Information processing system

Information

  • Patent Grant
  • 6269215
  • Patent Number
    6,269,215
  • Date Filed
    Thursday, March 16, 2000
    24 years ago
  • Date Issued
    Tuesday, July 31, 2001
    23 years ago
Abstract
An object is to provide a video recording/playing apparatus for facilitating recording/playing of motion pictures. The configuration is provided with, at least, a video input device for inputting analog motion pictures (video), a video capture device for digitizing the motion pictures inputted through the video input device and recording the digitized motion pictures and, at the same time, for converting the motion pictures inputted through the video input device into compressed motion pictures capable of being played in a high compression ratio and in a high picture quality and recording the compressed motion pictures, an information extracting device for extracting arbitrary information from the non-compressed motion pictures captured by the video capture device, a correspondence information generating device for associating the information extracted by the information extracting device with the compressed motion pictures captured by the video capture device, an input device for designating a result of the correspondence, and a compressed video playing device for playing the compressed motion pictures.
Description




TECHNICAL FIELD




The present invention relates to an apparatus for capturing, recording and playing input motion pictures and particularly to an apparatus for playing motion pictures from a free scene (position).




BACKGROUND OF THE INVENTION




A conventional video recording/playing apparatus has such a configuration as shown in FIG.


10


.




As shown in

FIG. 10

, the video recording/playing apparatus comprises an information processing system


21


, and a video input device


22


. The video input device


22


is a means for inputting analog motion pictures and is carried out in a video camera, a video tape recorder (VTR), a television set, or the like. The case of a video camera is shown here as an example. The information processing system


21


is a system for recording motion pictures inputted through the video input device


22


and has a means for digitizing analog motion pictures inputted through the video input device


22


, and a means for recording the motion pictures digitized by the digitizing means.




The outline of processing in the conventional video recording/playing apparatus having the configuration shown in

FIG. 10

will be described below with reference to FIG.


11


.





FIG. 11

is a flow chart of processing for specifying scene-changed points with respect to a series of continuous still images (motion pictures) inputted through the video input device


22


, for example, for the purpose of head-review playing.




In the processing, capturing motion pictures is first started (step


501


) and a one-frame's or one-field's analog still image inputted through the video input device


22


is digitized (step


502


). The motion pictures inputted here through the video input device


22


have a standardized format such as NTSC, PAL or SECAM.




In the aforementioned processing, the digitized still image is then stored in a main storage device contained in the information processing system


21


(step


503


). The still image is then compared with a still image stored just before the still image (step


504


) and a judgment is made as to whether there is any scene change or not (step


505


). In this occasion, the judgment as to whether there is any scene change or not is performed by comparing two still images pixel by pixel, calculating differences between pixels and calculating the sum of differences between all pixels. When, for example, the sum exceeds an arbitrary threshold, it is judged that there is some scene change.




When it is judged in the step


505


that there is some scene change, the point of time counted from the start of the capturing of motion pictures is stored in the main storage device (step


506


). A judgment is then made as to whether the capture is completed or not (step


507


) and, if the capture is not completed, the situation of the routine goes back to the step


502


to repeat the processing. If the capture is completed, a series of non-compressed motion pictures is stored in an auxiliary storage device contained in the information processing system


21


(step


508


) and the processing is terminated.




The aforementioned conventional video recording/playing apparatus then displays a list of still images of the scene-changed positions on a display device contained in the information processing system


21


, extracts the point of time stored in the main storage device in the step


506


and corresponding to an arbitrary still image designated from the displayed list by a user through an input device contained in the information processing system


21


and plays a series of motion pictures stored in the auxiliary storage device in the step


508


so that the head-review playing of the series of motion pictures is started from a still image (position) corresponding to the point of time.




A technique in which the change of a scene in motion pictures is extracted automatically so that the motion pictures inclusive of the scene-changed information are encoded, has been disclosed in JP-A-6-133305.




A technique for real-time displaying motion pictures on a display device, or the like, has been described in the magazine “Interface”, April issue, pp.102-109, 1996, published by CQ Publishing Co.




In the conventional technique as shown in

FIG. 10

, however, there is no consideration of the quantity of data stored in the auxiliary storage device because a series of non-compressed motion pictures is captured and a scene change is detected so that the series of motion pictures is stored as non-compressed data in the auxiliary storage device.




Further, in JP-A-6-133305, there is no consideration of processing speed because the scene-changed information is included in the compressed motion pictures so that the scene-changed information must be retrieved from the motion pictures from the first to the last before playing whenever playing is tried.




Further, in the technique described in the magazine “Interface”, there is no consideration of displaying of motion pictures on a display device and recording of the motion pictures in an auxiliary storage device, or the like.




An object of the present invention is to provide a video capture device for real-time and simultaneously capturing motion pictures inputted through a video input device, as non-compressed motion pictures and as motion pictures which are compressed in a relatively high compression ratio by using a compressing technique and which can be played in high picture quality, a video recording/playing apparatus having the video capture device attached thereto, and a video input device.




Another object of the present invention is to provide a video recording/playing apparatus for performing video recording/playing in which an arbitrary still image in the aforementioned non-compressed motion pictures and an arbitrary still image in the aforementioned compressed motion pictures are associated with each other on the basis of information obtained on the basis of the non-compressed motion pictures to thereby make it possible to facilitate recording/playing of the motion pictures.




A further object of the present invention is to provide a video capture device in which odd-numbered field data and even-numbered field data in an interlace signal inputted through the aforementioned video input device are converted into data of different sizes and different color formats to be transferred to a different area or a different system when the aforementioned non-compressed motion pictures are captured in the aforementioned information processing system, and a video recording/playing apparatus having the video capture device attached thereto and for performing recording/playing of motion pictures inputted through the aforementioned video input device while monitoring the motion pictures through a display device contained in the aforementioned information processing system.




SUMMARY OF THE INVENTION




A video capture device attached to a video recording/playing apparatus having a main storage device and a display device and for recording motion pictures, comprises: a video decoder for receiving analog motion pictures and digitizing the input motion pictures; a motion picture compressing portion for compressing the digitized motion pictures into compressed motion pictures; and a motion picture input interface portion for transferring the digitized motion pictures outputted from the video decoder to the main storage device and the display device and, at the same time, transferring the compressed motion pictures outputted from the motion picture compressing portion to the main storage device.




A video recording/playing apparatus provided with a main storage device and a display device and for recording motion pictures, wherein the apparatus comprises: a video decoder for receiving analog motion pictures and digitizing the input motion pictures; a motion picture compressing portion for compressing the digitized motion pictures into compressed motion pictures; and a motion picture input interface portion for transferring the digitized motion pictures outputted from the video decoder to the main storage device and the display device and, at the same time, transferring the compressed motion pictures outputted from the motion picture compressing portion to the main storage device, and wherein the motion picture input interface portion separates the digitized motion pictures into two field signals in an interlace signal so that one field signal is transferred to the main storage device and the other field signal is transferred to the display device, the display device displays motion pictures on the basis of the field signal transferred from the motion picture input interface portion, and the main storage device stores the field signal transferred from the motion picture input interface portion at the same time when the display device displays the motion pictures.




