1. Field of the Invention
The present invention relates to an information recording medium utilized for an optical recording/reproducing apparatus, which reads out information recorded on the information recording medium by making the information recording medium relatively move, particularly, relates to an information recording medium comprising a read only area of enabling to read out information and a recording/reproducing area of enabling to record and reproduce information.
2. Description of the Related Art
Currently various types of information recording mediums such as in a disk shape, in a card shape, and in a tape shape are utilized as an optical information recording medium from which information is read out by making the information recording medium relatively move. Such information recording mediums are divided into two types in consideration of mechanism of recording or reproducing: one is a read only type and the other is a recording/reproducing type, that is, a recordable type and an overwritable type. A read only type information recording medium is shipped out into a market with being prerecorded with information such as a CD audio disk typically, and is reproduced by a user. On the other hand, a recordable or overwritable type information recording medium is shipped out into a market without any recorded information, and a user records information on it and reproduces it if necessary.
A problem arises along with a trend toward multimedia causing to increase a chance such that copyright is infringed by using an electronic means. Accordingly, in order to prevent such the problem, an idea such as embedding a specific code, which can not be rewritten by a user, is necessary to be realized even in a recordable or overwritable type information recording medium, which can be recorded freely by a user.
As mentioned above, various kinds of information recording mediums, which are provided with two areas composed of a read only area and a recording/reproducing area, have been introduced. For example, there is existed an information recording medium provided with a recording/reproducing area only in a predetermined angle. Further, another information recording medium having a recording/reproducing area, which is provided with a read only area allocated in each one half track, is introduced.
Furthermore, an information recording medium provided with both a read only area and a recording/reproducing area, which are allocated in different positions from each other, is introduced.
These microscopic patterns 11 and 12 are different from each other in depth. A depth “d1” of the microscopic patterns 11 is λ/4n, on the other hand, a depth “d2” of the microscopic patterns 12 is λ/8n, wherein λ is a reproduction wavelength of a laser beam and “n” is a refractive index of the substrate 10 at the reproduction wavelength λ. Specifying the depth of the microscopic patterns 11 to λ/4n is caused by a phase depth in which a signal output from the read only area becomes maximum. Further, specifying the depth of the microscopic patterns 12 to λ/8n is caused by that a push-pull signal related to tracking of the information recording medium becomes a maximum output.
As mentioned above, allocating two areas in different positions reduces load of a recording/reproducing apparatus due to a simplified layout. Accordingly, there is much merit.
However, there is existed a following problem of the prior art mentioned above. A defect has occurred when an information recording medium formed with microscopic patterns shown in
Accordingly, in consideration of the above-mentioned problems of the prior art, an object of the present invention is to provide an information recording medium, which can solve the problem mentioned above.
In order to achieve the above object, the present invention provides, according to an aspect thereof, an information recording medium, which comprises a substrate, a recording layer, and a resin layer, wherein the substrate is formed with a pit corresponding to a read only area and a groove corresponding to a recording/reproducing area without overlapping with each other, and wherein a reflectivity of the recording layer is more than 10%, the information recording medium is characterized in that a push-pull signal output T1 reproduced from the read only area and another push-pull signal output T2 reproduced from the recording/reproducing area is more than 0.1 respectively and further 1.5≧T1/T2≧0.5.
Other object and further features of the present invention will be apparent from the following detailed description when read in conjunction with the accompanying drawings.
With referring to drawings, details common to all embodiments of the present invention are explained first.
In
As shown in
Further, these microscopic patterns 11 and 12 have a depth of “d1” and “d2” respectively. Either case can be acceptable whether or not the depth “d1” of the microscopic patterns 11 is a same as the depth “d2” of the microscopic patterns 12. However, a depth must be designated so as to be able to obtain a range of push-pull signal output, which will be depicted.
