1. Field of the Invention
The present invention relates to an information storage medium on which subtitles for supporting multiple languages using text data and downloadable fonts are recorded and an apparatus therefor.
2. Description of the Related Art
Conventional digital versatile discs (DVD) use bitmap images as subtitles. Subtitle data of bitmap images are losslessly coded and recorded on a DVD, on which a maximum of 32 subtitles can be recorded.
The data structure of video data on a DVD, which is one of the several types of conventional multimedia information storage media, will now be explained.
Referring to
Referring to
In the VTS area, information on a title, which is a reproduction unit, and a VOBS, which is video data, are stored. In one VTS, at least one title is recorded.
Referring to
Referring to
The MPEG defines system encoding (ISO/IEC13818-1) for encapsulating video data and audio data into one bitstream. The system encoding defines two multiplexing methods, including a program stream (PS) multiplexing method which is suitably for producing one program and storing the program in an information storage medium, and a transport stream multiplexing method which is appropriate for making and transmitting a plurality of programs. In the methods, the DVD employs the PS encoding method. According to the PS encoding method, video data and audio data are respectively divided in the units of packs (PCK) and are multiplexed through time division of the packs. Data other than the video and audio data defined by the MPEG are named as a private stream and also included in PCKs so that the data can be multiplexed together with the audio and video data.
A VOBU comprises a plurality of PCKs. The first PCK in the plurality of PCKs is a navigation pack (NV_PCK). Then, the remaining part comprises video packs (V_PCK), audio packs (A_PCK), and sub picture packs (SP_PCK). Video data contained in a video pack comprises a plurality of GOPs.
The SP_PCK is for 2 dimensional graphic data and subtitle data. That is, in the DVD, subtitle data that appear overlapping a video picture are coded by the same method as used for 2 dimensional graphic data. That is, for the DVD, a separate coding method for supporting multiple languages is not employed and after converting each subtitle data into graphic data, the graphic data is processed by one coding method and then recorded. The graphic data for a subtitle is referred to as a sub picture. A sub picture comprises a sub picture unit (SPU). A sub picture unit corresponds to one graphic data sheet.
Referring to
In the SPUH, the size of the entire SPU and a location from which SP_DCSQT data begins are recorded. PXD data is obtained by encoding a sub picture. Pixel data forming a sub picture can have 4 different types of values, which are a background, a pattern pixel, an emphasis pixel-1, and an emphasis pixel-2 that can be expressed by 2 bit values and have binary values of 00, 01, 10, and 11, respectively. Accordingly, a sub picture can be deemed as a set of data having the four pixel values and formed with a plurality of lines. Encoding is performed for each line. As shown in
Referring to
The SP_DCCMD is control information on how the pixel data (PXD) and video pictures are combined and output, and contains pixel data color information, information on contrast with video data, and information on an output time and a finish time.
Referring to
In a DVD, sub picture data for subtitle data of a maximum of 32 different languages can be multiplexed with video data and recorded. Distinction of these different languages is performed by a stream id provided by the MPEG system encoding and sub stream id defined in the DVD. Accordingly, if a user selects one language, SPUs are extracted from only SP_PCKs having stream id and sub stream id corresponding to the selected language, then decoded, and subtitle data are extracted. Then, output is controlled according to display control commands.
Many problems arise from the fact that subtitle data are multiplexed together with video data as described above.
First, the amount of bits to be generated for sub picture data should be considered when video data are coded. That is, since subtitle data is converted into graphic data and processed, the amount of generated data for respective languages are different from each other and also the amounts are huge. Usually, after encoding of moving pictures is performed once, sub picture data for each language is again multiplexed being added to the output of the encoding such that a DVD appropriate to each region is produced. However, depending on the language, the amount of sub picture data is huge such that when sub picture data is multiplexed with video data, the entire amount of generated bits exceeds a maximum allowance. In addition, since sub picture data is multiplexed between video data, the start point of each VOBU is different according to the region. Since the start point of a VOBU is separately managed, whenever a multiplexing process newly begins, this information should be updated.
Secondly, since the contents of each sub picture cannot be known, sub picture data cannot be used for additional purposes, such as for outputting two languages at a time for a language by outputting only subtitle data.
The present invention provides an information storage medium on which sub picture data is recorded with a data structure in which when video data are coded, the amount of bits to be generated for sub picture data need not be considered in advance and an apparatus therefor.
The present invention also provides an information storage medium on which sub picture data is recorded with a data structure in which sub picture data can be used for purposes other than subtitles and an apparatus therefor.
