Information recording apparatus and method

Information

  • Patent Grant
  • 6382852
  • Patent Number
    6,382,852
  • Date Filed
    Tuesday, August 25, 1998
    25 years ago
  • Date Issued
    Tuesday, May 7, 2002
    22 years ago
Abstract
An information recording apparatus and an information recording method are provided for recording additional information on a heat-sensitive recording medium with a simple configuration without seriously affecting a main recorded image. A CPU includes a memory for storing the additional information. The CPU further includes a memory for storing information about thermal energy and glossiness of the heat-sensitive medium. Based on the information about gloss characteristics, the CPU controls a thermal head through a head controller so that a specific amount of thermal energy is applied to an image recording surface of the medium after image recording. The thermal energy applied effects variations of glossiness corresponding to the additional information to record. Through the application of the thermal energy, glossiness of the medium varies and the additional information is thereby recorded on the medium.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an information recording apparatus and an information recording method of recording additional information different from a recorded image on a heat-sensitive recording medium that develops at least one color in response to an application of thermal energy.




2. Description of the Related Art




Various methods have been developed for recording information such as texts and images, including electrophotography, ink-jet printing and thermal printing. The thermal printing utilizes a heat-sensitive recording medium made of a base material such as paper or synthetic paper to which a coupler or a developer is applied. Thermal energy is applied to the medium by means of a thermal head and the like so that the medium develops a color. An image is thereby recorded on the medium. The thermal printing has advantages in that no development is required as for photography, the density of a color is high and a high-contrast image is obtained and so on. The further advantage is that thermal printing is implemented with a recording apparatus of simple configuration at a low cost. The thermal printing has been therefore widely used in the fields of black-and-white facsimiles, printers and so on.




Although heat-sensitive recording media for black-and-white image printing have been mainly used for the thermal printing, media has been further developed for multicolor image printing including full-color printing. Such a heat-sensitive recording medium for multicolor printing includes a plurality of layers that develop colors different from each other. For example, the medium is made up of a base material to a side of which three color developing layers are stacked. The layers each develop a cyan, a magenta and a yellow. The layers develop colors in response to thermal energy belonging to the different energy ranges. The upper layer responds to higher thermal energy for developing a color, that is, the thermal energy for developing a color increases in the order of the yellow layer, the magenta layer and the cyan layer, for example. The density of developed color increases with an increase in thermal energy within the range of energy for developing each color.




Through the use of a heat-sensitive recording medium for multicolor printing as described above, a long-life multicolor image is obtained, having excellent hues and color separation that are difficult to obtain with prior-art techniques. Another excellent effect is that an image obtained may be turned to a transmission image or a reflection image.




Furthermore, some additional information such as a date may be recorded in a region where an image is recorded on the medium described above. In general, such additional information is superimposed on the recorded image in a method similar to the image recording method. In this case, the additional information is directly recorded on the heat-sensitive medium. As disclosed in Japanese Patent Application Laid-open No. 7-52428 (1995), for example, some thermal transfer image recording apparatuses utilize a lamination method for recording additional information.




In the related-art method of directly recording additional information by superimposing the information on the recorded image, however, the recorded image to be the main subject is seriously affected such as a loss of part of the image where additional information is applied. To avoid such a loss, a space may be provided for recording additional information. However, the image recording area is reduced by the space.




As disclosed in Japanese Patent Application Laid-open No. 7-52428, the lamination method is used in the thermal transfer image recording apparatus for recording additional information without seriously affecting the main recorded image. In the lamination method, a transparent film is applied to an image recording surface and the film bears variations in glossiness corresponding to the additional information. In this case, however, a lamination mechanism capable of controlling glossiness is required. The apparatus is thereby complicated and the cost is raised.




SUMMARY OF THE INVENTION




It is an object of the invention to provide an information recording apparatus and an information recording method of recording additional information on a heat-sensitive recording medium with a simple configuration without seriously affecting a main recorded image.




An information recording apparatus of the invention comprises: an application means for applying thermal energy and pressure to an information recording surface of a heat-sensitive recording medium on which principal information is recorded; and a control means for controlling the thermal energy applied by the application means. The control means controls the thermal energy applied by the application means based on gloss characteristics of the medium so that the additional information is recorded on the information recording surface on which the principal information is recorded through the use of variations of glossiness of the medium.




An information recording method of the invention comprises the steps of: determining thermal energy corresponding to additional information based on gloss characteristics of a heat-sensitive recording medium; and recording the additional information on the information recording surface by varying glossiness of the medium through an application of the determined thermal energy to an information recording surface of the medium.