Layers composed of the substrate 10, the recording layer 13, and the resin layer 14 are formed in parallel to each other. The resin layer 14 is adhered on the recording layer 13 with continuously covering over all areas including at least the read only area 31 and the recording/reproducing area 32. Although recording or reproducing by light beam is performed on the recording layer 13, it is arbitrarily determined that a laser beam having a wavelength of λ nm, which is stopped down by a objective lens having a numerical aperture of NA, is irradiated from either side of the information recording medium 1. In other words, it is arbitrarily determined whether the laser beam is irradiated from the substrate 10 side or the resin layer 14 side. Further, a path of irradiating the laser beam, that is, an optical path has a certain refractive index “n” for the wavelength λ. An effective optical length is determined by the refractive index “n”. The substrate 10 is illustrated as an optical path in
Synthetic resins of high strength and various ceramics can be utilized for a material of the substrate 10. Actual materials are such resins as polycarbonate, polymethyle methacrylate, polystyrene, polycarbonate-polystyrene copolymer, polyvinyl chloride, alicyclic polyorefin, polymethyle pentene, polyacetate resin, and various copolymer having a resin frame of them, and such synthetic resin as block polymer, and such ceramics as soda aluminosilicate glass, boron silicate glass, and silica glass.
Further, the recording layer 13 is at least made of a recording material of which a reflectivity is more than 10% at the wavelength λ. Actually, following materials can be used for a recording material of enabling recordable or write once recording: such dye materials as cyanine dye, phthalocyanine dye, naphthalocyanine dye, azo dye, and naphthoquinone dye. Furthermore, a phase change recording material, so called, and a magneto-optical recording material can be used for a recording material of enabling overwrite. Typical phase change recording materials are as follows: alloys made of some materials selected from indium, antimony, tellurium, selenium, germanium, gallium, bismuth, platinum, gold, silver, copper, tin, sulfur, and aluminum, wherein an alloy includes compound such as oxide, nitride, and carbide. Moreover, in a case of magneto-optical recording material, there existed an alloy, which contains at least a transition metal and a rare earth element. The alloy is made of some materials selected from terbium, cobalt, iron, gadolinium, neodymium, dysprosium, bismuth, palladium, samarium, holmium, praseodymium, manganese, titanium, erbium, ytterbium, lutetium, chromium, tin, platinum, wherein an alloy includes compound such as oxide, nitride, and carbide. In addition thereto, the recording layer 13 can be multi-layered or laminated by an optical interference film such as SiN, SiC, SiO, ZnS, ZnSSiO, AlO, GeN, MgF, InO, and ZrO, and an optical reflection film such as aluminum, gold, silver, and titanium for a purpose of improving performance. In order to perform high density recording and reproducing, the recording layer 13 can be laminated by a super resolution masking film or a contrast enhancing film, which is commonly known.
The resin layer 14 is provided for protecting the recording layer 13 chemically and physically, and can be selected from thermosetting resins, ultra violet ray curable resins, various radiation including visible light curable resins, electron beam curable resins, moisture curable resins, and multiple liquid mixture curable resins. A surface of the resin layer 14 can be printed if necessary.
As shown in
Recording an information by a user is explained next.
Recording is performed as shown in
The well-known modulation method applied for the read only and recording/reproducing areas 31 and 32 is a signal of which minimal mark length is specified to one of lengths such as 2T, 3T, 4T, and 5T. In a case of a signal system in which a minimal pit length or a minimal mark length is specified to 2T, for example, such a signal system as an eight to twelve (8/12) modulation, which is composed of signals from 2T to 8T, can be utilized. Further, in a case of a signal system in which a minimal pit length or a minimal mark length is specified to 3T, signal systems such as an eight to fourteen (8/14) modulation, an eight to fifteen (8/15) modulation, and an eight to seventeen (8/17) modulation, which are composed of signals from 3T to 11T, and another signal system such as an eight to sixteen (8/16) modulation, which is composed of signal from 3T to 11T and 14T, can be utilized. In these read only and recording/reproducing areas 31 and 32, each signal in the respective areas can be modulated by different modification methods. However, a same modification method is desirable to be employed, in consideration of convenience of a recording/reproducing apparatus. It is also desirable by the same reason that P1=P2 and L1=L2.
