1. Field
The following description relates to an information storage medium, an apparatus for reproducing recordings, and a method for reproducing recordings.
2. Description of Related Art
Various methods such as a high density scheme, a multilayer scheme, or the like have been devised to implement a high capacity information storage medium (or data transmission through wired or wireless networks). Generally, in the information storage medium, a high capacity is accomplished based on a combination of both a high density per layer and multilayers.
Referring to
According to an aspect, an information storage medium having a plurality of recording layers is provided. The information storage medium includes a physical ADIP address (PAA) which corresponds to an address recorded on the information storage medium. An address of a layer i to which a pickup will move corresponds to PAAi, an address of a layer j in which the pickup is currently located corresponds to PAAj, and n corresponds to the number of the recording layers, the PAAi and the PAAj satisfy the equation
PAAi=
in response to the pickup moving from an even layer to an odd layer or from an odd layer to an even layer, and the PAAi and the PAAj satisfy the equation
PAAi=PAAj+(i−j)*40 00 00h(i+j=even and i,j=0,1,2, . . . ,n−1)
in response to the pickup moving from an even layer to another even layer or from an odd layer to another odd layer.
In another aspect, an apparatus for recording data on an information storage medium having a plurality of recording layers is provided. The apparatus includes a pickup configured to radiate a beam or receive the beam to transmit data with respect to the information storage medium having a physical ADIP address (PAA) which corresponds to an address recorded on the information storage medium, and a control unit configured to determine an address to which the pickup will move during an interlayer movement to record data, and control the pickup to record the data. An address of a layer i to which the pickup will move corresponds to PAAi, an address of a layer j in which the pickup is currently located corresponds to PAAj, and n corresponds to the number of the recording layers, and the control unit determines whether the PAAi and the PAAj satisfy the equation
PAAi=
in response to the pickup moving from an even layer to an odd layer or from an odd layer to an even layer, and whether the PAAi and the PAAj satisfy the equation
PAAi=PAAj+(i−j)*40 00 00h(i+j=even and i,j=0,1,2, . . . ,n−1)
in response to the pickup moving from an even layer to another even layer or from an odd layer to another odd layer.
In another aspect, an apparatus for reproducing data from an information storage medium having a plurality of recording layers is provided. The apparatus includes a pickup configured to radiate a beam or receive the beam to transmit data with respect to the information storage medium having a physical ADIP address (PAA) which corresponds to an address recorded on the information storage medium, and a control unit configured to determine an address to which the pickup will move during an interlayer movement to reproduce data, and control the pickup to read the data. An address of a layer i to which the pickup will move corresponds to PAAi, an address of a layer j in which the pickup is currently located corresponds to PAAj, and n corresponds to the number of the recording layers, and the control unit determines whether the PAAi and the PAAj satisfy the equation
PAAi=
in response to the pickup moving from an even layer to an odd layer or from an odd layer to an even layer, and whether the PAAi and the PAAj satisfy the equation
PAAi=PAAj+(i−j)*40 00 00h(i+j=even and i,j=0,1,2, . . . ,n−1)
in response to the pickup moving from an even layer to another even layer or from an odd layer to another odd layer.
In another aspect, a method of recording data on an information storage medium having a plurality of recording layers and a physical ADIP address (PAA) which corresponds to an address recorded on the information storage medium is provided. The method includes determining an address to which a pickup will move during an interlayer movement to record data, and recording the data. An address of a layer i to which the pickup will move corresponds to PAAi, an address of a layer j in which the pickup is currently located corresponds to PAAj, and n corresponds to the number of the recording layers, and the determining comprises determining whether the PAAi and the PAAj satisfy the equation
PAAi=
in response to the pickup moving from an even layer to an odd layer or from an odd layer to an even layer, and whether the PAAi and the PAAj satisfy the equation
PAAi=PAAj+(i−j)*40 00 00h(i+j=even and i,j=0,1,2, . . . ,n−1)
in response to the pickup moving from an even layer to another even layer or from an odd layer to another odd layer.
In another aspect, a method of reproducing data from an information storage medium having a plurality of recording layers and a physical ADIP address (PAA) which corresponds to an address recorded on the information storage medium is provided. The method includes determining an address to which a pickup will move during an interlayer movement to reproduce data, and reproducing the data. An address of a layer i to which the pickup will move corresponds to PAAi, an address of a layer j in which the pickup is currently located corresponds to PAAj, and n corresponds to the number of the recording layers, and the determining comprises determining whether the PAAi and the PAAj satisfy the equation
PAAi=
in response to the pickup moving from an even layer to an odd layer or from an odd layer to an even layer, and whether the PAAi and the PAAj satisfy the equation
PAAi=PAAj+(i−j)*40 00 00h(i+j=even and i,j=0,1,2, . . . ,n−1)
in response to the pickup moving from an even layer to another even layer or from an odd layer to another odd layer.