According to the information recording apparatus of the invention, the application means applies thermal energy and pressure to the information recording surface of the heat-sensitive recording medium on which principal information is recorded. The control means controls the thermal energy applied by the application means based on gloss characteristics of the medium so that the additional information is recorded on the information recording surface on which the principal information is recorded through the use of variations of glossiness of the medium.




According to the information recording method of the invention, the thermal energy corresponding to the additional information is determined based on gloss characteristics of the medium. Glossiness of the medium is varied by applying the determined thermal energy to the information recording surface. The additional information is thereby recorded on the information recording surface.




Other and further objects, features and advantages of the invention will appear more fully from the following description.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic cross section for illustrating an image recording apparatus of a first embodiment of the invention in an initial status.





FIG. 2

is a schematic cross section for illustrating the image recording apparatus of the first embodiment of the invention in a status in the step of supplying a heat-sensitive medium.





FIG. 3

is a schematic cross section for illustrating the image recording apparatus of the first embodiment of the invention in a status in the step of recording an image on the medium.





FIG. 4

is a schematic cross section for illustrating the image recording apparatus of the first embodiment of the invention in a status in the step of discharging the medium.





FIG. 5

is a block diagram of a control system of the image recording apparatus of the first embodiment of the invention.





FIG. 6

is a schematic cross section for illustrating the heat-sensitive recording medium used in the image recording apparatus of the first embodiment of the invention.





FIG. 7

is a plot for showing coloring characteristics of the heat-sensitive medium shown in FIG.


6


.





FIG. 8

is a plot for showing gloss characteristics of the heat-sensitive medium shown in FIG.


6


.





FIG. 9

illustrates an example of additional information recorded on the heat-sensitive medium.





FIG. 10

illustrates another example of additional information recorded on the heat-sensitive medium.





FIG. 11

illustrates still another example of additional information recorded on the heat-sensitive medium.





FIG. 12

illustrates still another example of additional information recorded on the heat-sensitive medium.





FIG. 13

is a flowchart of an operation of the image recording apparatus of the first embodiment of the invention.





FIG. 14

is a flowchart of an operation of the image recording apparatus of the first embodiment of the invention.





FIG. 15

is a block diagram of a control system of an image recording apparatus of a second embodiment of the invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Preferred embodiments of the invention will now be described in detail with reference to the accompanying drawings.




[First Embodiment]




Reference is made to

FIG. 6

for describing a heat-sensitive recording medium


10


used in an image recording apparatus of a first embodiment of the invention.




The heat-sensitive recording medium


10


shown in

FIG. 6

is a multicolor recording medium provided for full-color printing. The medium


10


may comprise a base material


11


made of polyethylene-laminated bond paper or wood free paper. On a side of the base material


11


, a cyan layer


12


, a magenta layer


13


and a yellow layer


14


are stacked, each developing a color of cyan magenta and yellow, respectively. A heat-resistant protection layer


15


is further stacked on the top layer. Of the layers of the medium


10


, the cyan layer


12


, the magenta layer


13


, the yellow layer


14


and the protection layer


15


are all transparent. The base material


11


may be made of substantially transparent medium, too.




The magenta layer


13


and the yellow layer


14


are heat-sensitive color developing layers of photo-fixation type. The cyan layer


12


is a dye-type color developing layer. The magenta layer


13


and the yellow layer


14


may include microcapsulated diazonium salt compound and a coupler consisting of phenol compound and so on. On an application of thermal energy, permeability of microcapsulated diazonium salt compound increases and the diazonium salt compound reacts to the coupler to form an azo pigment. The magenta layer


13


and the yellow layer


14


thus develop colors. Diazonium salt compound absorbs light such as ultraviolet rays and is decomposed and loses reactivity to the coupler. The developed color is therefore fixed by radiation of light such as ultraviolet rays. For example, the color developed in the magenta layer


13


is fixed by radiation of light whose wavelength is 365 nm. The color developed in the yellow layer


14


is fixed by radiation of light whose wavelength is 420 nm. The color and density thereof will not change with a further application of thermal energy.




The heat-sensitive recording medium


10


develops different colors in response to applied thermal energy. That is, the ranges of thermal energy required for developing a color in the layers


12


to


14


of the medium


10


are different from each other. In addition, the layers


12


to


14


each develop a color of different density depending on thermal energy.