Additional aspects and/or advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
According to an aspect of the present invention, there is provided an information storage medium on which video data are recorded, including: a plurality of clips that are recording units in which the video data are stored; and text data for subtitles which are recorded separately from the plurality of clips and overlappable with an image according to the video data and then outputtable, the text data including data for providing subtitles in at least one language.
The information storage medium may include character font data, which are recorded separately from the plurality of clips, for graphic expression of the text data and are which are usable in the text data.
When the text data is of multiple languages, the text data may be recorded in separate spaces for each of the multiple languages.
The text data may include character data which are convertible into graphic data and output synchronization information for synchronizing the graphic data with the video data.
The text data may include character data which are convertible into graphic data and output location information indicating a location in which the graphic data is to be displayed when the graphic data is overlapped with an image according to the video data.
The text data may include character data which are convertible into graphic data and information for expressing the output of the graphic data in a plurality of sizes when the graphic data is overlapped with an image.
The video data may be divided into units that are continuously reproducible, and a size of all of the text data corresponding to one unit is limited.
The video data may be divided into a plurality of units that are continuously reproducible, the text data corresponding to each reproducing unit being divided into a plurality of language sets, and a size of all of the text data forming one language set being limited.
The data forming the text data may be expressed and recorded in Unicode for supporting multi-language character sets.
When the text data for subtitles are formed only with characters of one of ASCII, which is a basic English character set, and ISO8859-1, which is a Latin-extended character set, the text data may be coded and recorded by using UTF-8 by which one character is coded into a plurality of 8-bit units.
When the text data includes a character having a code point value of a 2-byte size in Unicode, the text data may be coded and recorded by using UFT-16 by which one character is coded into a plurality of 16-bit units.
The information storage medium may be a removable type.
The information storage medium may be an optical disc which is readable by an optical apparatus of the reproducing apparatus.
According to another aspect of the present invention, there is provided a reproducing apparatus which reproduces data from an information storage medium on which video data is recoded, the video data being coded and divided into clips that are recording units and recorded in a plurality of clips and on which text data for subtitles that are formed with data of a plurality of languages and are overlappable as graphic data with an image based on the video data, the text data being recorded separately from the clips, the reproducing apparatus including: a data reproducing unit which reads data from the information storage medium; a decoder which decodes the coded video data; a renderer which converts the text data into graphic data; a blender which overlays the graphic data with the video data to generate an image; a first buffer which temporarily stores the video data; and a second buffer which stores the text data.
Font data may be stored in a third buffer and are usable in the text data for graphic expression of the text data and are recorded separately from the clips on the information storage medium, and the renderer converts the text data into graphic data using the font data.
When the text data are data of multiple languages, the text data may be recorded in separate spaces for each of the languages, wherein text data for a language that is one of selected by a user and set as an initial reproducing language s are temporarily stored in the second buffer, font data for converting the text data into graphic data may be temporarily stored in the third buffer, and, simultaneously, while reproducing video data, the text data may be converted into graphic data and the graphic data may be output.
The apparatus may include a controller which controls an output start time and end time of the text data using synchronization information. On the information storage medium may be recorded the text data which includes the synchronization information, by which the text data are converted into graphic data which are overlapped with an image based on the video data.
The apparatus may include a controller which controls a location where the text data is overlapped with an image based on the video data using output location information. On the information storage medium may be recorded the text data includes character data which are convertible into graphic data, and the output location information indicating a location where the graphic data is to be output when the graphic data is overlapped with an image based on the video data.
The video data recorded on the information storage medium may be divided into units that are continuously reproducible, and within a limited size of all of the text data corresponding to the recording unit, the text data are recorded. All of the text data whose size is limited may be stored in the second buffer before reproducing the continuously reproducible units, and when a language change occurs during reproduction, subtitle data corresponding to the language stored in the buffer may be output.
The video data may be divided into units that are continuously reproducible, the text data corresponding to one unit are divided into a plurality of language sets, the text data for subtitles forming the one language set are recorded so that all of the text data is limited. The text data corresponding to a language set containing the subtitle data which are output simultaneously with video data, may be stored in the buffer before reproducing the unit that is continuously reproducible, and when a language change occurs during reproduction, when the text data for the language are in the buffer, the text data for the language may be output, and when the text data for the language are not in the buffer, the text data corresponding to the language set containing the text data for the language are stored in the buffer and the text data for the language may be output.