In another aspect, a device includes a recording unit configured to record data on an information storage medium having a plurality of recording layers, the recording unit includes a pickup configured to radiate a beam or receive the beam to transmit data with respect to the information storage medium having a physical ADIP address (PAA) which corresponds to an address recorded on the information storage medium, and a control unit configured to determine an address to which the pickup will move during an interlayer movement to record data, and control the pickup to record the data. An address of a layer i to which the pickup will move corresponds to PAAi, an address of a layer j in which the pickup is currently located corresponds to PAAj, and n corresponds to the number of the recording layers, and the control unit determines whether the PAAi and the PAAj satisfy the equation
PAAi=
in response to the pickup moving from an even layer to an odd layer or from an odd layer to an even layer, and whether the PAAi and the PAAj satisfy the equation
PAAi=PAAj+(i−j)*40 00 00h(i+j=even and i,j=0,1,2, . . . ,n−1)
in response to the pickup moving from an even layer to another even layer or from an odd layer to another odd layer, and layer i is a different layer from layer j.
Other features and aspects may be apparent from the following detailed description, the drawings, and the claims.
Throughout the drawings and the detailed description, unless otherwise described, the same drawing reference numerals will be understood to refer to the same elements, features, and structures. The relative size and depiction of these elements may be exaggerated for clarity, illustration, and convenience.
The following detailed description is provided to assist the reader in gaining a comprehensive understanding of the methods, apparatuses, and/or systems described herein. Accordingly, various changes, modifications, and equivalents of the methods, apparatuses, and/or systems described herein will be suggested to those of ordinary skill in the art. Also, descriptions of well-known functions and constructions may be omitted for increased clarity and conciseness.
First, the following terms are defined.
A physical ADIP address (PAA) relates to an address recorded on an information storage medium. ADIP relates to an “address in pre groove”.
A first ADIP address (FAA) relates to a first address of the PAA.
A last ADIP address (LAA) relates to a last address of the PAA. The FAA and the LAA also correspond to PAAs.
A data address unit (DAU) relates to an address stored in a recording/reproducing unit block.
A first address unit (FAU) relates to a first address of the DAU.
A last address unit (LAU) relates to a last address of the DAU. The FAU and the LAU also corresponds to DAUs.
Generally, in response to a host transmitting data and a logical address for the data to a recording/reproducing apparatus, the recording/reproducing apparatus searches for a physical address on the information storage medium that corresponds to the transmitted logical address. In addition, the recording/reproducing apparatus stores the DAU in a recording/reproducing unit block for the data and records the data at the physical address. In response to reproducing data, the recording/reproducing apparatus receives a logical address for data to be reproduced from the host, searches for a physical address corresponding to the logical address through the DAU stored inside the recording/reproducing unit block, and then reproduces the corresponding data.
Referring to
Referring to
The layer number field 210 or 310 relates to a layer corresponding to an address which is indicated by the address sequence field 320. For example, in the case of the information storage medium having n layers (i.e. L0 through Ln−1), in response to a value of the layer number field 210 or 310 corresponding to k, Lk (in this example, k corresponds to an integer 0, 1, 2, . . . , or n−1) indicates a layer.
The address sequence field 220 or 320 relates to an address in a layer corresponding to the layer number field. For example, a unit of the address which corresponds to the address sequence field 220 or 320 may be a sector, a recording/reproducing unit block, or a multiple of the sector.
The repetition sequence field 230 corresponds to a repeated PAA in response to each PAA being repeated. For example, in response to the PAA being repeated three times, a sequence of repeated PAAs may be indicated with 00, 01, and 10 by allocating 2 bits. In response to the PAA not being repeated and being recorded and stored only one time, no bits are allocated to the repetition sequence field 230.
The unit size field 330 corresponds to a field for defining a unit size of the address sequence field 220 or 320 in response to a basic unit for representing an address of the information storage medium being fixed. For example, if the basic unit for representing an address of the information storage medium is a sector, one bit may be allocated to the unit size field 330. A value of the one bit may be fixed to “0” in response to an indication of an address sequence with a unit of two sectors. In response to a unit of the address sequence being substantially the same as the basic unit, no bits are allocated to the unit size field 330.