FIG. 7

is a plot for showing an example of color developing characteristics of the medium


10


. Graphs indicated with reference numerals


70


Y,


70


M and


70


C each represent a color developing characteristic of the yellow layer


14


, the magenta layer


13


and the cyan layer


12


, respectively. As shown, the ranges of thermal energy required for developing a color in the layers


12


to


14


are different from each other. Thermal energy required for developing a color increases in the order of the yellow layer


14


, the magenta layer


13


and the cyan layer


12


. Within the thermal energy ranges for developing a color in the layers


12


to


14


, higher thermal energy effects a higher density of developed color.




In order to record an image on the medium with the properties described above in practice, colors are developed in the order started from the one that requires the lowest thermal energy, that is, in the order of the yellow layer


14


, the magenta layer


13


and the cyan layer


12


. It is noted that after the yellow layer


14


develops a color, light of a specific wavelength is applied so as to fix the color of yellow before applying thermal energy for the magenta layer


13


. As a result, re-development of yellow with an application of thermal energy for the magenta layer


13


and the cyan layer


12


is prevented. Similarly, after the magenta layer


13


develops a color, light of a specific wavelength is applied so as to fix the color of magenta before applying thermal energy for the cyan layer


12


. As a result, re-development of magenta with an application of thermal energy for the cyan layer


12


is prevented. In general, fixation of cyan is not performed since thermal energy is no more applied for developing another color. As thus described, when an image is recorded on the medium


10


, glossiness varies from place to place on the image recording surface since thermal energy applied to the surface varies depending on the image. Such a characteristic may be effectively utilized for varying glossiness over the image recording surface more easily than the lamination method previously described.




An image recording apparatus


1


of the first embodiment of the invention for recording an image on the medium


10


with the structure described above will now be described. An information recording apparatus and a method of the invention that are implemented with the apparatus


1


will be described as well.





FIG. 1

to

FIG. 4

are cross sections for describing internal mechanical components of the apparatus


1


of the embodiment.

FIG. 1

shows an initial status preceding the step of supplying the medium


10


to an image recording section.

FIG. 2

shows a status in the step of supplying the medium


10


to an image recording section.

FIG. 3

shows a status in the step of recording an image on the medium


10


supplied to the image recording section.

FIG. 4

shows a status in the step of discharging the medium


10


with the recorded image out of the image recording section.




As shown, the image recording apparatus


1


of the embodiment comprises: a paper cassette


20


placed in the lower right section inside the apparatus


1


for holding the medium


10


before image recording; a drum-shaped platen roller


30


, placed in the image recording section in the center of the apparatus


1


, around which the medium


10


supplied from the paper cassette


20


is wound; a thermal head


40


, placed above the platen roller


30


, for applying pressure and thermal energy to the medium


10


wound around the platen roller


30


; a cam


50


placed in the upper left section in the apparatus


1


for bringing the thermal head


40


close to and away from the platen roller


30


in response to image recording operations; and a discharge slot


60


, placed above the paper cassette


20


, through which the medium


10


after image recording is discharged. The thermal head


40


includes a plurality of heating elements arranged in a row or a plurality of rows corresponding to pixels. The thermal head


40


corresponds to an application means for applying thermal energy and pressure of the invention.




Inside the apparatus


1


, a paper feed arm


21


is provided at the bottom of the paper cassette


20


, for lifting the medium


10


in the paper cassette


20


upward. Inside the apparatus


1


, supply rollers


22


and


23


are placed in the path between the paper cassette


20


and the platen roller


30


. The supply rollers


22


and


23


supply the medium


10


(

FIG. 2

) lifted upward by the arm


21


from the paper cassette


20


towards the platen roller


30


. A transport roller


24


is placed above the supply roller


23


, being brought to contact with the supply roller


23


in response to transport operations. Furthermore, a first sensor


25


and a supply guide


26


are provided in the path between the supply roller


23


and the platen roller


30


. The first sensor


25


detects the medium


10


being transported. The guide


26


guides the medium


10


detected by the first sensor


25


towards the platen roller


30


.




The platen roller


30


may be made up of a metal cylinder around which an elastic body is wound. A chuck


31


is provided on the surface of the platen roller


30


, for holding the medium


10


supplied form the paper cassette


20


and guided by the guide


26


to the platen roller


30


. A second sensor


32


is provided below the circumference of the platen roller


30


. The second sensor


32


detects and determines whether the medium


10


is wound around the platen roller


30


. In the upper right section near the circumference of the platen roller


30


, a light source apparatus


33


is provided for emitting light for fixation onto the medium


10


wound around the platen roller


30


. The light source apparatus


33


includes a light source


33


Y for emitting light (whose wavelength is 420 nm, for example) onto the medium


10


for fixing a color of yellow and a light source


33


M, placed next to the light source


33


Y, for emitting light (whose wavelength is 365 nm, for example) onto the medium


10


for fixing a color of magenta.