The video recording/playing apparatus further comprises a frame memory for holding at least one frame image of the motion pictures digitized by the video decoder, wherein: the motion picture input interface portion includes a video signal input/output portion for separating the input motion pictures digitized by the video decoder into odd-numbered field data and even-numbered field data and storing the odd-numbered field data and the even-numbered field data in the frame memory, a scaling portion for picking out the odd-numbered field data and the even-numbered field data successively from the frame memory and scaling the data, a color conversion portion for converting the input data given from the scaling portion into data of a predetermined color format, a compressed video input/output portion for capturing the input data from the motion picture compressing portion in accordance with a predetermined protocol, a DMA transfer control portion for transferring the data supplied from the color conversion portion and the compressed motion pictures given from the compressed video input/output portion, to the main storage device or the display device, and a bus input/output portion for making data flow in a bus generally used in an information processing system and for getting data flowing in the bus.




There is further considered a video recording/playing apparatus characterized in that the apparatus comprises an information extracting means for extracting arbitrary information from non-compressed motion pictures captured by the aforementioned video capture means, and a correspondence information generating means for associating the information extracted by the information extracting means with the compressed motion pictures captured by the video capturing means, wherein: the information extracting means has a function of extracting the point of time of an image at an arbitrary point of time elapsed from the start of the motion pictures from the series of non-compressed motion pictures captured by the non-compressed video capture device; and the correspondence information generating means has a function of extracting an image (position) at the same point of time as the point of time from the compressed motion pictures captured by the compressed video capture device and associating the image (position) in the compressed motion pictures with the image in non-compressed motion pictures.




There is also considered the video recording/playing apparatus characterized in that the apparatus further comprises an input device for performing a user's instruction, and a compressed video playing device for playing the compressed motion pictures, wherein the compressed video playing device has a function of head-review playing of the compressed motion pictures from the associated image or the neighborhood thereof on the basis of the instruction inputted by the input means.




It is further considered a configuration in which the video capture device and the compressed video playing device are combined.




The video recording/playing apparatus according to the present invention carries out the following operation.




With some instruction inputted by the user through the input means as a turning point, the video capture device digitizes motion pictures inputted through the video input device and captures the digitized motion pictures directly as non-compressed motion pictures on one hand and the video capture device digitizes motion pictures inputted through the video input device, converts the digitized motion pictures into compressed motion pictures which is in a high compression ratio and which can be reproduced in a high picture quality, and captures the compressed motion pictures on the other hand. In this occasion, the two kinds of motion pictures are generated from one and the same video source and captured in real time and simultaneously.




When, for example, a scene change is to be detected, the information extracting means extracts at least an image just after the scene change obtained by analysis of the non-compressed motion pictures and a point of time of the image counted from the start of the capture of the motion pictures and the correspondence information generating means extracts at least an image (position) at the same point of time as the above-mentioned point of time from the compressed motion pictures captured by the video capture device and generates correspondence information for associating the two kinds of motion pictures with each other.




Furthermore, because the non-compressed motion pictures are separated into odd-numbered field data and even-numbered field data to be transferred alternatively to the main storage device and the display device, scene changes can be detected while motion pictures inputted through the video input device are monitored on the display device.




Furthermore, when at least an image just after the scene change is displayed on the display device and designated through the input means by the user, the compressed video playing device specifies the image from which the head-review playing of the compressed motion pictures will be started, and performs the playing.











BRIEF DESCRIPTION OF DRAWINGS





FIG. 1

is a hardware configuration diagram of a video recording/playing apparatus in a second embodiment;





FIG. 2

is a functional block diagram of the video recording/playing apparatus in the best-mode embodiment;





FIG. 3

is a flow chart of processing in the control means in the best-mode embodiment;





FIG. 4

is a flow chart of processing in the non-compressed video analyzing means in the best-mode embodiment;





FIG. 5

is a flow chart of processing in the correspondence information generating means in the best-mode embodiment;




FIG.


6


(


a


), FIG.


6


(


b


) and FIG.


6


(


c


), are explanatory views showing a method of generating correspondence information;





FIG. 7

is an explanatory view showing a data structure of the correspondence table;





FIG. 8

is an explanatory view showing a data structure of the correspondence table;





FIG. 9

is a flow chart of processing in the compressed video playing device in the best-mode embodiment;





FIG. 10

is a configuration diagram of a video recording/playing apparatus according to a conventional technique;





FIG. 11

is a flow chart of processing in the video recording/playing apparatus according to the conventional technique;





FIG. 12

is a hardware configuration diagram of the video recording/playing apparatus according to a third embodiment;





FIG. 13

is a flow chart of processing in the control means in the third embodiment;





FIG. 14

is a hardware configuration diagram of the video recording/playing apparatus according to the best-mode embodiment;





FIG. 15

is a hardware configuration diagram of the video capture device according to the best-mode embodiment;





FIG. 16

is a hardware configuration diagram of the motion picture input interface portion according to the best-mode embodiment;





FIG. 17

is a view showing an example of the register configuration of the video capture device in the best-mode embodiment;





FIG. 18

is an explanatory view of the operation of the video capture device in the best-mode embodiment;





FIG. 19

is a view showing an example of the display configuration at the time of reproduction of compressed motion pictures in the best-mode embodiment;





FIG. 20

is a view showing an example of the display configuration at the time of reproduction of compressed motion pictures in the best-mode embodiment;





FIG. 21

is a hardware configuration diagram of the video capture device in the best-mode embodiment; and





FIG. 22

is a diagram showing the video input device containing the video capture device according to the present invention.











DETAILED DESCRIPTION




A best-mode embodiment according to the present invention will be described below with reference to the drawings.





FIG. 14

is a hardware configuration diagram of an information processing system such as a personal computer, or the like, to which a video recording/playing apparatus according to the best-mode embodiment of the invention can be applied.




As shown in

FIG. 14

, the information processing system comprises a CPU


1


, a main storage device


2


, an auxiliary storage device


3


, an input device


4


, a display device


5


, a video input device


6


, a video capture device


12


, and a compressed video decoder


9


. Respective constituent elements except the video input device


6


are connected by a bus


10


so that necessary information can be transmitted between the respective constituent elements.




The video input device


6


is connected to the video capture device


12


so that video information can be transmitted from the video input device


6


to the video capture device


12


. The video capture device


12


is designed to be attached to an information processing system


21


such as a personal computer, or the like, constituted by the CPU


1


, and so on, connected by the bus or to be contained in the video input device


6


as shown in FIG.