The layer number field 210 or 310 may constitute the PAA/DAU for indicating a physical address. In a n layer (in this example, n corresponds with an integer which is three or more) information storage medium, the layer number field 210 or 310 may sequentially increase or decrease depending on an increase in a layer number of the information storage medium. In some examples, the address sequence field 220 or 320 may sequentially increase or decrease by a predetermined unit depending on a tracking direction. The address sequence indicates a complement relation with an address sequence of an adjacent PAA/DAU.
A method of arranging addresses in a multilayer disc may be divided into two types. For example, the two types may be a parallel track path (PTP) and an opposite track path (OTP).
The PTP, as illustrated in
In both the OTP and the PTP examples, the address sequence may increase or decrease by a predetermined unit based on a tracking direction. However, in the OTP, tracking directions in adjacent layers are opposite to each other. For example, in a direction from an inner circumference to an outer circumference, in response to the address sequence in an odd layer increasing by a predetermined unit, the address sequence in an even layer may decrease by a predetermined unit. In the case of the OTP, a method of determining an address is used in response to a pickup moving from a layer to an adjacent layer. A method of determining an address during an interlayer movement is described below.
Referring to
PAAi=
DAUi=
In response to the pickup moving from the even layer to the odd layer (or, in response to the pickup moves from the odd layer to the odd layer), for example, in a case of a high capacity blu-ray (HC BD) disc, a relation 810 between an address of a current layer and an address of a layer to which the pickup moves may be represented by the following equations.
PAAi=
DAUi=
In this example, the bar over each of the above equations relates to a complement of each result thereof. That is, for example, the PAAi is the complement of “PAAj+(7−(i+j))*40 00 00h+00 00 01h”.
In response to the pickup moving from one even layer to another even layer (or, in response to the pickup moving from one odd layer to another odd layer), a relation 830 between an address of a current layer and an address of a layer to which, the pickup will move may be represented by the following equations.
PAAi=PAAj+(i−j)*pow(2,t)(i+j=even and i,j=0,1,2, . . . ,n−1)
DAUi=DAUj+(i−j)*pow(2,r)(i+j=even and i,j=0,1,2, . . . ,n−1)
In response to the pickup moves from one even layer to another even layer (or, in response to the pickup moves from one odd layer to another odd layer), in a case of the HC BD disc, a relation 840 between an address of a current layer and an address of a layer to which the pickup will move is represented by the following equations.
PAAi=PAAj+(i−j)*40 00 00h(i+j=even and, i,j=0,1,2, . . . ,n−1)
DAUi=DAUj+(i−j)*2 00 00 00h(i+j=even and i,j=0,1,2, . . . ,n−1)
In this example, in response to j indicating a current layer in which the pickup is currently located and i indicating a layer to which the pickup will move, an address PAAi after the pickup has moved from the j layer to the i layer may be determined by the above equations using the PAAi.
In the above equations, “s” relates to the number of bits allocated for the layer number field of the PAA. “t” relates to the number of bits allocated for the address sequence field and the repetition sequence field of the PAA. That is, the total number of bits allocated for the PAA relates to the sum of “s” and “t”.
“q” relates to the number of bits allocated for the layer number field of the DAU. “r” relates to the number of bits allocated for the address sequence field and the repetition sequence field of the DAU. That is, the number of bits allocated for the DAU is the sum of “q” and “r”.
“C1” relates to a constant for adjusting a complement relation of the repetition sequence field. “C2” relates to a constant for adjusting a complement relation of the unit size field. “pow(2,x)” corresponds to x to the power of 2.
An example in which an address relation illustrated in
Referring to
The PAAs of
In the above equations, PAA2 has a value in which “40 00 00h” is added to PAA0. Referring to
The value of the PAA0 becomes “000 AA20 . . . AA2 00 01 10”, and the value of the PAA2 becomes “010 AA20 . . . AA2 00 01 10”.
In this example, the address sequence number and the repetition sequence number of the PAA2 are substantially the same as the address sequence number and the repetition sequence number of the PAA0, and only the layer number of the PAA2 is different from the layer number of the PAA0. Accordingly, the PAA2 has a value in which a bit value corresponding to the layer number is added to the PAA0.
In this example, the PAA0 includes the layer number “000” having 3 bits, the address sequence number having 19 bits, and the repetition sequence number having 2 bits, and the PAA2 includes the layer number “010” having 3 bits, the address sequence number having 19 bits, and the repetition sequence number having 2 bits.