Inside the apparatus


1


, the thermal head


40


is fixed to the right end of a first arm


41


in the shape of delta plate. The left end of the first arm


41


is coupled to the right end of a second arm


43


in the shape of delta plate by means of a spring


42


. The lower ends of the first arm


41


and the second arm


43


are supported by a support axis


44


. The first arm


41


and the second arm


43


are pivotable around the support axis


44


. The left end of the second arm


43


is coupled to the cam


50


.




Inside the apparatus


1


, the cam


50


includes a rotating plate


51


having a specific curved groove


51


a to be a cam driver and a roller


50


coupled to the left end of the second arm


43


to be a cam follower that pairs up with the curved groove


51




a


of the rotating plate


51


. In the state before image recording (FIG.


1


and FIG.


2


), the cam


50


has the second arm


43


coupled to the roller


52


rotate clockwise by means of the rotating plate


51


rotating counterclockwise. At the same time, the cam


50


has the first arm


41


coupled to the second arm


43


with the spring


42


rotate clockwise. The thermal head


40


fixed to the first arm


41


is thereby brought to contact with the medium


10


wound around the platen roller


30


(FIG.


3


). Application of thermal energy and pressure by the thermal head


40


to the medium


10


is thus allowed. In the state during image recording (FIG.


3


), the cam


50


has the second arm


43


rotate counterclockwise by means of the rotating plate


51


rotating clockwise. At the same time, the cam


50


has the first arm


41


rotate counterclockwise. The thermal head


40


fixed to the first arm


41


is thereby brought away from the medium


10


wound around the platen roller


30


(FIG.


4


). Application of thermal energy and pressure by the thermal head


40


to the medium


10


is thus stopped.




Inside the apparatus


50


, discharge rollers


61


and


62


are provided in the transport path between the discharge slot


60


and the platen roller


30


. The discharge rollers


61


and


62


introduce the medium


10


after image recording to the discharge slot


60


. In the transport path between the discharge rollers


61


and


62


and the discharge slot


60


, a discharge guide


63


is provided for guiding the medium


10


wound around the platen roller


30


to the discharge slot


60


. The discharge roller


62


is made up of two rollers one of which pairs up with the discharge roller


61


and the other of which pairs up with the transport roller


24


so that the medium


10


is discharged out of the discharge slot


60


.




Referring to a block diagram of

FIG. 5

, the control system of the image recording apparatus


1


of the embodiment will now be described.




As shown, the control system of the apparatus


1


of the embodiment comprises: an interface


71


to which various items of image data are inputted from external video equipment and data terminal equipment; a memory


72


where image data inputted to the interface


71


is temporarily stored; an image processing section


73


for performing color adjustment, masking, γ processing and the like on the image data stored in the memory


72


; a head controller


74


for performing thermal control on the thermal head


40


based on the image data processed at the image processing section


73


; a light source controller


75


for controlling the light source apparatus


33


(the light sources


33


Y and


33


M) that emits light for fixation onto the medium


10


; a central processing unit (CPU)


76


for controlling the control blocks in the apparatus


1


; and an input section


77


, connected to the CPU


76


, for inputting additional information utilizing glossiness to the medium


10


after image recording.




The interface


71


may conform to the SCSI standard. SCSI-compliant data terminal equipment such as a personal computer may be connected to the interface


71


. Alternatively, the interface


71


may conform to any other standard such as the RS-232C, Centronics and R. G. B.




The input section


77


may be a key entry device. The user may enter additional information to record as desired from outside the apparatus


1


through key entry.




The CPU


76


includes a memory for storing information (

FIG. 7

) about thermal energy and color density on the medium


10


. During image recording, the CPU


76


controls the thermal head


40


through the head controller


74


so that thermal energy corresponding to the inputted image data is applied to the medium


10


.




The CPU


76


includes a memory for storing additional information. The memory may temporarily hold additional information inputted from the input section


77


until the information is recorded on the medium


10


. Alternatively, predetermined patterns of additional information may be stored in the memory in advance. In the former case, all the additional information to record is inputted through the input section


77


. In the latter case, information inputted through the input section


77


includes information for determining which pattern of additional information is used. The CPU


76


further includes information about thermal energy and glossiness of the medium


10


(FIG.