22


. Incidentally, the video capture device shown in

FIG. 22

is configured in the same manner as the video capture device


12


shown in

FIG. 15

except that the video capture device shown in

FIG. 22

contains a CCD camera


56


.




The main storage device


2


is a means which serves as a work area and also serves as means for storing necessary programs. For example, the former can be realized by an RAM and the latter can be achieved by an ROM etc. The auxiliary storage device


3


is means for storing programs for controlling the operation of the apparatus and storing compressed motion pictures, and so on. For example, the auxiliary storage device


3


can be realized by a floppy disk, a hard disk, a memory card, a DVD, or the like. The input device


4


is means for inputting necessary instructions and information. For example, the input device


4


can be realized by a keyboard or a pointing device such as a mouse, or the like. The display device


5


is means for displaying various kinds of information such as reproducing and displaying of compressed motion pictures, or the like. For example, the display device


5


can be realized by a CRT, an EL display, a plasma display, a liquid crystal display, or the like.




Similarly to the video input device


22


in the prior art, the video input device


6


is means for inputting analog motion pictures (video) and can be realized by a video camera, a VTR, a television set, a TV tuner, or the like. The video capture device


12


is means for digitizing analog motion pictures inputted through the video input device


6


and compressing the digitized motion pictures. For example, the compressing (encoding) means used in the video capture device


12


can be realized by MPEG (Moving Picture Experts Group), or the like, in which reproducing can be made with a high compression ratio and with a high picture quality. Alternatively, the compressing means can be also achieved by a compressing technique described in “Illustrated Up-to-date MPEG Textbook”, pp.28-29, edited by the Multimedia Communication Research Group, ASCII Corp. The details of the MPEG compressing technique has been disclosed in “Illustrated Up-to-date MPEG Textbook”, pp.89-165, edited by the Multimedia Communication Research Group, ASCII Corp.




The compressed video decoder


9


is means for reproducing motion pictures compressed by using the compressing technique in the video capture device


12


and displaying the reproduced motion pictures on the display device


5


. When, for example, the compressing technique is MPEG, the compressed video decoder


9


can be realized by an MPEG decoder.




The CPU


1


performs a predetermined operation in accordance with a program which is stored in the main storage device


2


or the auxiliary storage device


3


in advance.





FIG. 15

is a block configuration diagram of the video capture device


12


.




As shown in

FIG. 15

, the video capture device


12


includes a motion picture input interface portion


50


, a frame memory


51


, a motion picture compressing portion


52


, and a video decoder


53


.




The video decoder


53


is connected to the video input device


6


and for digitizing analog motion pictures inputted through the video input device


6


and outputting the digitized motion pictures. When, for example, an NTSC-format signal is used for the analog motion pictures inputted through the video input device


6


, the video decoder


53


can be realized by an NTSC decoder. In this case, odd-numbered field signals and even-numbered field signals in an NTSC-format interlace signal are digitized to be outputted in the form of a time series. The output motion pictures are inputted both to the motion picture compressing portion


52


and to the motion picture input interface portion


50


simultaneously. Incidentally, when the signal outputted from the video input device


6


to the video capture device


12


is not an analog signal but a digital signal, the video capture device


12


dose not need the video decoder


53


.




The motion picture compressing portion


52


uses a compressing technique such as MPEG, or the like, for compressing the digitized motion pictures outputted from the video decoder


53


and outputting the compressed motion pictures to the motion picture input interface portion


50


. When, for example, the compressing technique is MPEG, the motion pictures are compressed as an MPEG stream.




The frame memory


51


serves to hold at least one frame still image of the motion pictures digitized by the video decoder


53


and is connected to the motion picture input interface portion


50


.




The motion picture input interface portion


50


is connected to the bus


10


, serves to store the digital motion pictures given from the video decoder


53


in the frame memory


51


once, and serves to DMA-transfer the image stored in the frame memory


51


to the main storage device


2


, the auxiliary storage device


3


or the display device


5


through the bus


10


. At the same time, the compressed motion pictures supplied from the motion picture compressing portion


52


are also DMA-transferred to the main storage device


2


or the auxiliary storage device


3


through the bus


10


.





FIG. 16

is a block configuration diagram of the motion picture input interface portion


50


.




As shown in

FIG. 16

, the motion picture input interface portion


50


has a bus input/output portion


60


, a DMA transfer control portion


61


, a color conversion portion


62


, a scaling portion


63


, a video signal input/output portion


64


, and a compressed image input/output portion


65


.




The bus input/output portion


60


can be achieved in accordance with a bus protocol such as PCI bus protocol, ISA bus protocol, or the like, generally used in an information processing system, or the like. The bus input/output portion


60


serves to make data flow in the bus


10


and serves also to get data flowing in the bus


10


.




The compressed image input/output portion


65


serves to supply the DMA transfer control portion


61


data inputted from the motion picture compressing portion


52


in accordance with a predetermined protocol.




The video signal input/output portion


64


stores the digitized motion pictures inputted from the video decoder


53


in the frame memory


51


. When the video decoder


53


is an NTSC decoder, odd-numbered field data and even-numbered field data in the motion pictures, that is, in an interlace signal are supplied in time series and a signal indicating whether the current input data is an odd-numbered field data or an even-numbered field data is supplied from the video decoder


53


to the video signal input/output portion


64


. Accordingly, the respective field data are stored separately in predetermined areas of the frame memory


51


in accordance with the signal. When the frame memory


51


has no capacity except the capacity for storing one frame data (composed of an odd-numbered field data and an even-numbered field data), the respective field data are stored so as to be written over the field data stored previously.




The scaling portion


63


picks out one-frame odd-numbered field data and one-frame even-numbered field data successively from the frame memory


51


, scales the data to a predetermined size and outputs the scaled data to the color conversion portion


62


.




The color conversion portion


62


converts the data supplied from the scaling portion


63


into data of a predetermined color format and outputs the data to the DMA transfer control portion


61


. In the case of image data of the NTSC signal, the color format is generally a YUV format, so that the YUV-format data is stored in the frame memory


51


. The color format of data to be transferred to the main storage device


2


and the display device


5


is, however, in most cases, an RGB format. Accordingly, the color conversion portion


62


has at least a function of converting the YUV format into the RGB format.




The DMA transfer control portion


61


DMA-transfers the data supplied from the color conversion portion


62


and the compressed motion pictures supplied from the compressed image input/output portion


65


to the main storage device


2


, the auxiliary storage device


3


or the display device


5


through the bus input/output portion


60


and the bus


10


. Because the video decoder


53


and the motion picture compressing portion


52


operate asynchronously, data may be given from the color conversion portion


62


and the compressed image input/output portion


65


simultaneously. In this case, the compressed motion pictures from the compressed image input/output portion


65


are DMA-transferred preferentially. This is because data do not make sense as a whole if even only a part of data is missing from the compressed motion pictures.