In order to enable a traverse reproduction over the read only area 31 and the recording/reproducing area 32, the depth d1 and d2 of respective areas of the information recording medium 1 according to the present invention are adjusted so as to enable to obtain a predetermined push-pull signal. A predetermined push-pull signal satisfies following inequalities simultaneously with defining that a push-pull signal output of the read only area 31 is T1 and a push-pull signal output of the recording/reproducing area 32 before recording is T2.
T1≧0.1
T2≧0.1 and
1.5≧T1/T2≧0.5.
Further, in order to stabilize a traverse reproduction over areas, respective push-pull signal outputs are desirable to be within a range of satisfying following inequalities simultaneously:
T1≧0.15
T2≧0.15 and
1.4≧T1/T2≧0.6.
A range of tracking signal of the information recording medium according to the present invention is obtained by a limiting value, which is obtained by reproducing the information recording medium actually loaded in a player by means of the push-pull method. A result of experiment is shown in Table 1. By examining tracking ability in the read only area 31 with respect to T1, tracking is completely disabled by T1 in less than 0.08.
Further, Table 2 shows a result of examining tracking ability in the recording/reproducing area 31 with respect to T2. Tracking is completely disabled by T2 in less than 0.08 as same situation as that of T1.
It is found by the above experiment that a value of both T1 and T2 must be more than 0.1. Furthermore, the value is desirable to be more than 0.15, in consideration of a case that the information recording medium 1 is dusted or scratched.
A limitation of continuous reproducibility over two areas is caused by that there is existed a limit in a dynamic range of a servo circuit of a recording apparatus. In other words, it is required that a difference between T1 and T2 is smaller. Therefore, with respect to the information recording medium 1, which satisfies the inequalities of T1≧0.1 and T2≧0.1, a limiting value is obtained by performing a traverse reproduction over two areas for various disk samples of T1/T2. A result is shown in Table 3 below. As shown in Table 3, the traverse reproduction over two areas is enabled in a case that T1/T2 is within a range from 0.5 to 1.5. However, the value is desirable to be within a range from 0.6 to 1.4, in consideration of a case that the information recording medium 1 is dusted or scratched.
A push-pull signal output is defined as follows: a push-pull signal is a signal, which is produced by calculating respective outputs from a 4-division photodetector utilized for a recording/reproducing apparatus as a pickup.
In
T=|(Ia+Ib)−(Ic+Id)|/|(Ia+Ib+Ic+Id)|.
As mentioned above, in the information recording medium 1 having at least the read only and recording/reproducing areas 31 and 32, in order to enable the traverse reproduction over two areas, the present invention specifies a push-pull signal output to a predetermined range.
In
In
On the other hand, the recording/reproducing area 32 is composed of a sinusoidally wobbled groove 22 and an address pit 25 formed on a land 23, which is provided between each groove 22 with being adjacent to a groove wall. These groove 22 and address pit 25 is also formed in a spiral. A width of wobbling is 0.009 to 0.017 μm. An average track pitch P2 of the microscopic patterns 12 is 0.74 μm. In addition thereto, the address pit 25 is a pit recorded with an address, which is useful when recording, and is recorded throughout the information recording medium from an innermost circumference area to an outermost circumference area in accordance with a certain rule. Recording is performed by forming a mark (not shown) in the groove 22. With respect to a recording modulation method of the recording/reproducing area 32, the 8/16-modulation method is utilized as same as that of the read only area 31. A minimal pit length L2 (not shown) of a recorded mark in the groove 2 is 0.4 μm as a same length as the minimal pit length L1.
When such the information recording medium is reproduced by using a pickup having a wavelength λ of 650 nm and a numerical aperture NA of 0.6, in order to accomplish a range of push-pull signal output, that is, T1≧0.1, T2≧0.1, and 1.5≧T1/T2≧0.5, it is effective to optimize depths d1 and d2 of the microscopic patterns 11 and 12 in the read only area 31 and the recording/reproducing area 32 respectively.