8


). Based on the information about the gloss characteristics, the CPU


76


controls the thermal head


40


through the head controller


74


so that the specific amount of thermal energy is applied to the image recording surface of the medium


10


after image recording. The specific amount of thermal energy effects two-dimensional variations of glossiness corresponding to the additional information to record on the medium


10


. The head controller


74


and the CPU


76


correspond to a control means of the invention. The thermal head


40


, the head controller


74


and the CPU


76


correspond to the information recording apparatus of the embodiment.





FIG. 8

is a plot for indicating the gloss characteristics (the relationship between applied thermal energy and glossiness) of the medium


10


. The thermal energy scale corresponds to that of the plot of color developing characteristics of FIG.


7


. As indicated with numeral


80


, the glossiness of the medium


10


first improves with an increase in applied thermal energy. The glossiness reaches the maximum value when applied thermal energy is near the value that allows the yellow layer


14


to start developing a color. The glossiness then decreases with an increase in applied thermal energy.




The gloss characteristics of the medium


10


have the specific relationship as thus described. Glossiness is therefore controllable as desired by varying thermal energy to apply. Based on the gloss characteristics of the medium, the CPU


76


determines the amount of thermal energy that effects two-dimensional variations of glossiness corresponding to additional information to record. The range of thermal energy effective for practical recording of additional information may be determined such that a one-to-one correspondence is established between thermal energy and glossiness. That is, the minimum energy value of the range may be the one that allows the yellow layer


14


starts to develop a color. The maximum energy value of the range may be the one that allows development of cyan (the range indicated with ‘E’ in FIG.


8


). The maximum energy value is determined so as to prevent unwanted development of unfixed cyan with an application of thermal energy higher than the value that allows development of cyan.




The gloss characteristics of the medium


10


shown in

FIG. 8

are determined through measurement in a specific method in advance. For example, thermal energy in the measurement range is applied to the medium


10


step by step. (The range may be between zero and the value that allows development of cyan to the maximum density.) Glossiness on the surface of the medium


10


thereby obtained is measured with a specific gloss meter. Thermal energy applied for measurement is determined, depending on the resolution of the gloss meter. The specific gloss meter may be an instrument for measuring specular glossiness that is generally used for measuring gloss characteristics of paper (such as photographic paper). For measurement by the instrument for measuring specular glossiness, a luminous flux with a specific incidence angle and a specific aperture angle is introduced onto a sample surface. A luminous flux of a specific aperture angle reflecting in the direction of regular reflection is measured by an appropriate photoreceptor. When thermal energy is applied to the medium


10


for practically recording additional information through the use of glossiness, the gloss characteristics of the medium


10


may change depending on the status of image recording on the medium


10


(the status of thermal energy already applied ). Therefore, it is preferable to adjust the gloss characteristics of the medium


10


obtained through the method described above, considering the status of image recording on the medium


10


.




Specific examples of additional information will now be described.

FIG. 9

to

FIG. 12

illustrate the examples of additional information to record on the medium


10


through the use of glossiness.





FIG. 9

shows the example wherein date information


91


as additional information is recorded in part of an image recording region


10




a


of the medium


10


. As illustrated in this example, textual information such as a date and time may be recorded as additional information through the use of glossiness in the embodiment.





FIG. 10

shows the example wherein image information


101


indicating a logo or a trademark is recorded as additional information in part of the image recording region


10




a


of the medium


10


. As illustrated in this example, image information such as a logo and a trademark may be recorded as additional information through the use of glossiness in the embodiment. For recording a logo, a trademark and the like, glossiness may be adjusted so as to achieve a watermark-like image.





FIG. 11

shows the example wherein a matte finish which is often used in silver halide photography is performed on all the image recording region


10




a


of the medium


10


, utilizing glossiness. As illustrated in this example, the additional information of the embodiment includes a surface finish such as a matte finish added to all the region of the image recording surface besides textual information added to part of the recording surface.





FIG. 12

shows the example wherein a gloss finish that provides high glossiness is performed on a region


10




b


, part of the region


10




a


of the medium


10


, where a human figure image is recorded. A matte finish is given to the rest of the region


10




a


. For recording information such as a surface finish as the additional information of the embodiment, a surface finish may be partly changed as illustrated in this example.