FIG. 17

shows an example of the configuration of registers included in the motion picture input interface portion


50


.




Registers are at least composed of input resolution registers


301


, output resolution registers


302


, color format registers


303


, and transfer destination address registers


304


.




The input resolution registers


301


designate the resolution of data inputted through the video decoder


53


. The output resolution registers


302


designate the resolution of data outputted onto the bus


10


. The color format registers


303


designate the color format of data outputted onto the bus


10


. The transfer destination address registers


304


designate the address to which data outputted onto the bus


10


will be transferred finally and which can be addressed by the CPU


1


.




The respective registers are prepared separately so as to be classified into odd-numbered field data


310


, even-numbered field data


320


and compressed motion picture data


330


. The register assigned to the compressed motion picture data


330


is however only one register, namely, transfer destination address register


304


. The motion picture input interface portion


50


is designed to be operated in accordance with values which are set in the respective resisters in advance. The values are set in the respective registers by a program for driving the video capture device


12


. The program is stored in the main storage device


2


or the auxiliary storage device


3


and executed by the CPU


1


. The user can set desired values in the respective registers through the program.




The set values of the registers in the video capture device


12


and the operations of the registers will be described below with reference to

FIG. 18

upon the case where the set values of the registers are as shown in FIG.


17


.




In

FIG. 18

, the areas


1


and


2


are areas secured separately on the main storage device


2


. The area


3


is a part of VRAM (display-memory) contained in a general display device. Data stored in the VRAM are designed to be displayed on a CRT, or the like. When, for example, motion pictures are to displayed in a window, the area


3


is an area which is secured on the VRAM correspondingly to the display region of the window.




Assuming now that in

FIG. 17

the register content of the transfer destination address


304


assigned to the odd-numbered field data


310


, the register content of the transfer destination address


304


assigned to the even-numbered field data


320


and the register content of the transfer destination address


304


assigned to the compressed motion picture data


330


indicate the top address of the area


2


, the top address of the area


3


and the top address of the area


1


respectively, then the odd-numbered field data and the compressed motion picture data are transferred to the main storage device


2


whereas the odd-numbered field data is transferred to the display device


5


.




With respect to the odd-numbered field data


310


, because the register content of the input resolution


301


is 640240 and the register content of the output resolution


302


is 160120, the scaling portion


63


performs scaling-down to ¼ horizontally and ½ vertically. Further, because the register content of the color format


303


is RGB24, the color conversion portion


62


converts the YUV-format data into RGB-format data so that each of R, G and B components is expressed in 8 bits. The DMA transfer control portion


61


then transfers the scaled and color-converted odd-numbered field data to the area


2


designated by the register content of the transfer destination address


304


.




With respect to the even-numbered field data


320


, because the register content of the input resolution


301


is 640240 and the register content of the output resolution


302


is 320240, the scaling portion


63


performs scaling-down to ½ horizontally without scaling-down/up vertically. Further, because the register content of the color format


303


is RGB8, the color conversion portion


62


converts the YUV-format data into RGB-format data so that a combination of R, G and B components is expressed in 8 bits totally. The DMA transfer control portion


61


then transfers the scaled and color-converted even-numbered field data to the area


3


designated by the register content of the transfer destination address


304


.




With respect to the compressed motion picture data


330


, the compressed motion picture data transmitted from the motion picture compressing portion


52


is transferred to the area


1


designated by the register content of the transfer destination address


304


.




As described above, the video capture device


12


can divide motion picture data supplied from a video camera, a VTR, or the like, into odd-numbered field data and even-numbered field data and can transfer the odd-numbered field data and the even-numbered field data to different devices or areas respectively in the information processing system. At the same time, the video capture device


12


can transfer also compressed data of the input motion pictures to a different device or area in the information processing system. Furthermore, the odd-numbered field data and the even-numbered field data can be transferred after they are converted into data with different sizes and different color formats. Furthermore, the odd-numbered field data and the even-numbered field data can be transferred to the same device or area correspondingly to the set values of the registers for the transfer destination address


304


. In this case, the motion picture data can be recorded or displayed just as the motion picture data have been inputted.





FIG. 2

is a functional block diagram of the video recording/playing apparatus as a preferred embodiment of the present invention.




In

FIG. 2

, the reference numeral


101


designates a control means for controlling respective functional blocks in the video recording/playing apparatus as a preferred embodiment of the invention;


102


, a non-compressed video analyzing means having a function of analyzing non-compressed motion pictures;


103


, a correspondence information generating means having a function of generating information for associating the non-compressed motion pictures with the compressed motion pictures; and


104


, a compressed video playing device having a function of playing/displaying the compressed motion pictures. The CPU


1


executes a program stored in the main storage device


2


or the auxiliary storage device


3


to thereby achieve these functional blocks.




The operation of the video recording/playing apparatus according to the present invention will be described below with reference to the drawings.




Although description will be made upon the case where MPEG is used as a compressing technique to make it possible to perform playing in a high compression ratio and in a high picture quality and where the change of a scene is used as information extracted from digitized motion pictures, the invention is not limited thereto.





FIG. 3

is a flow chart showing the contents of processing in the control means


101


. The program for carrying out this processing is stored in the main storage device


2


or the auxiliary storage device


3


, so that the program is executed by the CPU


1


with some event as a turning point, that is, for example, with a user's instruction inputted through the input device


4


as a turning point.




As shown in

FIG. 3

, the control means


101


first starts capturing of motion pictures (step


121


). Specifically, the program for driving the video capture device


12


is executed to perform preparation for acquiring motion pictures such as setting of values inputted by the user through the input device


4


or the like, in the respective registers, securing of work areas on the main storage device


2


, and so on. As an example for description, the set values of the registers are now assumed to be shown in FIG.


17


. Accordingly, respective data are transferred as shown in FIG.


18


. That is, the work areas on the main storage device


2


contain the area


1


and the area


2


.




The control means


101


then acquires non-compressed motion pictures inputted through the video input device


6


and digitized by the video capture device


12


and stores the digitized non-compressed motion pictures in the area


2


(step


122


). In this occasion, the data stored in the area


2


is an odd-numbered field data which is DMA-transferred by the video capture device


12


automatically. At the same time when the odd-numbered field data is transferred, a motion picture data inputted through the video input device


6


and MPEG-compressed by the video capture device


12


and an even-numbered field data are transferred to the area


1


and to the area


3


respectively.




The non-compressed video analyzing means


102


is then operated to detect whether there is any scene change or not (step


123


). If the capture of motion pictures is continued, the steps


122


and


123


are repeated (step


124


). The detailed contents of processing in the non-compressed video analyzing means


102


will be described later.