Furthermore, a reproduction jitter can be obtained in accordance with the Annex “F” of JIS-X-6241 (Japanese Industrial Standard). According to the Standard, a jitter is required to be not more than 8%. In other words, if a jitter exceeds 8%, reading out a reproduction signal is seriously affected by disturbance such as disk tilt. By recording and reproducing practically, and by optimizing the depths d1 and d2, ranges of (nd1/λ) and (nd2/λ) are as follows:
(nd1/λ) is within a range from 0.17 to 0.22, wherein the T1 is 0.1 through 0.22, and
(nd2/λ) is within a range from 0.02 to 0.10 wherein the T2 is 0.1 through 0.42.
With referring to
Parameters of this embodiment are a same as those of the first embodiment except for (nd1/λ)=0.18 and (nd2/λ)=0.08. Further, the gap “G” between the read only area 31 and the recording/reproducing area 32 are specified to 20 μm. By these parameters, it is obtained that T1=0.19 and T2=0.37, and then T1/T2=0.5 is obtained. Accordingly, the push-pull conditions of the present invention such that T≧0.1, T2≧0.1, and 1.5≧T1/T2≧0.5 can be satisfied. Further, reproduction jitter in the read only area 31 and the recording/reproducing area 32 are 7.1% and 6.5% respectively. Both jitter values sufficiently satisfy the standard. Furthermore, by continuously reproducing two areas, it is confirmed that a continuous reproduction can jump across the two areas without any problems.
Parameters of this embodiment are a same as those of the first embodiment except for (nd1/λ)=0.175 and (nd2/λ)=0.067. Further, the gap “G” between the read only area 31 and the recording/reproducing area 32 are assigned to 0.74 μm, which is the same value as P1 and P2. By these parameters, it is obtained that T1=0.20 and T2=0.33, and then T1/T2=0.6 is obtained. Accordingly, the push-pull conditions of the present invention such that T1≧0.1, T2≧0.1, and 1.5≧T1/T2≧0.5 can be satisfied. Further, reproduction jitter in the read only area 31 and the recording/reproducing area 32 are 7.5% and 6.3% respectively. Both jitter values sufficiently satisfy the standard. Furthermore, by continuously reproducing two areas, it is confirmed that a continuous reproduction can be performed without stopping at a boundary between two areas.
Parameters of this embodiment are a same as those of the first embodiment except for (nd1/λ)=0.2 and (nd2/λ)=0.04. Further, the gap “G” between the read only area 31 and the recording/reproducing area 32 are assigned to 0.74 μm, which is the same value as P1 and P2. By these parameters, it is obtained that T1=0.15 and T2=0.22, and then T1/T2=0.66 is obtained. Accordingly, the push-pull conditions of the present invention such that T1≧0.1, T2≧0.1, and 1.5≧T1/T2≧0.5 can be satisfied. Further, reproduction jitter in the read only area 31 and the recording/reproducing area 32 are 6.8% and 5.8% respectively. Both jitter values sufficiently satisfy the standard. Furthermore, by continuously reproducing two areas, it is confirmed that a continuous reproduction can be performed without stopping at a boundary between two areas.
Parameters of this embodiment are a same as those of the first embodiment except for (nd1/λ)=0.17 and (nd2/λ)=0.04. Further, the gap “G” between the read only area 31 and the recording/reproducing area 32 are assigned to 0.74 μm, which is the same value as P1 and P2. By these parameters, it is obtained that T1=0.22 and T2=0.22, and then T1/T2=1.0 is obtained. Accordingly, the push-pull conditions of the present invention such that T1≧0.1, T2≧0.1, and 1.5≧T1/T2≧0.5 can be satisfied. Further, reproduction jitter in the read only area 31 and the recording/reproducing area 32 are 7.9% and 5.9% respectively. Both jitter values sufficiently satisfy the standard. Furthermore, by continuously reproducing two areas, it is confirmed that a continuous reproduction can be performed without stopping at a boundary between two areas.