In addition to the foregoing examples, the additional information of the embodiment includes barcode information. The additional information further includes a mixture of the forgoing examples. For example, a matte finish as shown in

FIG. 11

may be performed as well as textual information such as a date as shown in

FIG. 9

may be recorded. Furthermore, image quality may be improved by having glossiness of the medium


10


consistent in a region where no additional information is recorded. In addition, the CPU


76


may control the thermal head


40


to apply thermal energy near the value that allows the yellow layer


14


to start developing a color to the medium


10


. As a result, glossiness is unified in a region where no additional information is recorded so as to improve the glossiness to the maximum level. In this case, thermal energy applied for improving glossiness is of a low value that allows the yellow layer


14


to start developing a color. Therefore, thermal energy more than the required amount will not be consumed and process time required for unification and improvement of glossiness is reduced. The CPU


76


thus controls thermal energy to apply so that the desired glossiness falls within the specific range including the highest glossiness with regard to the gloss characteristics of the medium


10


.




With reference to

FIG. 1

to

FIG. 5

, the operation of the image recording apparatus


1


of the embodiment will now be described according to the flowcharts shown in FIG.


13


and FIG.


14


. The following description applies to the information recording apparatus and method of the embodiment, too.




First, power is supplied to the image recording apparatus


1


from a power supply means not shown and the apparatus turns on. Image data as principal information is then inputted to the interface


71


from video equipment or data terminal equipment and so on (step S


101


). Additional information to record is inputted, that is, all the additional information or part of the information to record is inputted from the input section


77


to the CPU


76


(step S


102


). Processing that precedes actual image recording on the medium


10


is then performed. That is, in the control system of the apparatus


1


under the control of the CPU


76


, the memory


72


temporarily holds the inputted image data. The image processing section


73


performs color adjustment, masking, γ processing and the like on the image data stored in the memory


72


.




As a mechanical operation in the apparatus


1


, supply processing is performed for supplying the medium


10


held in the paper cassette


20


(

FIG. 1

) to the platen roller


30


in the image recording section (step S


103


). That is, as shown in

FIG. 2

, the paper feed arm


21


provided at the bottom of the paper cassette


20


lifts the medium


10


in the paper cassette


20


upward. The supply rollers


22


and


23


and the transport roller


24


introduce the medium


10


lifted by the arm


21


towards the platen roller


30


. During this procedure, the supply guide


26


guides the tip of the medium


10


to the chuck


31


provided on the surface of the platen roller


30


. The chuck


31


then holds the tip of the medium


10


. The medium


10


thus held by the chuck


31


is wound around the platen roller


30


through rotation of the platen roller


30


.




Having received the image data at the interface


71


, received the additional information from the input section


77


and performed the specific processing that precedes image recording as described above, actual image recording processing is performed on the medium


10


(step S


104


). That is, as a mechanical operation in the apparatus


1


, as shown in

FIG. 3

, the thermal head


40


fixed to the first arm


41


is brought to contact with the medium


10


wound around the platen roller


30


by the action of the cam


50


. The thermal head


40


then applies thermal energy corresponding to the image data to the medium


10


. The image is thereby recorded on the medium


10


.





FIG. 14

is a flowchart for describing the image recording processing performed in step S


104


in detail. As shown, the apparatus


1


performs processing for developing a color in part of the inputted image data corresponding to yellow (step S


201


). To be specific, the medium


10


held by the chuck


31


rotates to be wound around the platen roller


30


. At the first rotation of the medium


10


, the thermal head


40


applies thermal energy to the medium


10


for having the yellow layer


14


develop a color. In this processing, in the control system of the apparatus


1


shown in

FIG. 5

, the CPU


76


controls the thermal head


40


through the head controller


74


so that thermal energy is applied to the medium


10


for developing a color in part of the image data corresponding to yellow. This control performed by the CPU


76


is based on information about thermal energy and color density of each color of the medium


10


stored in the internal memory.




At the first rotation of the platen roller


30


, the light source


33


Y emits light whose wavelength is 420 nm, for example, to the medium


10


immediately after the color of yellow is developed so that the color is fixed (step S


202


). In the control system of the apparatus


1


shown in

FIG. 5

, the CPU


76


controls the light source


33


Y through the light source controller


75


so that the light source


33


Y emits light for fixing the yellow with specific timing.