The apparatus may include a subtitle size selector which selects a size of the subtitle data based on a user input. The text data may include character data, which are convertible into graphic data, and information indicating the output of a plurality of graphic data items when the graphic data is overlapped with an image based on the video data may be recorded on the information storage medium.
Data forming the text data may be expressed and recorded in Unicode for supporting multi-language sets, and the renderer converts the characters expressed in Unicode into graphic data.
On the information storage medium, when the text data for subtitles are formed only with characters of one of ASCII, which is a basic English character set, and ISO8859-1, which is a Latin-extended character set, the text data may be coded and recorded by using UTF-8 by which one character is coded into a plurality of 8-bit units, and the renderer may convert the characters expressed by UFT-8 into graphic data.
On the information storage medium, when the text data includes a character having a code point value of a 2-byte size in Unicode, the text data may be coded and recorded by using UFT-16 by which one character is coded into a plurality of 16-bit units, and the renderer may convert the characters expressed by UTF-16 into graphic data.
The information storage medium may be a removable type, and the reproducing apparatus may reproduce data recorded on the removable information storage medium.
The information storage medium may be an optical disc which is readable by an optical apparatus of the reproducing apparatus, and the reproducing apparatus may reproduce data recorded on the optical disc.
The reproducing apparatus may output the graphic data without reproducing video data recorded on the information storage medium.
The subtitle data may include subtitle data for one or more languages and the renderer may convert text data for the one or more languages into graphic data.
The subtitle data may be synchronously overlapped with a video image and then output.
According to still another aspect of the present invention, there is provided A recording apparatus which records video data on an information storage medium, including: a data writer which writes data on the information storage medium; an encoder which codes video data; a subtitle generator which generates subtitle data addable to the video data; a central processing unit (CPU); a fixed-type storage; and a buffer. The video data is stored in the fixed-type storage after the encoder divides video images into clips that are recording units and compression encodes the clips. The subtitle generator generates subtitle data for a plurality of languages in the form of a text, the subtitle data being reproducible together with an image based on the video data and stored in the fixed-type storage. The buffer temporarily stores the data stored in the fixed-type storage. The data writer records the coded video data and subtitle data that are temporarily stored in the buffer on the information storage medium. The CPU controls encoding of the video data, recording the coded video data and the subtitle data in respective separate areas on the information storage medium.
The apparatus may include a font data generator which generates font data for converting text data for subtitles into graphic data. The font data generator may generate font data needed for converting the subtitle data into graphic data, and may store the font data in the fixed-type storage. The buffer may temporarily store the font data stored in the fixed-type storage, the data writer may record the font data temporarily stored in the fixed-type storage on the information storage medium, and the CPU may control the generating of the font data and recording the font data in separate areas of the information storage medium.
When the text data are data of multiple languages, the CPU may control the subtitle data so that the subtitle data are recorded in a separate space for each language.
The apparatus may include a subtitle generator which generates the subtitle data by including character data which are convertible into graphic data and then output and output synchronization information for synchronizing with reproduction of the video images.
The subtitle generator may generate the subtitle data by including character data which are convertible into graphic data and may output location information indicating a location where the graphic data will be output when the graphic data is overlapped with an image based on the video data.
The subtitle generator may generate the text data by including character data which is convertible into graphic data and information for expressing the output of the graphic data with a plurality of sizes when the graphic data is overlapped with an image based on the video data.
The coded video data may be divided into recording units that are continuously reproducible, and the subtitle generator may generate the text data so that a size of all of the subtitle data corresponding to the recording unit is limited.
The coded video data may be divided into recording units that are continuously reproducible, and after the text data corresponding to the recording unit are divided into a plurality of language sets, the subtitle generator may generate the text data so that a size of the entire subtitle data forming the one language set is limited.
The subtitle generator may generate data forming the text data in Unicode for supporting multi-language character sets.
The encoder may encode by using UTF-8 by which one character is coded into a plurality of 8-bit units when the text data are formed only with characters of one of ASCII, which is a basic English character set, and ISO8859-1, which is a Latin-extended character set.
The encoder encodes by using UFT-16 by which one character is coded into a plurality of 16-bit units when the text data includes a character having a code point value of a 2-byte size in Unicode.
The information storage medium may be a removable type.
The information storage medium may be an optical disc.
According to yet another aspect of the present invention, there is provided a method of reproducing data stored on an information storage medium, including: reading audio-visual (AV) data and text data; rendering subtitle image data from the text data; decoding the AV data and outputting decoded AV data; and blending the subtitle image data and the decoded AV data.