Parameters of this embodiment are a same as those of the first embodiment except for (nd1/λ)=0.17 and (nd2/λ)=0.03. Further, the gap “G” between the read only area 31 and the recording/reproducing area 32 are assigned to 0.74 μm, which is the same value as P1 and P2. By these parameters, it is obtained that T1=0.22 and T2=0.167, and then T1/T2=1.4 is obtained. Accordingly, the push-pull conditions of the present invention such that T1≧0.1, T2≧0.1, and 1.5≧T1/T2≧0.5 can be satisfied. Further, reproduction jitter in the read only area 31 and the recording/reproducing area 32 are 7.9% and 5.5% respectively. Both jitter values sufficiently satisfy the standard. Furthermore, by continuously reproducing two areas, it is confirmed that a continuous reproduction can be performed without stopping at a boundary between two areas.
Parameters of this embodiment are a same as those of the first embodiment except for (nd1/λ)=0.17 and (nd2/λ)=0.028. Further, the gap “G” between the read only area 31 and the recording/reproducing area 32 are assigned to 0.74 μm, which is the same value as P1 and P2. By these parameters, it is obtained that T1=0.25 and T2=0.158, and then T1/T2=1.5 is obtained. Accordingly, the push-pull conditions of the present invention such that T1≧0.1, T2≧0.1, and 1.5≧T1/T2≧0.5 can be satisfied. Further, reproduction jitter in the read only area 31 and the recording/reproducing area 32 are 7.9% and 5.4% respectively. Both jitter values sufficiently satisfy the standard. Furthermore, by continuously reproducing two areas, it is confirmed that a continuous reproduction can be performed without stopping at a boundary between two areas.
An embodiment of the information recording medium, which is recorded or reproduced by using a blue semiconductor laser beam having a wavelength λ of 405 nm is explained next as an expanded embodiment of the present invention. An information recording medium 2 has a cross sectional configuration shown in
Microscopic patterns on a surface of the substrate 10 in both the read only area 31 and the recording/reproducing area 32 are recorded spirally by the CAV method with being wobbled sinusoidally. Other parameters are the same as those of the first embodiment except for an average track pitch such that P1 and P2 is 0.374 μm, wherein respective width of wobbling is 0.006 to 0.011 μm. With respect to a modification method, the D8/15—modification method, which is one variation of the 8/15—modulation method and disclosed in the Japanese Patent Application No 11-23316/1999, is utilized. A minimal pit length L1 and a minimal mark length L2 is 0.2 μm respectively.
Parameters in the read only and recording/reproducing areas 31 and 32 are specified to (nd1/λ)=0.18 and (nd2/λ)=0.08 respectively. Further, the gap “G” between the read only area 31 and the recording/reproducing area 32 are specified to 0.374 μm, which is the same value as P1 and P2. By these parameters, it is obtained that T1=0.19 and T2=0.38, and then T1/T2=0.5 is obtained. Accordingly, the push-pull conditions of the present invention such that T1≧0.1, T2≧0.1, and 1.5≧T1/T2≧=0.5 can be satisfied. Further, by continuously reproducing two areas, it is confirmed that a continuous reproduction can jump across the two areas without any problems.
Parameters of this embodiment are a same as those of the seventh embodiment except for (nd1/λ)=0.17 and (nd2/λ)=0.028. Further, the gap “G” between the read only area 31 and the recording/reproducing area 32 are assigned to 0.374 μm, which is the same value as P1 and P2. By these parameters, it is obtained that T1=0.26 and T2=0.17, and then T1/T2=1.5 is obtained. Accordingly, the push-pull conditions of the present invention such that T1≧0.1, T2≧0.1, and 1.5≧T1/T2≧0.5 can be satisfied. Further, by continuously reproducing two areas, it is confirmed that a continuous reproduction can be performed without stopping at a boundary between two areas.
While the invention has been described above with reference to specific embodiments thereof, it is apparent that many changes, modifications and variations in the arrangement of equipment and devices and in materials can be made without departing from the invention concept disclosed herein.
