This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2004-316472, filed Oct. 29, 2004, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to an information recording medium having a BCA (Burst Cutting Area). The present invention also relates to an information playback method for playing back information from an information recording medium having a BCA (Burst Cutting Area). The present invention also relates to an information recording method for recording information on an information recording medium having a BCA (Burst Cutting Area).
2. Description of the Related Art
An optical disc such as a DVD has a region called a BCA. A basic technique pertaining to the BCA has been proposed. More specifically, in the BCA, information is recorded in a stripe formed by removing a metal reflecting film by a predetermined width (see reference 1: National Technical Report Vol. 43, No. 3, June 1997; “Individual Information Recording Technique on DVD-ROM Disc”, pp. 70-77).
Additionally, a technique which prevents, using the BCA, a user from illegally copying and using pirate copies of the optical disc has been disclosed (reference 2: Jpn. Pat. Appln. KOKAI Publication No. 10-233019).
Furthermore, a technique pertaining to a BCA structure and manufacturing method corresponding to a double-sided disc read-accessible from both first and second sides has been disclosed (reference 3: Jpn. Pat. Appln. KOKAI Publication No. 2004-87124).
In references 1 and 2, a technique pertaining to a BCA processing method corresponding to the double-sided recordable disc is not disclosed. In reference 3, the technique pertaining to the BCA processing method corresponding to the double-sided disc read-accessible from both first and second sides is disclosed, but the BCA disclosed in reference 3 is incompatible with a conventional BCA standard.
According to an aspect of the present invention, there is provided an information recording medium which has a first side and a second side, comprising a first information recording layer which includes a first reflecting layer reflecting incident light with a predetermined intensity from the first side, a second information recording layer which includes a second reflecting layer reflecting incident light with a predetermined intensity from the second side, an adhesion layer which adheres the first information recording layer and the second information recording layer, and a unique information recording area which is formed by burst-cutting the first reflecting layer and the second reflecting layer in correspondence with medium unique information, using incident light with an intensity higher than the predetermined intensity from one of the first side and the second side.
According to another aspect of the present invention, there is provided an information recording medium which has a first side and a second side, comprising a first information recording layer which includes a first reflecting layer reflecting incident light with a predetermined intensity from the first side, and a first unique information recording area formed by burst-cutting the first reflecting layer in correspondence with medium unique information using incident light with an intensity higher than the predetermined intensity from the first side, a second information recording layer which includes a second reflecting layer reflecting incident light with a predetermined intensity from the second side, and a second unique information recording area formed by burst-cutting the second reflecting layer in correspondence with medium unique information using incident light with an intensity higher than the predetermined intensity from the second side, and an adhesion layer which adheres the first information recording layer and the second information recording layer.
According to still another aspect of the present invention, there is provided an information playback method for playing back an information recording medium, the information recording medium having a first information recording layer which includes a first reflecting layer reflecting incident light with a predetermined intensity from the first side, a second information recording layer which includes a second reflecting layer reflecting incident light with a predetermined intensity from the second side, an adhesion layer which adheres the first information recording layer and the second information recording layer, and a unique information recording area which is formed by burst-cutting the first reflecting layer and the second reflecting layer in correspondence with medium unique information, using incident light with an intensity higher than the predetermined intensity from one of the first side and the second side, and the unique information recording area having a first information area in which first information is recorded, a second information area in which second information is recorded, and a third information area which is an area sandwiched between the first information area and the second information area, and in which first information is recorded,
the information playback method comprising applying a light beam with the predetermined intensity, and detecting reflected light of the light beam, and playing back the medium unique information succeeding to the first information in a first playback process upon detection of the first information reflected in the detected reflected light, and playing back the medium unique information succeeding to the second information in a second playback process upon detection of the second information reflected in the detected reflected light.
According to still another aspect of the present invention, there is provided an information recording method for recording information on an information recording medium, the information recording medium having a first information recording layer which includes a first reflecting layer reflecting incident light with a predetermined intensity from the first side, a second information recording layer which includes a second reflecting layer reflecting incident light with a predetermined intensity from the second side, an adhesion layer which adheres the first information recording layer and the second information recording layer, and a unique information recording area which is formed by burst-cutting the first reflecting layer and the second reflecting layer in correspondence with medium unique information, using incident light with an intensity higher than the predetermined intensity from one of the first side and the second side, and the unique information recording area having a first information area in which first information is recorded, a second information area in which second information is recorded, and a third information area which is an area sandwiched between the first information area and the second information area, and in which first information is recorded,
the information recording method comprising applying a light beam with the predetermined intensity, and detecting reflected light of the light beam, playing back the medium unique information succeeding to the first information in a first playback process upon detection of the first information reflected in the detected reflected light, and playing back the medium unique information succeeding to the second information in a second playback process upon detection of the second information reflected in the detected reflected light, and with reference to the playback medium unique information, applying the light beam reflecting predetermined information, and recording the predetermined information on the first information recording layer and the second information recording layer.
Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention, and together with the general description given above and the detailed description of the embodiments given below, serve to explain the principles of the invention.