According to still another aspect of the present invention, there is provided a reproducing apparatus including: a reading section which reads audio-visual (AV) data, text data, and font data; a decoder section which decodes the AV data and outputs moving picture data; a rendering section which renders subtitle image data from the text data; and a blending section which synthesizes the moving picture data with the subtitle image data.
According to yet another aspect of the present invention, there is provided a reproducing apparatus including: a reading section which reads text data and font data; a rendering section which renders subtitle image data from the text data; and an outputting section which outputs the subtitle image data an input receiving section which receives an input to subtitle data for a next line so as to control the output time of the subtitle data.
According to yet another aspect of the present invention, there is provided a data recording and/or reproducing apparatus including: a storage section; an encoder which codes audio-visual (AV) data to yield coded AV data; a subtitle generator which generates renderable text data for subtitles; a data writer which writes the coded AV data and the renderable text data onto the storage section; a reading section which reads the coded AV data and the renderable text data; a decoder section which decodes the coded AV data so as to yield moving picture data; a rendering section which renders subtitle image data from the renderable text data; and a blending section which synthesizes the moving picture data with the subtitle image data so as to yield blended moving picture data.
To achieve the above and/or aspects and advantages, on an information storage medium according to various embodiments of the present invention, each subtitle data item is not coded together with AV data and within AV data, but is recorded in the form of separate text data in a separate recording space. In addition, on the information storage medium, separate font data for rendering subtitle data that is in the form of text data is recorded. Also, synchronization information for interlocking subtitle data with AV moving pictures for which decoding process is finished, and output information for screen output are recorded. The subtitle data corresponds to sub picture data in the conventional DVD. That is, on the information storage medium according to various embodiments of the present invention, the following elements are recorded:
These and/or other aspects and advantages of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below to explain the present invention by referring to the figures.
Referring to
In addition, the reproducing apparatus further includes a buffer, which buffers data between the reader and the decoder and renderer s and stores determined font data, and may further include a storage (not shown) for storing resident font data that are stored in advance as defaults.
As used herein, rendering encompasses all needed activities related to converting subtitle text data into graphic data so as to be displayed on a display apparatus. That is, rendering includes producing graphic data to form a subtitle image by repeating the process for finding a font matching with the character code of each character in the text data in the downloaded font data read from the information storage medium or from the residing font data, and converting the font data into graphic data. Rendering also includes selecting or converting colors, selecting or converting the size of characters, and producing graphic data appropriate to writing in horizontal lines or vertical lines. In particular, when the font data being used is an outline font, font data defines the shape of each character as a curve formula. In this case, rendering also includes a rasterizing process for generating graphic data by processing the curve formula.
Referring to
Referring to
Among used elements, a subtitle element is used to indicate the root of text data, and a head element is used to include a meta element which deals with information needed by all of the text data, or a style element which is not shown in the example of
Thus stored subtitle data is loaded into the buffer of the reproducing apparatus before video data is reproduced, and with the reproduction of video data, the subtitle data is converted into graphic data by the renderer and made to overlap video images. Accordingly, the subtitle data in, for example, Korean, is displayed in a display area at an exact time. As described above, for the text data, in addition to the subtitle character data, control information may also be written in a format or syntax. Accordingly, the renderer has a parser function for verifying that a text file to be stored is written according to a syntax. Also, in order to synchronize the subtitle data with video images decoded by the decoder by using the synchronization information included in the text file, there is a channel through which events for sending or determining information on the reproducing time and the reproducing state of the decoder are exchanged with the decoder.
Referring to
When multiple languages are thus supported, a character code to be used for the text data should be determined. In an embodiment, Unicode is used. Unicode is a character code made to express languages throughout the world with more than 65,000 characters. According to the Unicode, each character is expressed by a code point in Unicode. Characters to express respective languages are sets of code points having regularly continuous values. The characters having a continuous space of code points are referred to as a code chart. Also, Unicode supports UTF-8, UTF-16, and UTF-32 as coding formats for actually storing or transmitting character data, that is, the code points. These formats are to express one character by using a plurality of data items with an 8-bit length, 16-bit length, and 32-bit length, respectively.
An ASCII code for expressing English characters and an ISO8859-1 code for expressing languages of European countries by expanding Latin have code point values from 0×00 to 0×FF in Unicode. Japanese Hirakana characters have code point values from 0×3040 to 0×309F. The 11,172 characters for expressing modern Korean have code point values from 0×AC00 to 0XD7AF. Here, Ox indicates that the code point value is expressed by hexadecimal numbers.