Each composing element in some embodiments shown by drawings can be interchanged or replaced by other composing element described in the specification. For example, in the first and second embodiments, the information recording medium is exemplified by a disk shaped one. However, as shown in
Furthermore, in the first and second embodiments, a phase change recording material is utilized for the recording layer 13. However, the material is not limited to a phase change recording material. A magneto-optical recording material and a recordable type recording material such as a dye material can also be utilized.
More, a wavelength of a laser beam utilized for reproducing or recording/reproducing is specified as 650 and 405 nm. However, a wavelength is not limited to them. Any length such as 830, 635, 515, 460, 430, and 370 nm, and their adjacent wavelength can be utilized. Moreover, with respect to a numerical aperture NA of a lens, any NA such as 0.4, 0.45, 0.55, 0.65, 0.7, 0.75, 0.8, 0.85, and 0.9 other than 0.60 can be applicable. In addition thereto, a lens having an NA of more than 1.0, which is represented by a solid immersion lens, can also be applicable.
According to an aspect of the present invention, as depicted above, the information recording medium, which comprises at least the read only area 31 and the recording/reproducing area 32, can perform a traverse reproduction over two areas by specifying push-pull signal outputs from the read only area 31 and the recording/reproducing area 32 to a predetermined range.
Number | Date | Country | Kind |
---|---|---|---|
2000-107736 | Apr 2000 | JP | national |
2000-225094 | Jul 2000 | JP | national |
The present application is a Continuation application of U.S. application Ser. No. 11/875,869 filed Oct. 20, 2007 (now allowed); which is a Continuation of U.S. application Ser. No. 11/328,064 filed Jan. 10, 2006 (now U.S. Pat. No. 7,313,084); which is a Continuation of U.S. application Ser. No. 10/776,212 filed Feb. 12, 2004 (now U.S. Pat. No. 7,035,199); which is a Divisional of U.S. application Ser. No. 10/435,057 filed May 12, 2003 (now U.S. Pat. No. 6,744,725); which is a Divisional of U.S. application Ser. No. 09/825,924 filed Apr. 5, 2001 (now U.S. Pat. No. 6,582,793); which claims priority from Japanese Application No. 2000-107736 filed in Japan on Apr. 10, 2000 and Application No. 2000-225094 filed in Japan on Jul. 26, 2000. The entire contents of these applications are fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6023451 | Kashiwagi et al. | Feb 2000 | A |
6163521 | Konishi | Dec 2000 | A |
6246656 | Kawakubo et al. | Jun 2001 | B1 |
6269070 | Kikuchi et al. | Jul 2001 | B1 |
6335916 | Endo | Jan 2002 | B1 |
6411575 | Akiyama et al. | Jun 2002 | B1 |
6442119 | Sunagawa | Aug 2002 | B1 |
6580678 | Kondo et al. | Jun 2003 | B2 |
7035199 | Kondo | Apr 2006 | B2 |
7138164 | Ono et al. | Nov 2006 | B2 |
7397756 | Kondo | Jul 2008 | B2 |
20010005357 | Ha | Jun 2001 | A1 |
20020006104 | Sato | Jan 2002 | A1 |
Number | Date | Country |
---|---|---|
03-0547441991 | Mar 1991 | JP |
04-2430191992 | Aug 1992 | JP |
05-2986971193 | Nov 1993 | JP |
09-3261381997 | Dec 1997 | JP |
10-1721491998 | Jun 1998 | JP |
10-2412601998 | Sep 1998 | JP |
2000-348388 | Dec 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20090279413 A1 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10435057 | May 2003 | US |
Child | 10776212 | US | |
Parent | 09825924 | Apr 2001 | US |
Child | 10435057 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11875869 | Oct 2007 | US |
Child | 12505658 | US | |
Parent | 11328064 | Jan 2006 | US |
Child | 11875869 | US | |
Parent | 10776212 | Feb 2004 | US |
Child | 11328064 | US |