If the capture of motion pictures is terminated in the step


124


, for example, by an instruction from the user, or the like, the motion picture data (stored in the area


1


on the main storage device


2


) inputted through the video input device


6


and digitized and MPEG-compressed by the video capture device


12


is stored in the auxiliary storage device


3


(step


125


). In this occasion, because compression of non-compressed motion pictures is performed in the video capture device


12


simultaneously while a process of the steps


122


to


124


, that is, a non-compressed video analyzing process is carried out, there is no reduction of processing speed on the whole of the control means


101


. Furthermore, because the non-compressed motion picture data captured in the step


122


is not compressed but the motion picture data supplied through the video input device


6


is compressed (while the non-compressed motion picture data is analyzed), the technique used herein is different from the aforementioned conventional technique in which non-compressed motion picture data is inputted and then compressed.




The control means


101


then operates the correspondence information generating means


103


to generate information for associating the non-compressed motion picture data at the point of time of the scene change with the compressed motion picture data at the same point of time (step


126


). The detailed contents of processing in the correspondence information generating means


103


will be described later.




Finally, the compressed video playing device


104


is operated to start the reproduction/display of the aforementioned compressed motion pictures, for example, from the point of time designated by the user (step


127


). If the processing in the control means


101


is continued, the situation of the routine goes back to the step


121


to repeat the processing (step


128


). When, for example, there is some ending instruction, or the like, from the user, the processing in the control means


101


is terminated. The detailed contents of processing in the compressed video playing device


104


will be described later.





FIG. 4

is a flow chart showing the contents of processing in the non-compressed video analyzing means


102


. The program for carrying out this processing is stored in the main storage device


2


or the auxiliary storage device


3


and executed by the CPU


1


.




As shown in

FIG. 4

, the non-compressed video analyzing means


102


compares the data of non-compressed motion pictures stored in the area


2


in the step


122


in the control means


101


with the data of non-compressed motion pictures stored previously in the area


2


in the repetition process of the steps


122


to


124


(step


131


) In this occasion, similarly to the above-mentioned conventional technique differences between pixels are calculated by pixel-by-pixel comparison between the two non-compressed motion picture data, and the sum of the differences between all pixels is obtained to conduct comparison, so that a judgment is made as to whether there is any scene change or not (step


132


). When the sum of the differences is larger than a predetermined threshold, a decision can be made that there is some scene change.




When a decision is made in the step


132


that there is some scene change, the point of time which is elapsed from the point of time of the start of motion picture capture and at which there is some scene change in the non-compressed motion pictures is acquired (step


133


) and stored in the work area (step


134


), and the processing is terminated. In this occasion, the time elapsed from the point of time of the start of motion picture capture can be acquired as follows. That is, if the aforementioned program for driving the video capture device


12


has a function of feeding back the number of still images (inclusive of the number of still images not captured because of the problem of time) captured from the point of time of the start of motion picture capture, the number of still images is acquired. If motion pictures inputted through the video input device


6


are of an NTSC format, the quotient obtained by dividing the number of still images by 30 is the point of time because the frame rate is 29.97 frame per second. In the case where the aforementioned program for driving the video capture device


12


has no function of feeding back the number of still images captured from the point of time of the start of motion picture capture, a timer at intervals of 1/29.97 sec (in the case of NTSC-format motion pictures) may be preferably started from the point of time of the start of motion picture capture so that the number of still images captured is counted.




If a decision is made in the step


132


that there is no scene change, the non-compressed motion pictures previously stored in the area


2


are deleted from the area


2


(step


135


) and the processing is terminated. A specific example of the scene change will be described later.





FIG. 5

is a flow chart showing the contents of processing in the correspondence information generating means


103


. The program for carrying out this processing is stored in the main storage device


2


or the auxiliary storage device


3


and is executed by the CPU


1


.




As shown in

FIG. 5

, the correspondence information generating means


103


first judges whether there is any scene change in capturing of a series of motion pictures or not (step


141


). If there is no scene change, the processing is terminated. If a counter is provided in the processing in the non-compressed video analyzing means


102


so that the counter is incremented when the scene change is judged in the step


132


in the non-compressed video analyzing means


102


, the judgment as to whether there is any scene change or not, can be made by examining whether the count value of counter provided in the processing in the non-compressed video analyzing means


102


is 1 or more.




If a decision is made in the step


141


that there is some scene change, only one of the points of time stored in the non-compressed video analyzing means


102


in the step


134


is acquired from the work area (step


142


), and the still image (position) at the point of time the same as the point of time in the MPEG-compressed motion pictures stored in the auxiliary storage device


3


in the step


125


are calculated (step


143


). The calculating method in this occasion will be described with reference to

FIGS. 6



a


through


6




c.







FIG. 6



a


is a view showing a state in which a part of non-compressed motion pictures captured in the step


122


in the control means


101


are arranged in a time series sequence as an example upon the assumption that time advances from the left to the right in the drawing. That is, A


1


is the earliest captured still image of non-compressed still images A


1


to A


9


. Further, the still images A


1


to A


4


show information concerning the movement of an object a, so that the still images A


1


to A


4


are considered to be in the same scene. When the still image A


4


is changed to the still image A


5


, the object a however disappears from the scene and a new object b appears in the still image A


5


. This is considered to be a scene change. Similarly, there is a scene change between the still images A


6


and A


7


. That is, in the step


132


in the non-compressed video analyzing means


102


, scene changes are judged when the still images A


5


and A


7


are analyzed.





FIG. 6



b


is a view showing a state in which a part of MPEG compressed motion pictures captured in the step


125


in the control means


101


are arranged in a time series sequence (a sequence of original images) upon the assumption that time advances from the left to the right in the drawing. That is, B


1


is the earliest captured MPEG-encoded image of compressed still images B


1


to P


2


. Further, the images B


1


, B


2


, I


1


, B


3


, B


4


, P


1


, B


5


, B


6


and P


2


are coincident with the images A


1


, A


2


, A


3


, A


4


, A


5


, A


6


, A


7


, A


8


and A


9


respectively in terms of time. Because the non-compressed images and the compressed images are based on the same motion picture data inputted through the video input device


6


, for example, the data of A


1


is coincident with the data obtained by decoding B


1


. Here, I, P and B show an I picture, a P picture and a B picture, respectively, in MPEG. The practical encoding method has been described in detail in “Illustrated Up-to-date MPEG Textbook”, pp.89-165, edited by the Multimedia Communication Research Group, ASCII Corp.





FIG. 6



c


is a view showing a state in which a part of MPEG-compressed motion pictures captured in the step


125


in the control means


101


are arranged in a sequence (bit-streaming sequence) of data actually stored in the auxiliary storage device


3


. In

FIGS. 6



b


and


6




c


, identical numerals refer to identical parts. Accordingly, the first data B


1


in

FIG. 6



b


and the second data B


1


in

FIG. 6



c


are data of one and the same content. Further, I


1


is assumed to be the top of GOP.




If a point of time acquired in the step


142


is the point of time (which is assumed to be T1) of the capturing of the non-compressed image A


5


, the position of B


4


is calculated in the step


143


because B


4


is an image at the same point of time as T1 in the MPEG-compressed motion pictures. The calculating method will be described below.