An embodiment of the present invention will be described below with reference to the accompanying drawing.
In this embodiment, a double-sided/single-layered disc (information recording medium) which can record information from first and second sides and has one recording layer for each side will be exemplified. However, the present invention is not limited to the double-sided/single-layered disc. The present invention can be applied to another type of disc such as a single-sided/single-layered, single-sided/double-layered, or double-sided/double-layered disc.
As shown in
As shown in
A playback signal from the above BCA will be described below.
With reference to
The data recorded in the BCA barcode stripe is modulated by PE (Phase Encoding), and RZ-recorded. That is, as shown in
The rotational direction of the disc when playing back the first side (A-side) D11 is the same as that when playing back the second side (B-side) D21. Hence, a playback data sequence obtained when playing back the BCA from the first side (A-side) D11 is opposite to that obtained when playing back the BCA from the second side (B-side) D21. That is, as shown in
With reference to
The information recording/playback apparatus (to be described below) detects data recorded in the “BCA Preamble field” and “BCA Postamble field”. Hence, the information recording/playback apparatus can detect the start and end positions of the “BCA DATA field”, and obtain byte synchronization of the playback data. Note that, for example, disc unique information is recorded in the “BCA DATA field”.
Alternatively,
A BCA playback circuit which plays back the data recorded in the BCA will be described below.
An optical pickup 10 reads the data recorded on an optical disc D. The data recorded in the BCA barcode stripe is also read by the optical pickup 10. The optical pickup 10 outputs an electrical signal corresponding to the BCA barcode stripe. A low-pass filter (LPF) 241 removes the high-frequency component of this electrical signal. As the low-pass filter (LPF) 241, for example, a secondary Bessel filter having a cut-off frequency of 550 Hz is used. A binarization circuit 242 converts the playback signal without the high-frequency component into “H” or “L” level signal. This binarization process can be implemented by comparing a predetermined threshold value with the playback signal level.
A data separator 251 outputs the binarized signal as binary data in synchronism with a reference clock. The output data corresponds to the PE-modulated data shown in
In response to the detection of the BCA Sync, a switch 254 connects the BCA Sync detection/data demodulation unit 252 to a memory 255. Alternatively, in response to the detection of the BCA ReSync, the switch 254 connects the BCA ReSync detection/data demodulation unit 253 to the memory 255. When the BCA Sync detection/data demodulation unit 252 is connected to the memory 255 upon detection of the BCA Sync, the PE-modulated binary data is stored in a predetermined region of the memory 255 in a disc read order. When the BCA ReSync detection/data demodulation unit 253 is connected to the memory 255 upon detection of the BCA ReSync, the PE-modulated binary data is stored in a predetermined region of the memory 255 in the order opposite to the disc read order.
The data stored in the memory 255 undergoes the PE demodulation process and an error correction process, and is output to be played back. Hence, the playback results obtained when the BCA is played back from the first side (A-side) D11 and the second side (B-side) D21 can be the same. That is, target BCA data can be obtained by playing back the data from the first or second side D11 or D21.
Also, in the BCA DATA field included in the BCA, the data for the first side (A-side) D11 and the second side (B-side) D21 may be logically divided and recorded.
Next, with reference to
As shown in
The optical pickup 10 also includes a laser 11, collimator lens 12, polarization beam splitter (to be referred to as a PBS hereinafter) 13, quarter wavelength plate 14, objective lens 15, focus lens 16, and photodetector 17.
The focus tracking control unit 30 also includes a focus error signal generation circuit 31, focus control circuit 32, tracking error signal generation circuit 33, and tracking control circuit 34.
The operation of recording the information on an optical disc D in this optical disc apparatus will be described below. The modulation circuit 21 modulates recorded information (data symbol) from a host in accordance with a predetermined modulation scheme into a channel bit sequence. The channel bit sequence corresponding to the recorded information is input to the recording/playback control unit 22. Also, a recording/playback instruction (in this case, recording instruction) is output from the host to this recording/playback control unit 22. The recording/playback control unit 22 outputs a control signal to the actuator 26, and drives the optical pickup such that the light beam is appropriately focused on a target recording position. The recording/playback control unit 22 also supplies the channel bit sequence to the laser control circuit 23. The laser control circuit 23 converts the channel bit sequence into a laser driving waveform, and drives the laser 11. That is, the laser control circuit 23 pulse-drives the laser 11. In accordance with this operation, the laser 11 emits the recording light beam corresponding to the desired bit sequence. The recording light beam emitted from the laser 11 becomes parallel light by the collimator lens 12, and enters and passes through the PBS 13. The beam which has passed through the PBS 13 then passes through the quarter wavelength plate 14, and focused on the information recording surface of the optical disc D by the objective lens 15. The focused recording light beam is maintained in an optimal beam spot on the recording surface by focus control performed by the focus control circuit 32 and actuator 26, and the tracking control performed by the tracking control circuit 34 and actuator 26.