If subtitle data includes only English characters, the coding is performed by using UTF-8. For Korean or Japanese subtitle data, if UTF-8 is used, one character is expressible using 3 bytes. If UTF-18 is used, one character is expressible in 2 bytes but each of the English characters included in the subtitle data at is also expressible in 2 bytes.
Each country has its own character code different from Unicode. For example, in the Korean character code set, KSC5601, a Korean character has a 2-byte code point value and an English character has 1-byte code point value. If the subtitle data is generated by using a code other than Unicode but each nation's character set, each reproducing apparatus understands all of these character sets such that the load for implementation increases.
Font data is needed in order to process subtitle data as text data. Also, in order to support multiple languages, the font data supports multiple languages. However, it is difficult to manufacture all reproducing apparatuses having these fonts that support multiple languages. Accordingly, in this embodiment of the present invention, font data only for the characters used in an information storage medium are recorded in the information storage medium as subtitle data such that in a reproducing apparatus, such font data is loaded into a buffer before reproducing video data and then used. That is, the reproducing apparatus links each piece of subtitle text data with font data and then reproduces the data. Link information of subtitle text data and font data is recorded in the text data for subtitles or in a separate area. Considering a case where a user executes a language change during reproduction of data, the reproducing apparatus loads subtitle data and font data, which correspond to video data and is continuously reproducible before reproduction, and then uses the data. Here, continuous reproduction encompasses reproduction without pause, cessation, or interruption in the video and audio outputs of the video data. Generally, a reproducing apparatus reproduces data by storing an amount of data in a video and audio buffer and if underflow in the buffer of the reproducing apparatus is prevented, continuous reproduction is possible. When subtitles or font data corresponding to video data are read again through the reader in order to change subtitles during reproduction, if underflow of the video and audio data does not occur during the time, loading in advance may not be needed.
Referring to
In some applications or with some users, subtitle styles that are set as defaults are not convenient. For example, a person with bad eyesight may feel inconvenience if the size of the font of the subtitle text is small. Accordingly, it is desirable to apply and display a style to satisfy ordinary users or persons with bad eyesight when applied to an identical text file. Therefore, by allowing users to determine the style, such as the size of a font, through a menu when reproducing an information storage medium in a first reproducing apparatus, a style sheet which is for applying a style according to a user's settings and has a plurality of options that are selectable by the user can be used.
In the present invention, an @user rule by which a subtitle style according to a user is settable will now be explained. User type is a set of CSS attributes. In the present embodiment, a detailed distinction of user types, that is, the degree of bad eyesight, is not relevant, and therefore, only the two following cases as follows will be explained:
As shown in
It is also possible for a reproducing apparatus to output subtitles with applying a different position and size according to the user's preference without using the position and size determined by the subtitle data.
Referring to
The third <p> element is an example in which by a “direction” attribute, the display of subtitle data is vertically performed.
Referring to
For multi-language conversion without pause, cessation, or interruption of video reproduction, the sizes of data for subtitles and font data are limitable to less than the sizes of the respective buffers. In this case, however, the number of supported languages is restricted. Accordingly, in the present embodiment of the present invention, this problem is solved by creating a unit referred to as a language set.
Referring to
The relation between information needed in reproducing video data and the subtitle data will now be explained with an embodiment.
As used herein, a clip is a recording unit of video data, and PlayList and PlayItem will be used to indicate reproducing units.
In an information storage medium according to an embodiment of the present invention, AV streams are separated and recorded in units of clips. Usually, a clip is recorded in a continuous space. In order to reduce the volume, AV streams are compressed and recorded. Accordingly, in order to reproduce the compressed AV streams, attribute information of the compressed video data should be informed. Therefore, Clip information is recorded in each clip. Clip information contains audio video attributes of the clip and an Entry Point Map in which information on the location of an Entry Point where random access is available in each interval is recorded. In an MPEG, which is widely used as a video compression technology, the Entry Point is the location of I picture where an intra image is compressed, and the Entry Point Map is mainly used for a time search used to find a point in a time interval after the starting point of reproduction.
PlayList is a basic unit of reproduction. In an information storage medium according to the present embodiment, a plurality of PlayLists is stored. One PlayList includes a series of a plurality of PlayItems. PlayItem corresponds to a part of a clip, and more specifically, it is used in the form by which a reproduction start time and end time in the clip are determined. Accordingly, by using Clip information, the location of the part in an actual clip corresponding to the PlayItem is identified.
