INFORMING FIRST RESPONDERS BASED ON INCIDENT DETECTION, AND AUTOMATIC REPORTING OF INDIVIDUAL LOCATION AND EQUIPMENT STATE

Information

  • Patent Application
  • 20170178490
  • Publication Number
    20170178490
  • Date Filed
    December 17, 2015
    9 years ago
  • Date Published
    June 22, 2017
    7 years ago
Abstract
A method and system are provided. The method includes generating a set of workplace predictors of risk relating to accidents, injury, and industrial hygiene, based on at least one employee state that includes at least one of a physical state, a cognitive state, and an emotional state. The method further includes collecting data for an elevated risk of a workplace accident at a work location responsive to the set of workplace predictors. The data includes employee data for employees involved in the elevated risk and workplace machinery data for workplace machinery involved in the elevated risk. The method also includes automatically dispatching the data to first responders using one or more hardware-based information dispatching devices.
Description
BACKGROUND

Technical Field


The present invention relates generally to personal safety and, in particular, to informing first responders based on incident detection, and automatic reporting of individual location and equipment state.


Description of the Related Art


Worldwide there are around 350,000 workplace fatalities and 270 million workplace injuries annually. According to the National Safety Council, in the U.S. alone, this results in $750 billion in lost wages and productivity, medical expenses, administrative costs, motor vehicle damage, employer's uninsured costs and fire loss. This includes about 4,400 worker deaths due to job injuries, close to 50,000 deaths due to work-related injuries, and approximately 4 million workers who suffered non-fatal work related injuries or illnesses. An estimated 14 million people worked in the U.S. manufacturing sector in 2010, and there were 329 deaths due to job injuries, with $1.4 million in costs associated with each death, and 127,140 non-fatal injuries involving days away from work. In 2008, contact with objects and equipment was the leading cause of death (resulting in 116 deaths) and the leading cause of non-fatal injuries involving days away from work (60,430 cases) in the U.S. manufacturing sector. Overexertion is the second leading cause of non-fatal injuries involving days away from work.


However, first responders arriving at accident scenes are ill-informed as to the location of individuals and the state of workplace equipment. As such, there is a need for informing first responders based on incident detection, and automatically reporting the location of individuals and the state of workplace equipment.


SUMMARY

According to an aspect of the present principles, a method is provided. The method includes generating a set of workplace predictors of risk relating to accidents, injury, and industrial hygiene, based on at least one employee state that includes at least one of a physical state, a cognitive state, and an emotional state. The method further includes collecting data for an elevated risk of a workplace accident at a work location responsive to the set of workplace predictors. The data includes employee data for employees involved in the elevated risk and workplace machinery data for workplace machinery involved in the elevated risk. The method also includes automatically dispatching the data to first responders using one or more hardware-based information dispatching devices.


According to another aspect of the present principles, a system is provided. The system includes one or more computer servers having a processor configured to generate a set of workplace predictors of risk relating to accidents, injury, and industrial hygiene, based on at least one employee state that includes at least one of a physical state, a cognitive state, and an emotional state. The processor is further configured to collect data for an elevated risk of a workplace accident at a work location responsive to the set of workplace predictors. The processor is also configured to automatically dispatch the data to first responders using one or more hardware-based information dispatching devices. The data includes employee data for employees involved in the elevated risk and workplace machinery data for workplace machinery involved in the elevated risk.


These and other features and advantages will become apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.





BRIEF DESCRIPTION OF DRAWINGS

The disclosure will provide details in the following description of preferred embodiments with reference to the following figures wherein:



FIG. 1 shows an exemplary processing system 100 to which the present principles may be applied, in accordance with an embodiment of the present principles;



FIG. 2 shows an exemplary system 200 for collaborative workplace accident avoidance, in accordance with an embodiment of the present principles;



FIGS. 3-4 show an exemplary method 300 for collaborative workplace accident avoidance, in accordance with an embodiment of the present principles;



FIG. 5 shows an exemplary cloud computing node 510, in accordance with an embodiment of the present principles;



FIG. 6 shows an exemplary cloud computing environment 650, in accordance with an embodiment of the present principles; and



FIG. 7 shows exemplary abstraction model layers, in accordance with an embodiment of the present principles.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The present principles are directed to informing first responders based on incident detection, and automatic reporting of individual location and equipment state.


In an embodiment, the present principles are utilized with respect to a cloud deployable “cognitive suite of workplace hygiene and injury predictors” (abbreviated as “Cognitive WHIP”).