In other words, the value of the PAA0 corresponds with “000AAAAAAAAAAAAAAAAAAARR”, and the value of the PAA2 corresponds with “010AAAAAAAAAAAAAAAAAAARR”.
“A” indicates the address sequence number having 19 bits, and “R” indicates the repetition sequence number having 2 bits. As stated above, because the address sequence number and the repetition sequence number of the PAA2 are substantially the same as those of the PAA0, the PAA2 has a value in which “01000000 00000000 00000000” is added to the value of the PAA0. Thus, the value of the PAA2 becomes “40 00 00h” when the value of the PAA2 is represented with hexadecimal codes.
Each PAAi may be represented as described above, and in response to this relation being represented as an equation, each PAAi may be represented by the following equation.
PAAi=PAAj+(i−j)*20 00 00h(i+j=even and i,j=0,1,2, . . . ,n−1)
The PAAs of
In the above equations, PAA1 has a value corresponding to “C0 00 01h” added to PAA0 and then a complement operation is performed on the added value. Referring to
In the above equation, PAA1 is obtained by adding “C0 00 01h” to PAA0 and then complementing the added value, “C” in “C0 00 01h” is a value determined based on a difference between the layer number of the PAA0 and the layer number of the PAA1, and “1” is a value determined based on a difference between the repetition sequence number of the PAA0 and the repetition sequence number of the PAA1.
PAAi is represented as described above, and in response to an equation representing the relation, the PAAi may be represented by the following equation.
PAAi=
In this equation, a portion “(7−(i+j))*20 00 00h” corresponds to a value determined based on the layer number, and a portion “00 00 01h” corresponds to a value determined based on the repetition sequence number.
Referring to
The DAUs are as follows in response to the pickup moving from one even layer to another even layer (or, in response to the pickup moving from one odd layer to another odd layer).
Each DAUi is represented as described above, and in response to this relation being represented as an equation, each DAUi may be represented by the following equation.
DAUi=DAUj+(i−j)*1 00 00 00h(i+j=even and i,j=0,1,2, . . . ,n−1)
The DAUs are as follows in response to the pickup moving from an even layer to an odd layer (or, in response to the pickup moving from an odd layer to an even layer).
Each DAUi is represented as described above, and in response to this relation being represented as an equation, each DAUi may be represented by the following equation.
DAUi=
Each PAAi is represented as described above, and in response to this relation being represented as an equation, each PAAi may be represented by the following equation.
In generalized formula:
PAAi=
Each PAAi is represented as described above, and in response to this relation being represented as an equation, each PAAi may be represented by the following equation.
PAAi=PAAj+(i−j)*40 00 00h(i+j=even and i,j=0,1,2, . . . ,n−1)
FAA0, FAA1, FAA2, FAA3, LAA0, LAA1, LAA2, and LAA3 also relate to PAAs, and thus, the same equation as the above equation may be applied to FAA and LAA.
Referring to
Each DAUi is represented as described above, and in response to this relation being represented as an equation, each DAUi may be represented by the following equation.
DAUi=
Each DAUi is represented as described above, and in response to this relation is represented as a generalized equation, each DAUi may be represented by the following equation.
DAUi=DAUj+(i−j)*2 00 00 00h(i+j=even and i,j=0,1,2, . . . ,n−1)
FAU0, FAU1, FAU2, FAU3, LAU0, LAU1, LAU2, and LAU3 are also special cases of the PAA, and thus, the same equation as the above equation may be applied to FAU and LAU.
Referring to
The recording/reading unit 1810 records data on an information storage medium 1800 and reads recorded data from the information storage medium 1800, according to the control unit 1820.
The control unit controls the recording/reading unit 1810 so as to record/read data in/from the information storage medium 1800. The method of determining an address may be applied to both recording and reproducing data. In the case where an interlayer movement is required while searching for an address where data is to be recorded, the address is determined based on the method of determining an address. Data is recorded after the address is determined. In addition, in the case where an interlayer movement is required during searching for an address from where data is to be reproduced, the address is determined based on the method of determining an address. Data is reproduced after the address is determined.
A recording apparatus and a reproducing apparatus may be implemented separately, or the apparatuses may be implemented as one system, as illustrated in
The information storage medium 1800 includes a plurality of recording layers and a physical ADIP address (PAA) which is an address recorded in the information storage medium.