Header information is stored in the top of each GOP in an MPEG bit stream, so that the header information contains a point of time (which is assumed to be TC) of the top image of the GOP measured from the top of the bit stream. Accordingly, a GOP (assumed to be G


1


) containing T1 can be specified by examining TC in each GOP. That is, the point of time of B


1


in the MPEG bit stream (G


1


) in

FIG. 6



c


is TC. Further, the header information contains the frame rate (assumed to be PR) of motion pictures. Further, each image stores header information which contains the frame number (assumed to be TR) of the image measured from the top of the GOP (Group Of Picture: a structure for random access of an MPEG bit stream) containing the image. Accordingly, a result obtained by multiplying PR (Picture Rate: a period of displaying images in a sequence layer) and TR (Temporal Reference: a remainder obtained by dividing the serial number of a picture in a picture layer by 1024 so as to be reset by the top of the GOP) is the point of time (assumed to be T2) measured from the top of G


1


. The point of time T2 can be calculated by searching for the image (B


4


) having the relation TC+T2=T1. Although the above description concerns video data, information concerning audio data can be calculated in the same manner as the information concerning video data.




Further, reproduction in the middle of the GOP or from the B picture may be impossible when the ability of the compressed video playing device


104


which will be described later is insufficient. It can be therefore thought of that B


4


is replaced by B


1


or I


1


in the top of the GOP, P


1


near B


4


, or the like.




Referring back to

FIG. 5

, the correspondence information generating means


103


then generates a correspondence table


200


shown in

FIG. 7

on the basis of various information calculated in the step


143


(step


144


). If the correspondence table


200


has been already generated, entries are added to the correspondence table


200


.





FIG. 7

shows the contents of the correspondence table


200


. The correspondence table


200


serves to associate non-compressed images and compressed images with each other and is stored in the main storage device


2


or the auxiliary storage device


3


. Further, because the header information stored in the top of each GOP contains a free information storage area as a user data area, it can be thought of that the correspondence table


200


is stored in the area.




The correspondence table


200


has respective items of ID


210


, non-compressed image pointer


220


, compressed file name


230


, time code


240


and index


250


. For example, the correspondence table


200


is constituted by data sets each given to an image just after or near a scene change correspondingly to the aforementioned items. Further, in the case where the correspondence table


200


is stored in the user data area, the correspondence table


200


may be formed to have at least the items of non-compressed image pointer


220


and index


250


.




Identifiers given to scene changes respectively are set in the ID


210


. The identifiers are numerical data given peculiarly in this video recording/playing apparatus. Pointers indicating non-compressed images stored in the main storage device


2


(stored in the step


122


in the control means


101


) are set in the non-compressed image pointer


220


. Any data such as comments inputted by the user, or the like, can be used as the contents of the non-compressed image pointer


220


if scene changes can be specified by the data. The file names of compressed motion pictures stored in the auxiliary storage device


3


in the step


125


in the control means


101


are set in the compressed file name


230


. Points of time for the respective first images of GOPs which exist in header information of the GOPs containing scene-changed images and which are measured from the top of the bit stream, are stored in the time code


240


. This is equivalent to TC as described above. Indeces (frame numbers) of the scene-changed images in the GOP are set in the index


250


(the indeces are numbered from zero).




For example, in the example of

FIGS. 6



a


to


6




c


, a correspondence table


200


′ is generated as shown in FIG.


8


. In

FIG. 8

, the reference numerals


301


and


302


designate data sets given to images A


5


and A


7


just after scene changes respectively in

FIG. 6



a


. In the data set


301


, the set value of the non-compressed image pointer


220


is the address on the main storage device


2


of the non-compressed image A


5


stored in the main storage device


2


. In the data set


302


, the set value of the non-compressed image pointer


220


is the address on the main storage device


2


of the non-compressed image A


7


stored in the main storage device


2


.




Referring back to

FIG. 5

, the correspondence information generating means


103


finally turns the situation of the routine back to the step


142


to repeat the processing when there is another scene change (step


145


). If there is no more scene change, the processing is terminated. The judgment as to whether there is any more scene change or not, is based on examination of the aforementioned counter.





FIG. 9

is a flow chart showing the contents of processing in the compressed video playing device


104


. The program for carrying out this processing is stored in the main storage device


2


or the auxiliary storage device


3


and is executed by the CPU


1


.




As shown in

FIG. 9

, the compressed video playing device


104


first lists various kinds of information on the display device


5


in accordance with the contents of the correspondence table


200


generated by the correspondence information generating means


103


(step


151


). In this occasion, the contents of the ID


210


in the correspondence table


200


and non-compressed images pointed by the non-compressed image pointer


220


are displayed. Further, the compressed file name


230


in the correspondence table


200


may be displayed together with these pieces of information. For example,

FIG. 19

shows an example of display on the display device


5


in the step


151


.




In

FIG. 19

, the reference numeral


400


designates a display screen contained in the display device


5


;


410


, a window for displaying the contents of the correspondence table


200


; and


410




a


to


410




i


, non-compressed images pointed by the non-compressed image pointer


220


in the correspondence table


200


and stored in the main storage device


2


. In this case, the correspondence table


200


has at least nine entries.




Referring back to

FIG. 9

, the compressed video playing device


104


waits for an instruction from the user (step


152


) and stands by for the instruction from the user (step


153


). When there is some instruction (to select one non-compressed image from the non-compressed images (


410




a


to


410




i


) listed in the step


151


) from the user in this occasion, a position (reproduction start position) corresponding to the instructed non-compressed image is specified in the compressed motion pictures (step


154


). This processing can be carried out as follows.




First, the correspondence table


200


is searched with the ID (the data of the ID


210


in the correspondence table


200


) of the designated non-compressed image as a keyword. As a result, a data set having the ID can be retrieved. The data of the compressed file name


230


, the data of the time code


240


and the data of the index


250


are extracted from the data set to thereby make it possible to specify the playing position.




Then, the compressed video playing device


104


reproduces the compressed motion pictures indicated by the data of the compressed file name


230


from the playing position and displays the reproduced motion pictures on the display device


5


(step


155


). The method for reproducing the compressed motion pictures and displaying the reproduced motion pictures on the display device


5


after the settlement of the playing position is well-known so that the detailed description thereof will be omitted. For example,

FIG. 20

shows an example of display on the display device


5


in the step


155


.




In

FIG. 20

, the reference numeral


420


designates a window for reproducing/displaying the compressed motion pictures indicated by the data of the compressed file name


230


from the playing position.




Finally, if the processing in the compressed video playing device


104


is continued, the situation of the routine goes back to the step


151


to repeat the processing (step


156


). When, for example, there is an ending instruction, or the like, from the user in the step


156


, the processing in the compressed video playing device


104


is terminated.