In an embodiment, the Cognitive WHIP shares its worker and factory features analytics and predictions with an accident report generating component for automatic generation and communication of an accident report to first responders. First responders include paramedics, fire and police department personnel as well as on site or nearby workplace first aiders or other suitably qualified people. In an embodiment, the accident report may include those employees deemed most at risk immediately prior to an alarm being sounded, the locations of highest risk, and likely machinery and equipment involved in the event. This report may be communicated by text message or other interface to first responders as they approach the scene of an industrial accident. As used herein, the term “accident” can encompass both the accident itself and any corresponding injuries resulting from the accident.



FIG. 1 shows an exemplary processing system 100 to which the present principles may be applied, in accordance with an embodiment of the present principles. The processing system 100 includes at least one processor (CPU) 104 operatively coupled to other components via a system bus 102. A cache 106, a Read Only Memory (ROM) 108, a Random Access Memory (RAM) 110, an input/output (I/O) adapter 120, a sound adapter 130, a network adapter 140, a user interface adapter 150, and a display adapter 160, are operatively coupled to the system bus 102.


A first storage device 122 and a second storage device 124 are operatively coupled to system bus 102 by the I/O adapter 120. The storage devices 122 and 124 can be any of a disk storage device (e.g., a magnetic or optical disk storage device), a solid state magnetic device, and so forth. The storage devices 122 and 124 can be the same type of storage device or different types of storage devices.


A speaker 132 is operatively coupled to system bus 102 by the sound adapter 130. A transceiver 142 is operatively coupled to system bus 102 by network adapter 140. A display device 162 is operatively coupled to system bus 102 by display adapter 160.


A first user input device 152, a second user input device 154, and a third user input device 156 are operatively coupled to system bus 102 by user interface adapter 150. The user input devices 152, 154, and 156 can be any of a keyboard, a mouse, a keypad, an image capture device, a motion sensing device, a microphone, a device incorporating the functionality of at least two of the preceding devices, and so forth. Of course, other types of input devices can also be used, while maintaining the spirit of the present principles. The user input devices 152, 154, and 156 can be the same type of user input device or different types of user input devices. The user input devices 152, 154, and 156 are used to input and output information to and from system 100.


Of course, the processing system 100 may also include other elements (not shown), as readily contemplated by one of skill in the art, as well as omit certain elements. For example, various other input devices and/or output devices can be included in processing system 100, depending upon the particular implementation of the same, as readily understood by one of ordinary skill in the art. For example, various types of wireless and/or wired input and/or output devices can be used. Moreover, additional processors, controllers, memories, and so forth, in various configurations can also be utilized as readily appreciated by one of ordinary skill in the art. These and other variations of the processing system 100 are readily contemplated by one of ordinary skill in the art given the teachings of the present principles provided herein.


Moreover, it is to be appreciated that system 200 described below with respect to FIG. 2 is a system for implementing respective embodiments of the present principles. Part or all of processing system 100 may be implemented in one or more of the elements of system 200.


Further, it is to be appreciated that processing system 100 may perform at least part of the method described herein including, for example, at least part of method 300 of FIG. 3 and/or at least part of method 400 of FIG. 4. Similarly, part or all of system 200 may be used to perform at least part of method 300 of FIG. 3 and/or at least part of method 400 of FIG. 4.



FIG. 2 shows an exemplary system 200 for collaborative workplace accident avoidance, in accordance with an embodiment of the present principles.


The system 200 is shown with respect to an operational environment in which it can be utilized, in accordance with an embodiment of the present principles.


Accordingly, a set of workplace machines 290 are generally shown in FIG. 2 as blocks. However, these machines can be any type of machine found in a workplace environment (e.g., a factory, a plant, and so forth). In an embodiment, the workplace environment can involve manufacturing, assembly, and so forth. Each of the workplace machines 290 has at least one employee 291 operating the same.


The system 200 includes one or more servers (hereinafter “servers”) 210. Each of the servers 210 can include a processor or controller (hereinafter “controller”) 210A, memory 220B, workplace hygiene and injury predictor 220C, an elevated risk determiner 220D, and an incident information manager and dispatcher 220E.


In the embodiment of FIG. 2, the servers 210 are shown local to the workplace environment. In another embodiment, the servers 210 can be in the cloud. In yet another embodiment, the servers can be both local and remote, such that the local servers perform some of the functions implicated by the present principles, while the remote servers perform other ones of the functions implicated by the present principles. Hence, while wired connections are shown between the video camera 281 (described in further detail herein below) and the servers 210, other types of connection including, e.g., wireless connections and so forth can be used. The same applies to the wired connections between the servers 210 and the workplace machines, which can instead be wireless connections, and so forth. Moreover, while only some of the workplace machines are shown connected to the servers for the sake of illustration and ease of reviewing the drawing, it is envisioned that each workplace machine that poses a risk is connected for control in accordance with the teachings of the present principles.