Next, the second rotation of the platen roller


30


is effected and the apparatus


1


performs processing for developing a color in part of the inputted image data corresponding to magenta (step S


203


). The processing is performed by the thermal head


40


applying thermal energy to the medium


10


for having the magenta layer


13


develop a color. In the processing, in the control system of the apparatus


1


shown in

FIG. 5

, the CPU


76


controls the thermal head


40


through the head controller


74


so that thermal energy is applied to the medium


10


for developing a color in part of the image data corresponding to magenta. This control performed by the CPU


76


is based on information about thermal energy and color density of the medium


10


stored in the internal memory.




At the second rotation of the medium


10


, the light source


33


M emits light whose wavelength is 365 nm, for example, to the medium


10


immediately after the color of magenta is developed so that the color is fixed (step S


204


). In the control system of the apparatus


1


shown in

FIG. 5

, the CPU


76


controls the light source


33


M through the light source controller


75


so that the light source


33


M emits light for fixing the magenta with specific timing.




Having performed fixation of yellow and magenta as thus described, at the third rotation of the platen roller


30


, the apparatus


1


performs processing for developing a color in part of the inputted image data corresponding to cyan (step S


205


). The processing is performed by the thermal head


40


applying thermal energy to the medium


10


for having the cyan layer


12


develop a color. In the processing, in the control system of the apparatus


1


shown in

FIG. 5

, the CPU


76


controls the thermal head


40


through the head controller


74


so that thermal energy is applied to the medium


10


for developing a color in part of the image data corresponding to cyan. This control performed by the CPU


76


is based on information about thermal energy and color density of the medium


10


stored in the internal memory.




Having completed the actual image recording processing by performing steps S


201


to S


205


, the apparatus


1


shifts to processing for recording additional information on the medium


10


through the use of glossiness (step S


105


) as shown in FIG.


13


. At the fourth rotation of the platen roller


30


after fixation of cyan is performed, the recording of additional information is performed by the thermal head


40


applying a specific pressure and thermal energy to the medium


10


. The thermal energy applied corresponds to the additional information inputted from the input section


77


. In the control system of the apparatus


1


shown in

FIG. 5

, the CPU


76


determines the two-dimensional thermal energy distribution corresponding to the additional information based on information about thermal energy and glossiness of the medium


10


stored in the internal memory. The CPU


76


controls the thermal head


40


through the head controller


74


so that the determined thermal energy is applied to the image recording surface of the medium


10


on which the image has been recorded. The specific pressure applied by the thermal head


40


may be 10 kg per width if the medium


10


is an A4-size sheet of 210 mm in width. In this case, the local pressure is about 48 g/ mm.




Next, the apparatus


1


performs processing for discharging the medium


10


(step S


106


). As shown in

FIG. 4

, the thermal head


40


fixed to the first arm


41


is brought away from the medium


10


wound around the platen roller


30


by the action of the cam


50


. While the platen roller


30


is rotating, the chuck


31


releases the tip of the medium


10


immediately before the discharge guide


63


. The discharge guide


63


rotates and shifts towards the platen roller


30


so that the medium


10


wound around the platen roller


30


is introduced to the discharge slot


60


. The medium


10


is further transported by the discharge rollers


61


and


62


and the transport roller


24


to be discharged through the discharge slot


60


. The entire operation of the apparatus


1


is thus completed.




According to the image recording apparatus


1


of the embodiment described so far, thermal energy is applied to the image recording surface of the medium


10


on which the image has been recorded, thermal energy effecting two-dimensional gloss variations depending on the additional information. As a result, without lamination mechanisms and the like, additional information is recorded with a simple mechanism at a low cost through effectively utilizing glossiness without seriously affecting the main recorded image.




According to the image recording apparatus


1


, the thermal head


40


for image recording is used as the means for applying thermal energy for additional information recording and the means for applying pressure as well. As a result, thermal energy to apply is precisely controlled and application of thermal energy more than the required amount will be prevented. Power consumption is thereby restrained and precise control of glossiness is achieved. Costs are further reduced since no additional components are required for additional information recording.




[Second Embodiment]




In the first embodiment described above, additional information is stored in the memory inside the CPU


76


. However, the amount of data to be stored in the memory increases when items of image information such as complicated logos and trademarks are stored as additional information. It is therefore preferable to provide another memory dedicated to additional information storage.





FIG. 15

is a block diagram of the control system of an image recording apparatus of the second embodiment of the invention. Like numerals are assigned to the components similar to those of the image recording apparatus


1


of the first embodiment and descriptions thereof are omitted.




As shown, in the apparatus of the embodiment, a memory


72




a


is provided for storing image data. A memory


72




b


for storing additional information is connected to the memory


72




a


in parallel. Image data and additional information are inputted through the interface


71


.




