not shown).
At the circumference of the printed circuit board
11
, three ground plates
21
are disposed at each side of the printed circuit board
11
other than the side at which the mounting plate
25
is disposed.
The three grounding plates
21
are mounted and secured by screws and the like on a frame ground
32
that is provided on the bottom surface of the case
31
. This allows the SG pattern
11
a
to be connected to the frame ground
32
via the grounding plates
21
.
As shown in
FIG. 2
, the grounding plate
21
is comprised of a spring-like contact
21
a
that is an elastic contact and a L-type support
21
b
. The grounding plate
21
is formed of metal in this example, but it may alternatively be formed of a conductive plastic, or a plastic having a surface that is treated to be conductive.
The spring-like contact
21
a
is comprised of a metal pipe a side of which is cut longitudinally so that the printed circuit board
11
is inserted therebetween. Both sides of the cut portion are rounded to facilitate insertion of the printed circuit board. Further, a plurality of slits
21
c
are provided appropriately in the longitudinal direction to facilitate handling and prevent uneven contact. Though the spacing between the slits
21
c
can be selected as appropriate within a range not more than {fraction (1/10)} of a signal wavelength, it is preferable to reduce the spacing as much as possible to implement multiple-point contact or line contact, if possible.
The support
21
b
is formed by bending a metal plate in the L-shape. The support
21
b
is provided with screw holes
21
d
and secured to the frame ground of the case by screws. It may alternatively be secured by adhesive means such as a conductive adhesive. The spring-like contact
21
a
is joined to the L-type support
21
b
by soldering and the like.
FIG. 3
shows the electrical connection between the grounding plates
21
and the printed circuit board
11
. The printed circuit board
11
is inserted into the grounding plates
21
so that the spring-like contacts come into contact with the SG pattern to provide electrical continuity. In this example, the SG pattern is not provided on the underside of the outermost layer of the printed circuit board
11
. When there is signal wiring at the circumference of the underside of the printed circuit board
11
, an insulating layer consisting of an insulating film and the like is provided over the signal wiring where the underside of the spring-like contacts
21
a
is contacted so that there is no electrical continuity therebetween. However, if it is necessary to further prevent EMI, the SG pattern may also be provided at the circumference of the underside of the printed circuit board
11
so that an electrical connection is provided also at the underside of the spring-like contact
21
a.
FIG. 4
shows connecting relationship between the printed circuit board and the mounting plate
25
. The mounting plate
25
is formed of a conductive member such as a metal plate, holds various connectors
25
a
, and comprises spring-like contacts
25
b
similar to those of the grounding plate.
As shown in
FIG. 5
, the mounting plate
25
is secured to the printed circuit board
11
by fixing parts
25
c
. The fixing parts
25
c
are intended for fastening the mounting plate
25
to the printed circuit board by screws and are provided at least at both ends of the printed circuit board. The fixing parts
25
c
may be provided by cutting and bending portions of the mounting plate itself or may be formed as members independent of the mounting plate
25
. On the other hand, the fixing parts
25
c
are secured to the SG pattern
11
a
of the printed circuit board
11
to provide electrical continuity to the SG pattern
11
a
. Thus, by means of the spring-like contacts
25
b
and the fixing parts
25
c
, the mounting plate
25
establishes electrical continuity with the grounding plate
21
via the SG pattern and it is grounded to the frame ground.
FIG. 6
shows a process for disposing the printed circuit board
11
in the case
31
. The three grounding plates are secured to a metal plate that represents the frame ground so that the grounding plates can hold the printed circuit board. Then, the assembly is completed by inserting the printed circuit board to the spring-like supports of the grounding plates wherein the mounting plate is secured to one side of the printed circuit board.
Here, though not shown, for mechanically supporting the printed circuit board with reference to the case, the printed circuit board may be fastened to a small number of the bosses provided on the bottom surface of the case using screws. At this time, the electrical connection between the SG pattern and the case ground through the bosses may be used in combination in a conventional manner.
FIG. 7
shows another example of the grounding plate according to the first embodiment of the present invention. The grounding plate
22
is comprised of one rectangular metal plate that has tongues
22
a
that represent elastic contacts and a support
22
b
. The tongues
22
a
are formed by making a plurality of slits at one side of the metal plate in the longitudinal direction and bending the portions between the slits by bending depths which are different alternately. The support is formed by bending the other side of the metal plate in the longitudinal direction.