Referring to
Usually, font data is generated for each language. Accordingly, font data is recorded in a separate space for each language.
Referring to
An information storage medium according to various embodiments of the present invention is a removable information storage medium (i.e., one which is not fixed to a reproducing apparatus and, only when data is reproduced, can be placed and used). Unlike a fixed information storage medium with a high capacity such as a hard disc, the removable information storage medium has a limited capacity. Also, reproducing apparatuses for reproducing this medium often have a buffer with a limited size and low level function s with limited performance. Accordingly, together with video data recorded on a removable information storage medium, only subtitle data and font data used for the subtitle data are recorded on the information storage medium and by using the data when video data is reproduced from the information storage medium, the amount of data that should be prepared in advance can be minimized. A representative example of this removable recording medium is an optical disc.
On an information storage medium according to an embodiment of the present invention, video data is stored in a space separate from subtitle text data. If this subtitle text data is for multiple languages and has font data for outputting the subtitle data, a reproducing apparatus loads only the subtitle data and font data in the buffer and then, while reproducing video data, overlaps the subtitle data with a video image and outputs the subtitle data.
Referring to
Referring to
A function, by which while only subtitle data are reproduced, normal reproduction of video data can be started from the video data corresponding to a subtitle line data item, is also implementable.
As shown in
A recording apparatus according to an embodiment of the present invention records video data and subtitle data on an information storage medium.
Referring to
The encoder, subtitle generator, and font generator may be implemented by software on the CPU.
In addition, a video input unit for receiving video data in real time is also includable.
The storage stores a video image that is the object of encoding, or video data that is coded by the encoder. In addition, the storage stores a dialogue attached to the video data and large volume font data. The subtitle generator receives information on the output time of a subtitle line data item from the encoder, receives subtitle line data from the dialogue data, makes subtitle data for the subtitles, and stores the subtitle data in a fixed-type storage apparatus. The font generator generates font data containing characters used in the subtitle data for subtitles from the large volume font data and stores the font data in the fixed-type storage apparatus. That is, the font data stored in the information storage medium is part of the large volume font data stored in the fixed-type storage apparatus. This process for generating data in the form to be stored in an information storage medium is referred to as authoring.
If the authoring process is finished, coded video data stored in the fixed-type storage apparatus are divided into clips, which are the recording units, and recorded on an information storage medium. Also, subtitle data for subtitles added to video data contained in the clip are recorded in a separate area. Further, font data needed to convert the subtitle data into graphic data is recorded in a separate area.
The video data is divided into reproducing units that are continuously reproducible, and usually, this reproducing unit includes a plurality of clips. As an embodiment, the size of subtitle data, which are overlappable with a video image included in one reproducing unit and is output, is limited to be less than a size when the data for a plurality of languages is all added to the subtitle data. Alternatively, subtitle data, which should be overlapped with a video image included in one reproducing unit, is divided into language sets with which a language change is continuously performable when video data is reproduced. Subtitle data included in one reproducing unit includes a plurality of language sets and the size of subtitle data included in one language set, plus data for a plurality of languages, is limited to less than a size.
The subtitle data includes character codes using Unicode and the data form actually recorded is codable by UTF-8 or UTF-16.
Video data, subtitle data for subtitles, and font data recorded in the fixed-type storage apparatus are temporarily stored in the buffer and are recorded on an information storage medium by the writer. The CPU executes a software program controlling each device so that these functions are performed in order.
As described above, according to the above-described embodiments of the present invention, text data for multi-language subtitles are made to be a text file and then recorded in a space separate from AV streams such that more diverse subtitle are providable to users and a recording space arrangement is conveniently performable.
Font data for this are made to have a minimum size by collecting characters needed for the subtitle text and are stored separately in an information storage medium and used.
Although a few embodiments of the present invention have been shown and described, the present invention is not limited to the disclosed embodiments. Rather, it would be appreciated by those skilled in the art that changes may be made in this embodiment without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2002-62632 | Oct 2002 | KR | national |
This application claims priority from Korean Patent Application No. 2002-62632, filed Oct. 15, 2002, and the benefit of U.S. Provisional Application Ser. No. 60/452,544, filed Mar. 7, 2003, whose disclosures are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60452544 | Mar 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10684509 | Oct 2003 | US |
Child | 12774474 | US |