Referring to
During a recording operation, the host I/F 1 receives data to be recorded and a record command from a host (not shown). The system controller 5 performs an initialization prior to recording the data. The DSP 2 receives data to be recorded from the host interface (I/F), adds additional data such as, for example, parity for error correction to the data, and then performs error correction code (ECC) encoding on the data including the parity. Then, the DSP 2 modulates the FCC encoded data by using a predetermined method. The RF AMP 3 changes data output from the DSP 2 into a RF signal. The pickup records the RF signal output from the RF AMP 3 in an information recording medium 1800. The servo 4 receives a command required for servo control from the system controller 5 and servo-controls the pickup.
In another example, the system controller 5 determines an address the pickup will move to during the interlayer movement while recording data, and controls the pickup to record data in a determined address.
In the case where the PAA of a layer i to which the pickup will move is PAAi and the PAA of a layer j in which the pickup is currently located is PAAj, the system controller 5 determines whether the PAAi and the PAAj satisfy the equation
PAAi=
in response to the pickup moving from an even layer to an odd layer or from an odd layer to an even layer. In addition, the system controller 5 determines whether the PAAi and the PAAj satisfy the equation
PAAi=PAAj+(i−j)*pow(2,t)(i+j=even and i,j=0,1,2, . . . ,n−1)
in response to the pickup moving from an even layer to another even layer or from an odd layer to another odd layer.
In the above equations, “s” corresponds with the number of bits allocated for the layer number field of the PAA. “t” corresponds with the number of bits allocated for the address sequence field and the repetition sequence field of the PAA. “C1” corresponds with a constant for adjusting a complement relation of the repetition sequence field. “pow(2,x)” corresponds with x to the power of 2.
In another example, in the case where the information storage medium is a HC BD disc, the system controller 5 determines whether the PAAi and the PAAj satisfy the equation
PAAi=
in response to the pickup moving from an even layer to an odd layer or from an odd layer to an even layer, and determines whether the PAAi and the PAAj satisfy the equation
PAAi=PAAj+(i−j)*40 00 00h(i+j=even and i,j=0,1,2, . . . ,n−1)
in response to the pickup moving from an even layer to another even layer or from an odd layer to another odd layer.
The above equations may also be applied to the DAU. That is, in the case where the DAU of a layer i to which the pickup will move is DAUi and the DAU of a layer j in which the pickup is currently located is DAUj, the system controller 5 determines whether the DAUi and the DAUj satisfy the equation
DAUj=
in response to the pickup moving from an even layer to an odd layer or from an odd layer to an even layer, and determines whether the DAUi and the DAUj satisfy the equation
DAUi=DAUj+(i−j)*pow(2,r)(i+j=even and i,j=0,1,2, . . . ,n−1)
in response to the pickup moving from an even layer to another even layer or from an odd layer to another odd layer.
In the above equations, “q” corresponds with the number of bits allocated for the layer number field of the DAU. “r” corresponds with the number of bits allocated for the address sequence field and the unit size field of the DAU. “C2” corresponds with a constant for adjusting a complement relation of the unit size field. “pow(2,x)” corresponds with x to the power of 2.
In addition, with respect to the DAU, the system controller 5 determines whether the DAUi and the DAUj satisfy the equation
DAUi=
in response to the pickup moving from an even layer to an odd layer or from an odd layer to an even layer, and determines whether the DAUi and the DAUj satisfy the equation
DAUi=DAUj+(i−j)*2 00 00 00h(i+j=even and i,j=0,1,2, . . . ,n−1)
in response to the pickup moving from an even layer to another even layer or from an odd layer to another odd layer.
During reproduction, the host I/F 1 receives a reproduction command from the host (not shown). The system controller 5 performs initialization prior to reproduction. The pickup radiates a laser beam to the information storage medium 1800 and outputs an optical signal obtained by receiving the laser beam reflected from the information storage medium 1800. The RF AMP 3 changes the optical signal output from the pickup 1810 into a RF signal, provides modulated data obtained from the RF signal to the DSP 2, and provides a servo signal for controlling, obtained from the RF signal to the servo 4. The DSP 2 demodulates the modulated data and performs ECC error correction, and then outputs data obtained from the ECC error correction of the demodulated data. Meanwhile, the servo 4 receives the servo signal from the RF AMP 3 and a command required for servo control from the system controller 5, and performs servo control for the pickup. The host I/F 1 sends data received from the DSP 2 to the host.
As another example, the system controller 5 determines an address where the pickup will move to during the interlayer movement to reproduce data, and controls the pickup to read data at a determined address.
In response to reproducing, similar to in response to recording, an address is determined by the address relations as stated above.
Referring to
In response to the address being determined, data is recorded in the determined address (operation 2030).