The tongues
22
a
of the grounding plate
22
hold the printed circuit board
11
therebetween while the support
22
b
of the grounding plate
22
is secured to the frame ground. The tongues
22
a
make contact with the topside and the underside of the printed circuit board alternately and the distance between two adjacent tongues
22
a
on one side is substantially equal to the width of the tongue
22
a
. The distance between the tongues
22
a
on one side or the width of the tongue
22
a
must be {fraction (1/10)} or less of the signal wavelength. In order to facilitate insertion of the printed circuit board, the tips of the tongues
22
a
are smoothly bent outward from each other.
FIGS. 8A and 8B
show a second embodiment of the present invention. This embodiment is preferable when it is difficult to form the SG pattern on the surface of the outermost layer of the printed circuit board. The printed circuit boards typically have laminated constructions in which a plurality of layers are laminated wherein the SG pattern is often formed inside the laminated construction.
As an example of the printed circuit board used in this embodiment,
FIG. 8B
shows a cross section of a printed circuit board
12
that comprises four wiring layers. There are shown a signal layer
121
, a SG layer
122
having a SG pattern, a power supply layer
123
and another signal layer
124
. Further, a conductive layer
12
a
, that is comprised of a conductive film and the like, is placed on an end surface of the printed circuit board. The conductive layer
12
a
is electrically connected to the SG pattern of the SG layer
122
inside the printed circuit board.
As shown in
FIG. 8A
, one of grounding plates
23
consists of a gasket
23
a
that represents an elastic contact and a support
23
b
. The gasket
23
a
that represents the elastic contact consists of a flexible member wherein a polyurethane or other resin is covered with conductive cloth. The grounding plates
23
are disposed correspondingly to three conductive end faces
12
a
of the printed circuit board
12
in a manner similar to the example described above. Then, the gaskets
23
a
of the ground plates
23
come into contact with the conductive surfaces
12
a
of the printed circuit board
12
so that the electrical continuity between the SG pattern of the printed circuit board
12
and the frame ground of the case is established.
Just as in the embodiment described above, the three grounding plates are disposed and a mounting plate to which connectors and the like are attached is secured to the remaining one side of the printed circuit board. Along with the connectors and the like, the mounting plate is provided with conductive gaskets in place of the spring-like terminals described above so that the electrical continuity to the SG pattern
12
a
of the printed circuit board
12
is established. In this example, the fixing parts of the mounting plate contribute only to mechanical fixation of the printed circuit board.
Though D-type gaskets are shown in the figure, the shape of the gaskets, such as U-type, L-type and so on, may be selected as appropriate. As shown, it is preferable that the gaskets
23
a
are deformed to cover the conductive surfaces
12
a
of the end faces of the printed circuit board. In this example, it is also preferable to support the printed circuit board
12
with regard to the case by suitable means to mechanically support the printed circuit board
12
, such as by conventional screws to fasten the printed circuit board to the bosses on the bottom surface of the case. Further, the electrical connection between the SG pattern and the frame ground by means of conventional bosses may be used in combination.
According to this embodiment, even when the SG pattern cannot be formed on the surface of the outermost layer of the printed circuit board, undesired electromagnetic radiation can be prevented effectively.
FIG. 9
shows a third embodiment of the present invention.
In the third embodiment shown in
FIG. 9
, an SG pattern is provided at the circumference of four sides of a multi-layer printed circuit board
13
and a large number of SG vias
13
b
are provided on three sides of the four sides of the printed circuit board. The SG vias
13
b
are through holes that penetrate the printed circuit board and the inner surfaces are formed of a conductor to establish electrical continuity to the SG pattern. The SG vias
13
b
differ from the through holes for screws that correspond to the bosses in that the SG vias have a smaller diameter to the extent that lead pins of the connectors can pass through. In order to inhibit EMI, the distance between the adjacent SG vias
13
b
must be smaller than {fraction (1/10)} of the signal wavelength.
In contrast to this, a grounding plate
24
comprises a comb-like contact
24
a
that corresponds to the SG vias
13
b
and a support
24
b
. Three grounding plates
24
are prepared for the printed circuit board that is provided with the SG vias
13
b
so that the comb-like contact
24
a
is inserted and soldered to the SG vias
13
b
. The support
24
b
of the ground plates is formed in an L-type configuration and is mounted and secured on the frame ground. It establishes the electrical continuity between the SG pattern and the case ground.