In such a configuration, additional information together with image data inputted through the interface


71


from an external source is temporality stored in the memory


72




b


. After the image is recorded on the medium


10


, the CPU


76


reads the additional information stored in the memory


72




b


. The CPU


76


controls the thermal head


40


through the head controller


74


to apply thermal energy for effecting gloss variations corresponding to the additional information.




For sending image data and additional information from an external source to the image recording apparatus, image data and additional information for each color corresponding to the entire image recording surface may be sent surface by surface. Alternatively, image data and additional information for each color corresponding to each pixel of the image recording surface may be sent dot by dot.




According to the image recording apparatus of the embodiment described so far, the memory


72




b


dedicated to additional information storage is separately provided. As a result, more complicated additional information is easily recorded.




The remainder of configuration, operations and effects of the embodiment are similar to those of the first embodiment.




The invention is not limited to the foregoing embodiments but may be practiced in still other ways. Although the image recording apparatus is described in detail in the embodiments, the invention is applicable to an apparatus for recording texts, patterns and so on. Although the heatsensitive recording medium


10


for full-color printing made up of stacked three layers developing cyan, magenta and yellow is described in the foregoing embodiments, the invention is not limited to such a medium but may be applied to recording on any other multicolor recording medium or single-color recording medium that develops cyan only, for example.




In the foregoing embodiments the CPU


76


controls the thermal head


40


so that thermal energy is applied to the medium


10


for effecting two-dimensional gloss variations corresponding to the additional information, based on the gloss characteristics of the medium


10


shown in FIG.


8


. However, the invention may be applied to a heat-sensitive recording medium having the gloss characteristics other than those shown in FIG.


8


. In this case, based on the gloss characteristics specific to the medium, the CPU


76


controls the thermal head


40


so that thermal energy is applied to the medium for effecting two-dimensional gloss variations corresponding to the additional information. Through such control, glossiness corresponding to additional information is given to various types of heat-sensitive recording media.




The invention may be utilized in a system for optically reading additional information by recording optically readable additional information such as a barcode on a heat-sensitive medium.




Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.



Claims
  • 1. An information recording apparatus for recording independent additional information after recording independent principal information on an information recording surface of a heat-sensitive recording medium that develops at least one color in response to thermal energy applied thereto, comprising:application means for applying said thermal energy and pressure to a protection layer of said information recording surface of said heat-sensitive recording medium for recording said independent additional information after said independent principal information is recorded; and control means for controlling said thermal energy applied by said application means, wherein said control means controls said thermal energy applied by said application means based on energy-gloss characteristics of said heat-sensitive recording medium for recording said independent additional information on said protection layer of said information recording surface of said heat-sensitive recording medium using variations of glossiness based on said energy-gloss characteristics of said heat-sensitive recording medium after said independent principal information is recorded.
  • 2. The information recording apparatus according to claim 1, wherein said application means is a thermal head for recording said independent additional information on said protection layer of said information recording surface.
  • 3. The information recording apparatus according to claim 1, wherein said independent additional information recorded on said protection layer includes one of a date, a time, a logo, a trademark, and a barcode.
  • 4. The information recording apparatus according to claim 1, wherein said independent additional information recorded on said protection layer includes a matte finish.
  • 5. The information recording apparatus according to claim 1, wherein a gloss finish is given to a part of said protection layer of said information recording surface and the recording of the additional information includes a matte finish given to another part of said information recording surface.
  • 6. The information recording apparatus according to claim 1, further comprising an independent memory for storing said independent additional information only prior to recording said independent additional information on said protection layer of said information recording surface.
  • 7. An information recording method for recording independent additional information after recording independent principal information on an information recording surface of a heat-sensitive recording medium that develops at least one color in response to thermal energy applied thereto, comprising the steps of:determining said thermal energy corresponding to said independent additional information based on energy-gloss characteristics of said heat-sensitive recording medium; and recording said independent additional information on a protection layer of said information recording surface by varying a glossiness of said heat-sensitive recording medium by applying said thermal energy determined in said step of determining to said information recording surface.
Priority Claims (1)
Number Date Country Kind
9-231231 Aug 1997 JP
US Referenced Citations (3)
Number Name Date Kind
5633670 Kwak May 1997 A
5678133 Siegel Oct 1997 A
5815191 Michelsen et al. Sep 1998 A
Foreign Referenced Citations (3)
Number Date Country
0524245 Feb 1993 JP
06218968 Aug 1994 JP
0752428 Feb 1995 JP