The operation of playing back the data from the optical disc D in this information recording/playback apparatus will be described below. A recording/playback instruction (in this case, playback instruction) is output from the host to the recording/playback control unit 22. The recording/playback control unit 22 outputs a playback control signal to the laser control circuit 23 in accordance with the playback instruction from the host. The laser control circuit 23 drives the laser 11 based on the playback control signal. In accordance with this operation, the laser 11 emits the playback light beam (light beam having a predetermined intensity). The playback light beam emitted from the laser 11 becomes parallel light by the collimator lens 12, and enters and passes through the PBS 13. The light beam which has passed through the PBS 13 then passes through the quarter wavelength plate 14, and is focused on the information recording surface of the optical disc D by the objective lens 15. The focused playback light beam is maintained in an optimal beam spot on the recording surface by focus control performed by the focus control circuit 32 and actuator 26, and the tracking control performed by the tracking control circuit 34 and actuator 26. Note that the tracking control will be described in detail below. In this case, the playback light beam emitted on the optical disc D is reflected by the reflecting film or reflecting recording film in the information recording surface. Reflected light passes through the objective lens 15 in the opposite direction, and becomes the parallel light again. The reflected light then passes through the quarter wavelength plate 14, has vertical polarization with respect to incident light, and is reflected by the PBS 13. The beam reflected by the PBS 13 becomes convergent light by the focus lens 16, and enters the photodetector 17. The photodetector 17 has, e.g., four photodetectors. The light beam which becomes incident on the photodetector 17 is photoelectrically converted into an electrical signal and amplified. The amplified signal is equalized and binarized by the signal processing circuit 24 and sent to the demodulation circuit 25. The demodulation circuit 25 executes a demodulation operation corresponding to a predetermined modulation scheme and outputs playback data.
On the basis of part of the electrical signal output from the photodetector 17, the focus error signal generation circuit 31 generates a focus error signal. Similarly, on the basis of part of the electrical signal output from the photodetector 17, the tracking error signal generation circuit 33 generates a tracking error signal. The focus control circuit 32 controls the actuator 26 and the focus of the beam spot, on the basis of the focus error signal. The tracking control circuit 34 controls the actuator 26 and the tracking of the beam spot, on the basis of the tracking error signal.
With reference to the flowchart shown in
With reference to the flowchart shown in
As described above, the optical disc having the BCA which is read-accessible from the obverse and reverse sides of the disc and compatible with the BCA standard can be provided. Additionally, the information playback apparatus and information recording apparatus capable of playing back the BCA data from the obverse and reverse sides of the optical disc can be provided.
The BCA processing sequence (first example) of the optical disc D has been described above with reference to
The double-sided disc such as the DVD is implemented by laminating two media each having a thickness of 0.6 mm.
Next, as shown in
Hence, when the BCA is played back from the first side (A-side) D11, signal interference from the BCA on the second information recording layer D22 side can be avoided. Similarly, when the BCA is played back from the second side (B-side) D21, signal interference from the BCA on the first information recording layer D12 side can be avoided. The optical disc is designed such that the playback signal from the BCA satisfies the condition IBL/IBH≦0.8 as shown in
As described above, the optical disc having the BCA for the obverse and reverse sides of the disc can be provided by laminating two recording sides through the nontransparent adhesion layer through which the playback laser beam is not transmitted therebetween.
Next, the disc manufacturing method according to the present invention will be described in more detail.
On the laminated disc, the BCA is finally formed. In the BCA, the inner periphery may be cut in the above-described master exposure step. However, in this case, all the contents of the BCA of the disc formed by the same stamper become the same. Hence, a method of applying the high-power laser beam for each disc to remove the reflecting film is used. For example, an initializing apparatus available from HITACHI Computer Peripherals which is tuned to the BCA is used. When the BCA is formed on the single-layered ROM disc using the laser beam with an infrared wavelength, the BCA can be formed under the condition that laser power=4,000 mW, linear velocity=5 m/s, and radial direction transfer=6 μm/rotation.
The present invention comprises the first arrangement in which the BCA is simultaneously formed on both the sides, and the second arrangement in which both the sides are individually processed to avoid the signal interference. The substrates can be laminated in both these arrangements so that these arrangements can be properly used depending on the type and thickness of the UV resin material (or adhesive sheet) used for laminating the substrates. That is, in the first arrangement, the thickness of the laminating layer is decreased, and a material with a high laser transmissivity is used. For example, the thickness of the laminating layer is preferably set to 10 to 30 μm.
On the other hand, in the second arrangement, the thickness of the laminating layer may be increased, and a material with a low laser transmissivity may be used. In the second arrangement, although a manufacturing cost becomes a problem, both the layers can be completely separated using the adhesive sheet with the adhesive on the nontransparent substrate. When using the UV resin material, the interference between both the layers can be ignored when the thickness of the laminating layer is 50 μm or more.
Note that in the single-sided/double-layered playback disc, the signal of both the layers needs to be read from the playback laser incident surface. Hence, the thickness of the laminating layer must be defined as a predetermined thickness, and the transmissivity of the material must be as high as possible to smoothly read data in the inner layer. In order to achieve this object, the first arrangement is preferable.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2004-316472 | Oct 2004 | JP | national |