FIG. 10
shows a combination of the printed circuit board
13
to which the mounting plate
25
is attached and the grounding plates
24
. Just as in the first embodiment, the mounting plate
25
comprises the connectors
25
a
, is secured to the printed circuit board by means of the fixing parts
25
c
and is in electrical continuity with the SG pattern
13
through the spring-like contacts
25
b
. Thus, the printed circuit board is combined with the grounding plates by inserting the printed circuit board to which the mounting plate is attached between the grounding plates secured on the bottom surface of the case
31
from above the grounding plates
24
so that the comb-like contact
24
a
of the grounding plate
24
is inserted to the SG vias
13
b.
Through such a process, the SG ground of the printed circuit board can be connected to the frame ground of the case at multiple points that are spaced away each other by a distance smaller than {fraction (1/10)} of the signal wavelength, and at the same time, the mechanical support for the printed circuit board can be completed. Here, it is to be noted that the electrical contact between the comb-like contacts
24
a
and the SG vias
13
b
of the printed circuit board can alternatively be implemented by only mechanical contact and without soldering.
Further, this embodiment can also be applied to the case when the SG pattern is formed on an inside layer of a multi-layer printed circuit board.
FIGS. 11A and 11B
show the relationship between the printed circuit board
13
and the grounding plate
24
when the SG pattern is formed on an inside layer of the multi-layer printed circuit board.
The SG pattern is not formed on the outermost layer of the four-layer printed circuit board
13
, but an SG layer is formed inside the four-layer printed circuit board.
FIG. 11B
schematically shows how the electrical connection between the SG vias
13
b
and the SG layer
132
is established. A large number of such SG vias
13
b
are provided at the circumference of four sides of the printed circuit board and four grounding plates each of which has a comb-like contact
24
a
are used correspondingly.
By inserting the comb-like contacts
24
a
of the four grounding plates
24
into the large number of SG vias
13
b
of the printed circuit board
13
, the electrical continuity between the grounding plates
24
and the SG pattern provided at the circumference of the printed circuit board can be established and measures against the EMI can be taken at the four sides of the printed circuit board.
Here, as the mounting plate to which the connectors and the like are attached does not interfere with the grounding plates in this case, the mounting plate may be attached to any of the four sides of the printed circuit board wherein the electrical continuity between the mounting plate and the printed circuit board is not especially needed, but the mounting plate may be in electrical contact with one of the grounding plates at the same side at which the mounting plate is disposed.
Further, also in the case shown in
FIG. 9
, the SG vias may be provided at four sides of the printed circuit board and the corresponding four grounding plates
24
may be used.
In this example, as the grounding plates
24
also mechanically support the printed circuit board
13
, other members for mechanical support may not be needed.
Still further, in each example of the embodiments of the present invention, though three grounding plates are provided and disposed to be attached to each corresponding side of the printed circuit board, one U-shaped grounding plate into which the three grounding plates are integrated may alternatively provided to be connected with the printed circuit board. Further, when the grounding plates
24
are used, four of the grounding plates may be integrated.
Thus, according to the present invention, there is provided an information processing equipment that takes effective measures against the EMI at the four sides of the printed circuit board by disposing grounding plates to electrically connect the SG pattern to the frame ground at three sides of the printed circuit board other than the side at which the connector mounting plate is disposed wherein the connector mounting plate is also connected to the frame ground via the grounding plates.
Further, in the embodiment wherein the electrical continuity is established by the elastic contacts of the grounding plates that make contact with the conductive portions that are electrically connected to the SG pattern provided on the inside layer of the printed circuit board, even though the SG pattern is located on the inside layer of the printed circuit board, EMI can be prevented effectively.
Still further, in the embodiment wherein the electrical continuity between the SG pattern and the frame ground is established by providing the SG vias that protrude the printed circuit board and inserting comb-like contacts of the grounding plates into the SG vias, the EMI can be prevented effectively and the mechanical support for the printed circuit board can be provided by only the grounding plates.
Claims
- 1. Information processing equipment comprising:a case on the bottom surface of which a frame ground is formed; a printed circuit board mounted in said case, wherein a signal ground pattern is formed at the circumference of said printed circuit board and a connector mounting plate is secured to one side of said printed circuit board and electrically connected to said signal ground pattern; and grounding plates secured to said frame ground on the bottom surface of said case, wherein said grounding plates have elastic contacts that are electrically connected to said signal ground pattern at the other three sides of said printed circuit board and spaced away from each other by a distance smaller than a value determined by a signal wavelength.