As described above, according to the present invention, because scene changes, or the like, can be detected while compressed motion pictures are recorded so that motion picture data can be associated with the scene-change points in the compressed motion pictures, a video recording/playing apparatus for recording/playing motion pictures easily can be provided.




Furthermore, according to the present invention, there can be provided a video recording/playing apparatus in which: non-compressed motion pictures and compressed motion pictures can be captured (recorded) simultaneously in an information processing system; analysis is made by using non-compressed motion pictures so that an arbitrary image corresponding to an arbitrary image in the non-compressed motion pictures can be specified in the compressed motion pictures; and these two images are associated with each other so that the head-review playing of the compressed motion pictures can be started easily from the position designated by the user, or the like.




Furthermore, according to the present invention, there can be provided a video recording/playing apparatus in which compressed motion pictures are captured preferentially when the non-compressed motion pictures and compressed motion pictures are captured simultaneously in the information processing system.




Furthermore, according to the present invention, there can be provided a video recording/playing system such as a motion picture album for generating information for associating non-compressed motion pictures with compressed motion pictures on the basis of the non-compressed motion pictures in the middle of the recording of the non-compressed motion pictures or after the recording of the non-compressed motion pictures and for playing the compressed motion pictures on the basis of the relating information.




Furthermore, according to the present invention, because not only non-compressed motion pictures can be separated into odd-numbered field data and even-numbered field data in an interlace signal when the non-compressed motion pictures are captured in the information processing system but also the odd-numbered field data and the even-numbered field data with the same size and same color format or with different sizes and different color formats can be transferred to the same area/device or different areas/devices, there can be provided a video recording/playing apparatus in which scene changes can be detected while input motion pictures are monitored, for example, by a display device contained in the information processing system.




Although this embodiment has shown the case where scene changes are used as information extracted from the non-compressed motion pictures, the present invention can be applied to the case where another information is used. When, for example, image information to be detected is designated by the user in advance so that an image consistent with the image information is recognized by the non-compressed video analyzing means


102


, a simple motion picture retrieval system can be constructed.




Although the above description has been made upon the case where the video capture device


12


and the compressed video playing device


9


are formed as different devices, the present invention may be applied to the case where the compressed video playing device


9


is formed as a video capture/playing device


13


including the video capture device


12


.

FIG. 21

is a block diagram of the video capture/playing device


13


in this case.




As shown in

FIG. 21

, the video capture/playing device


13


has a motion picture input interface portion


50


, a frame memory


51


, a motion picture compressing/expanding portion


54


, and a video decoder/encoder


55


.




The video decoder/encoder


55


which is connected to the video input device


6


, digitizes analog motion pictures inputted through the video input device


6


and outputs the digitized motion pictures. When, for example, the analog motion pictures inputted through the video input device


6


are formed from an NTSC-format signal, the video decoder/encoder


55


can be provided as an NTSC decoder. In this case, odd-numbered field signals and even-numbered field signals in an NTSC-format interlace signal are digitized and outputted in a time series sequence. The output motion pictures of the video decoder/encoder


55


are inputted to the motion picture compressing/expanding portion


54


and to the motion picture input interface portion


50


simultaneously.




Further, a video output device


14


achieved by a TV monitor, a VTR, or the like, is connected to the video decoder/encoder


55


, so that motion pictures expanded by the video compressing/expanding portion


54


and data held in the main storage device


2


, the auxiliary storage device


3


or the display device


5


in the information processing system are outputted from the video encoder/decoder


55


to the video output device


14


. In this occasion, if the video output device


14


is a device using an NTSC-format signal, the data to be outputted to the video output device


14


is converted into an NTSC-format signal. Alternatively, the video decoder/encoder


55


may be separated into a video decoder and a video encoder to be provided separately.




The video compressing/expanding portion


54


compresses digitized motion pictures outputted from the video decoder/encoder


55


by using a compressing technique such as MPEG, or the like, and outputs the compressed motion pictures to the motion picture input interface portion


50


. Further, the video compressing/expanding portion


54


expands compressed motion pictures given through the motion picture input interface portion


50


and outputs the expanded motion pictures to the video decoder/encoder


55


and/or the video signal input/output portion


64


(see

FIG. 16

) of the motion picture inout interface portion


50


. As described above, the motion pictures outputted to the video signal input/output portion


64


of the motion picture input interface portion


50


are DMA-transferred to the main storage device


2


, the auxiliary storage device


3


or the display device


5


.




The flame memory


51


and the motion picture input interface portion


50


are formed in the same manner as in FIG.


14


.




A second embodiment of the present invention will be described below with reference to the drawings.





FIG. 1

is a hardware configuration diagram of an information processing system such as a personal computer, or the like, to which a video recording/playing apparatus as a second embodiment of the present invention is applied.




As shown in

FIG. 1

, the apparatus comprises a CPU


1


, a main storage device


2


, an auxiliary storage device


3


, an input device


4


, a display device


5


, a video input device


6


, a non-compressed video capture device


7


, a compressed video capture device


8


, and a compressed video playing device


9


. The respective constituent elements except the video input device


6


are connected by a bus


10


so that necessary information can be transmitted between the respective constituent elements.




On the other hand, the video input device


6


is connected both to the non-compressed video capture device


7


and to the compressed video capture device


8


so that one and the same information can be transmitted from the video input device


6


to the non-compressed video capture device


7


and the compressed video capture device


8


simultaneously.




Functional blocks of the video recording/playing apparatus in the second embodiment are as shown in

FIG. 2

which is a functional block showing the preferred embodiment.




Non-compressed motion pictures are captured through the non-compressed video capture device


7


and compressed motion pictures are captured through the compressed video capture device


8


. Because the non-compressed video capture device


7


and the compressed video capture device


8


are both connected to the video input device


6


so that one and the same (video) information is inputted to the two devices, the processing in the second embodiment is substantially equivalent to the processing in the preferred embodiment.




If the non-compressed video capture device


7


is formed by removing the video compressing portion


52


from the configuration of the video capture device


12


, the same function as in the preferred embodiment can be achieved. Further, because the non-compressed video capture device


7


is provided so as to be separate from the compressed video capture device


8


, there can be provided a video recording/playing apparatus relatively high in the degree of freedom in system construction.




A third embodiment of the present invention will be described below with reference to the drawings.




Although the first or second embodiment has shown the case where non-compressed motion pictures and compressed motion pictures are captured in real time and simultaneously, the present invention may be applied to the case where only non-compressed motion pictures are captured in real time so that the non-compressed motion pictures used for detection of scene changes are compressed while the scene changes are detected. In this case, the hardware configuration of the information processing system to which the video recording apparatus can be applied may be made as shown in FIG.


12


and the control means


101


may be changed (to the control means


101


′) as shown in FIG.


13


.