Referring to
In response to the address being determined, data is reproduced from the determined address (operation 2130).
Devices including the recording/reproducing apparatus include a blu-ray player, a computer with a blu-ray drive and a blu-ray disk duplication device.
An information storage medium having a plurality of recording layers is provided. The information storage medium includes a physical ADIP address (PAA) which is an address recorded on the information storage medium. In the case where an address of a layer i a pickup will move to corresponds to PAAi, an address of a layer j where the pickup is currently located corresponds to PAAj, and n corresponds to the number of the recording layers, the PAAi and the PAAj satisfy the equation
PAAi=
in response to the pickup moves from an even layer to an odd layer or from an odd layer to an even layer, and satisfy the equation
PAAi=PAAj+(i−j)*40 00 00h(i+j=even and i,j=0,1,2, . . . ,n−1)
in response to the pickup moves from an even layer to another even layer or from an odd layer to another odd layer. An address may be efficiently determined during an interlayer movement in a multilayer information storage medium. Program instructions to perform a method described herein, or one or more operations thereof, may be recorded, stored, or fixed in one or more computer-readable storage media. The program instructions may be implemented by a computer. For example, the computer may cause a processor to execute the program instructions. The media may include, alone or in combination with the program instructions, data files, data structures, and the like. Examples of computer-readable media include magnetic media, such as hard disks, floppy disks, and magnetic tape; optical media such as CD ROM disks and DVDs; magneto-optical media, such as optical disks; and hardware devices that are specially configured to store and perform program instructions, such as read-only memory (ROM), random access memory (RAM), flash memory, and the like. Examples of program instructions include machine code, such as produced by a compiler, and files containing higher level code that may be executed by the computer using an interpreter. The program instructions, that is, software, may be distributed over network coupled computer systems so that the software is stored and executed in a distributed fashion. For example, the software and data may be stored by one or more computer readable recording mediums. Also, functional programs, codes, and code segments for accomplishing the example embodiments disclosed herein can be easily construed by programmers skilled in the art to which the embodiments pertain based on and using the flow diagrams and block diagrams of the figures and their corresponding descriptions as provided herein. Also, the described unit to perform an operation or a method may be hardware, software, or some combination of hardware and software. For example, the unit may be a software package running on a computer or the computer on which that software is running. A number of examples have been described above. Nevertheless, it will be understood that various modifications may be made. For example, suitable results may be achieved if the described techniques are performed in a different order and/or if components in a described system, architecture, device, or circuit are combined in a different manner and/or replaced or supplemented by other components or their equivalents. Accordingly, other implementations are within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2009-0020407 | Mar 2009 | KR | national |
10-2009-0026957 | Mar 2009 | KR | national |
10-2010-0021331 | Mar 2010 | KR | national |
This application is a continuation application under 35 U.S.C. §§120 and 365(c) of PCT Application No. PCT/KR2010/001501 filed on Mar. 10, 2010, which claims the benefit under 35 U.S.C. §119(a) of Korean Patent Application Nos. 10-2009-0020407 filed on Mar. 10, 2009, 10-2009-0026957 filed on Mar. 30, 2009 and 10-2010-0021331 filed on Mar. 10, 2010, in the Korean Intellectual Property Office, the entire disclosures of which are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5881032 | Ito et al. | Mar 1999 | A |
6667939 | Miyamoto | Dec 2003 | B1 |
20020054562 | Satoh et al. | May 2002 | A1 |
20050030864 | Tokumoto | Feb 2005 | A1 |
20060098558 | Kobayashi et al. | May 2006 | A1 |
20070070843 | Kobayashi | Mar 2007 | A1 |
20080130426 | Kwon | Jun 2008 | A1 |
20090183054 | Kwon et al. | Jul 2009 | A1 |
20090303864 | Nagata et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
10-2004-0079944 | Sep 2004 | KR |
10-2005-0093687 | Sep 2005 | KR |
10-2008-0016970 | Feb 2008 | KR |
WO-2004019331 | Mar 2004 | WO |
WO-2006061736 | Jun 2006 | WO |
Entry |
---|
Supplementary European Search Report mailed Jul. 17, 2012, issued in counterpart European Patent Application No. 10751019.0; 8 pages. |
European Examination Report issued on May 3, 2013 in counterpart European Patent Application No. 10 751 019.0 (7 pages, in English). |
Number | Date | Country | |
---|---|---|---|
20110317529 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/KR2010/001501 | Mar 2010 | US |
Child | 13227536 | US |