- 2. Information processing equipment according to claim 1, wherein said elastic contacts of said grounding plates are spring-like contacts that are configured by longitudinally forming a cut portion on a side of pipes and said cut portion holds said signal ground pattern formed on the surface of said printed circuit board therebetween.
- 3. Information processing equipment according to claim 1, wherein said elastic contacts of said grounding plates are spring-like contacts that consist of a plurality of tongues that are bent at one side of a metal plate and said tongues hold said signal ground pattern formed on the surface of said printed circuit board therebetween.
- 4. Information processing equipment according to claim 1, wherein said signal ground pattern is formed at the circumference of the top and bottom surfaces of said printed circuit board.
- 5. Information processing equipment according to claim 1, wherein said elastic contacts of said grounding plates consist of conductive gaskets and are elastically pressed against said signal ground pattern formed at the side of said printed circuit board.
- 6. Information processing equipment according to claim 1, wherein said grounding plates are formed of a conductive plastic, or a plastic having a surface that is treated to be conductive.
- 7. Information processing equipment according to claim 1, wherein three members that correspond to each side of said printed circuit board are integrated into said grounding plate.
- 8. Information processing equipment comprising:a case on the bottom surface of which a frame ground is formed; a printed circuit board mounted in said case, wherein a signal ground pattern is formed at the circumference of said printed circuit board, signal ground vias are provided in said signal ground pattern in at least three sides of said printed circuit board, and a connector mounting plate is secured to one side of said printed circuit board and electrically connected to said signal ground pattern; and grounding plates secured to said frame ground on the bottom surface of said case, wherein said grounding plates have comb-like contacts that are inserted and electrically connected to said signal ground vias of said printed circuit board and spaced away from each other by a distance smaller than a value determined by a signal wavelength.
- 9. Information processing equipment according to claim 8, wherein said grounding plates are formed of a conductive plastic, or a plastic having a surface that is treated to be conductive.
- 10. Information processing equipment according to claim 8, wherein the three members that correspond to each side of said printed circuit board are integrated into said grounding plate.
- 11. Information processing equipment comprising:a case on the bottom surface of which a frame ground is formed; a printed circuit board mounted in said case, wherein signal ground pattern is formed at the circumference of an internal laminated sheet of said printed circuit board, signal ground vias are provided at four sides of said signal ground pattern of said printed circuit board, and a connector mounting plate is secured to one side of said printed circuit board; and grounding plates secured to said frame ground on the bottom surface of said case, wherein said grounding plates have comb-like contacts that are inserted and electrically connected to said signal ground vias of said printed circuit board and spaced away from each other by a distance smaller than a value determined by a signal wavelength.
- 12. Information processing equipment according to claim 11, said grounding plates are formed of a conductive plastic, or a plastic having a surface that is treated to be conductive.
- 13. Information processing equipment according to claim 11, wherein four members that correspond to each side of said printed circuit board are integrated into said grounding plate.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2002-214069 |
Jul 2002 |
JP |
|
US Referenced Citations (11)
Number |
Name |
Date |
Kind |
5218760 |
Colton et al. |
Jun 1993 |
A |
5398156 |
Steffes et al. |
Mar 1995 |
A |
5934915 |
Henningsson et al. |
Aug 1999 |
A |
5951307 |
Klein et al. |
Sep 1999 |
A |
6019614 |
Baur et al. |
Feb 2000 |
A |
6118071 |
Munch et al. |
Sep 2000 |
A |
6149443 |
Moran |
Nov 2000 |
A |
6344972 |
Esticule et al. |
Feb 2002 |
B2 |
6456504 |
LoForte et al. |
Sep 2002 |
B1 |
6500012 |
Billenstein et al. |
Dec 2002 |
B1 |
6540530 |
Bass et al. |
Apr 2003 |
B2 |
Foreign Referenced Citations (5)
Number |
Date |
Country |
8-162853 |
Jun 1996 |
JP |
8-228088 |
Sep 1996 |
JP |
9-064581 |
Mar 1997 |
JP |
10-255912 |
Sep 1998 |
JP |
11-220263 |
Aug 1999 |
JP |