In

FIG. 12

, constituent elements except the video compressing device


11


are formed in the same manner as the constituent elements shown in FIG.


1


. The video compressing device is a device for compressing non-compressed motion pictures given from the CPU


1


, for example, by MPEG compression and storing the compressed motion pictures in the main storage device


2


or the auxiliary storage device


3


.




As shown in

FIG. 13

, the control means


101


′ first starts the capture of motion pictures (step


161


). Specifically, respective programs for driving the non-compressed video capture device


7


are executed to make preparation for acquiring motion pictures such as securing of a work area on the main storage device


2


, or the like.




The control means


101


′ then acquires the non-compressed motion pictures inputted through the video input device


6


and digitized by the non-compressed video capture device


7


and stores the non-compressed motion pictures in the work area (step


162


). Then, the non-compressed video analyzing means


102


is operated to detect whether there is any scene change or not (step


163


). Further, the non-compressed motion pictures stored in the work area are compressed by using the video compressing device


11


(step


164


). If the capture of the motion pictures is continued, the steps


162


and


164


are repeated (step


165


).




If the capture of the motion pictures is terminated in the step


165


, for example, on the basis of an instruction from the user, or the like, the motion pictures MPEG-compressed by the video compressing device


11


are acquired and stored in the work area or the auxiliary storage device


3


(step


166


).




The control means


101


′ then operates the correspondence information generating means


103


to generate information for associating non-compressed motion pictures at a scene-changed point of time with compressed motion pictures at the same point of time (step


167


).




Finally, the compressed video playing device


104


is operated to start reproduction/display of the compressed motion pictures, for example, from the point of time designated by the user (step


168


). If the processing in the control means


101


′ is continued, the situation of the routine goes back to the step


161


to repeat the processing (step


169


). When, for example, there is any ending instruction, or the like, from the user, the processing in the control means


101


′ is terminated.




As described above, in the third embodiment, when, for example, data inputted through the video input device


6


is separated into odd-numbered field data and even-numbered field data by the non-compressed video capture device


7


so that not only the odd-numbered field data with a YUV color format is transferred to the main storage device


2


whereas the even-numbered field data is converted into data with a color format capable of being displayed on the display device


5


and the data with the color format is transferred to the display device S but also the odd-numbered field data with the YUV format is inputted to the video compressing device


11


and compressed by the video compressing device


11


, there can be provided a video recording/playing apparatus at a relatively low cost.




A conventional technique can be applied to the video compressing device


11


and, in most cases, the video compressing device


11


according to the conventional technique generally receives YUV-format data. Furthermore, if the video compressing device


11


is provided as a software device, the function of transferring the YUV color format data to the main storage device


2


while displaying non-compressed motion pictures on the display device


5


is very effective.




INDUSTRIAL APPLICABILITY




According to the present invention, there can be provided a video recording/playing apparatus in which: non-compressed motion pictures and compressed motion pictures can be captured (recorded) simultaneously in an information processing system; analysis is made by using the non-compressed motion pictures, so that an arbitrary image corresponding to an arbitrary image in the non-compressed motion pictures can be specified in the compressed motion pictures; and these two images are associated with each other to thereby facilitate head-review playing of the compressed motion pictures from a position designated by a user, or the like.




Furthermore, there can be provided a video recording/playing apparatus in which compressed motion pictures are captured preferentially when motion pictures inputted through the video input device are captured in the information processing system in real time and simultaneously as non-compressed motion pictures and as motion pictures compressed by such a compressing technique in which the compressed motion pictures in a relatively high compression ratio can be played in a high picture quality.




Furthermore, there can be provided a video recording/playing apparatus in which, when the non-compressed motion pictures are captured in the information processing system, odd-numbered field data and even-numbered field data in an interlace signal inputted through the video input device are converted into data of the same size and the same color format or of different sizes and different color formats and then transferred to the same area/device or different areas/devices to thereby perform recording of the motion pictures while monitoring the motion pictures inputted through the video input device on the display device contained in the information processing system.



Claims
  • 1. A video capture operatively connected to a bus which is coupled to a processor, a main memory and a video RAM coupled to a display device and, which executes a data transfer between the video capture and the processor, the video capture comprising:an input terminal which receives video data representing a plurality of frames from an external device to be displayed by the display device; and a controller which is capable of outputting a part of the video data in a color format to the bus for storing the part of the video data in the main memory and which is capable of outputting another part of the video data in another color format being different from the color format to the bus for displaying the other part of video data by the display device.
  • 2. A video capture according to claim 1, wherein the color format is a YUV format, and wherein the other color format is a RGB format.
  • 3. A video capture according to claim 1, wherein the part of the video data is either one of odd field data or even field data, and wherein the other part of video data is another of the odd field data or even field data.
  • 4. A video capture according to claim 1, wherein the video capture further comprises a scaling unit which scales the part of the video data and the other part of the video data independently.
  • 5. A video capture according to claim 2, wherein the video capture further comprises a scaling unit which scales the part of the video data and the other part of the video data independently.
  • 6. A video capture according to claim 1, wherein the controller executes a direct memory access transfer.
  • 7. A video capture according to claim 1, wherein the part of the video data is compressed data, and the other part of the video data is uncompressed data.
  • 8. A video capture according to claim 7, wherein the compressed data is MPEG data.
Parent Case Info

This is a continuation of U.S. patent application Ser. No. 09/260,498, filed Mar. 2, 1999 now U.S. Pat. No. 6,094,521; which is a continuation of U.S. patent application Ser. No. 08/750,826 Dec. 13, 1996 which issued as U.S. Pat. No. 5,899,575 which is a 371 of PCT/JP96/02499 filed Sep. 4, 1996.

US Referenced Citations (6)
Number Name Date Kind
5249052 Yoshimura et al. Sep 1993
5473382 Nohmi et al. Dec 1995
5539455 Makioka Jul 1996
5659654 Nagasawa et al. Aug 1997
5666459 Ohta et al. Sep 1997
6094521 Okayama et al. Jul 2000
Foreign Referenced Citations (3)
Number Date Country
5-344495 Dec 1993 JP
6-133305 May 1994 JP
6-162116 Jun 1994 JP
Non-Patent Literature Citations (5)
Entry
Illustrated Up-to-date MPEG Textbook, pp. 28-29, Multimedia Communications Research Group, ASCI Corp.
Illustrated Up-to-date MPEG Textbook, pp. 89-165, Multimedia Communications Research Group, ASCI Corp.
Interface, pp. 102-109, Apr. 1996, CQ Publishing Co.
“Enhanced PCI Bus Multimedia Controller” Zoran, ZR36057 (Data Sheets), 08/96.
“JPEG Image Compression Processor” Zoran, ZR36050 (Data Sheets), 08/96.
Continuations (2)
Number Date Country
Parent 09/260498 Mar 1999 US
Child 09/526739 US
Parent 08/750826 US
Child 09/260498 US