The workplace hygiene and injury predictor 220C generates predictions of workplace hygiene and injury. In an embodiment, the predictions are made based on employee states that can include, but are not limited to, physical, cognitive, and emotional states. The employee states can be determined by the predictor 220C from, but not limited to, video data (e.g., captured by a video camera 281) and wearables analysis. The wearables 282 can include personal wearable instrumentation (e.g., smart watches, blood pressure monitors, and so forth) that measures various parameters of an employee. Moreover, the video data can be also be used to measure various parameters of an employee. The parameters can be heartrate, blood pressure, shakiness (trembling), crying, smiling, laughing, yelling, coughing, sneezing, and so forth. As is evident, such parameters can be indicative of stress, inattentiveness, sickness, or other employee state that can likely result in injury. Exemplary physical states include, but are not limited to, injury, abnormal pulse rate, abnormal body temperature, abnormal blood pressure, and so forth. A cognitive trait is defined as a representation of measures of a user's total behavior over some period of time (including, e.g., musculoskeletal gestures, speech gestures, eye movements, internal physiological changes, measured by, e.g., imaging devices, microphones, physiological and kinematic sensors, in a high dimensional measurement space) within a lower dimensional feature space. One or more embodiments use certain feature extraction techniques for identifying certain cognitive traits. Specifically, the reduction of a set of behavioral measures over some period of time to a set of feature nodes and vectors, corresponding to the behavioral measures' representations in the lower dimensional feature space, is used to identify the emergence of a certain cognitive trait over that period of time. Exemplary emotional states include, but are not limited to, sad, excited, and so forth.


In an embodiment, the predictor 220C categories the employee states, e.g., using unsupervised learning, from, e.g., video data/analysis and wearables data/analysis. In an embodiment, sequences of states are formed from the employee states. The sequences of states are formed from states based on, for example, temporal state information (e.g., one state temporally follows or precedes another state, and so forth), cognitive state information (e.g., one state cognitively follows or precedes another state), and so forth, for example by means of constructing a Hidden Markov Model, a Markov Network, a decision tree, or a set of topological descriptors of graphs constructed by associating these states with nodes and their transitions with edges. A sequence of states can be formed from different types of states.


In an embodiment, upon an industrial hygiene or injury event, the predictor 220C categorizes the sequences of states, for example, using supervised learning, to identify sequences of states that precede or do not precede the event.


In an embodiment, the predictor 220C compiles the sequence of states to form prediction states or predictions (with the compilation interchangeably referred to herein as a cognitive suite of workplace hygiene and injury predictors or “Cognitive WHIP”.


The elevated risk determiner 220D determines the existence of an elevated risk. In an embodiment, the determination is threshold based. For example, a subsequent risk (yet to occur) predicted by the Cognitive Whip is compared to a threshold, where the risk is deemed very probable (very likely to occur) when the subsequent risk meets or exceeds the threshold.


The controller 210A implements decisions made by the incident information manager and dispatcher 220E. The decisions can relate to any of, pre-computing and dispatching an accident report(s), alerting first responders to potential risks, and so forth. The preceding types of decisions are merely illustrative and, thus, one of ordinary skill in the art will contemplate these and various other decisions for informing first responders under the condition of elevated or probable risk, while maintaining the spirit of the present principles.


In an embodiment, the incident information manager and dispatcher 220E includes a transmitter for transmitting information to the first responders. Transmission can be by, for example, but is not limited to, text messaging, email, and so forth.


The memory 220B stores data relating to the present principles including, but not limited to, the aforementioned data and data generated to perform the present principles. In the case the workplace hygiene and injury predictor 220C, the elevated risk determiner 220D, and the workplace machine manager 220E are implemented as software or implemented in part in software, such software can be stored in the memory 220B. However, elements 220C, 220D, and 220E can also be implemented as least in part in hardware, including standalone devices, boards, integrated circuits, and so forth. In an embodiment, at least one of elements 220C, 220D, and 220E are implemented as application specific integrated circuits (ASICS). These and variations to the elements of system 200 are readily contemplated by one of ordinary skill in the art given the teachings of the present principles provided herein, while maintaining the spirit of the present principles.



FIGS. 3-4 show an exemplary method 300 for collaborative workplace accident avoidance, in accordance with an embodiment of the present principles.


At step 305, categorize employee states using unsupervised learning from video and wearables analysis and form sequences of states from the employee states.


At step 310, upon the occurrence of an accident (e.g., an industrial hygiene or injury event), categorize the sequences of states using supervised learning to identify the sequences of states that precede or do not precede the event.


At step 315, compile sequences of states that predict events as a cognitive suite of workplace hygiene and injury predictors (also referred to herein as a “Cognitive WHIP”).


At step 320, determine whether or not an elevated risk(s) exists, by determining whether a subsequent risk(s) (that is, a risk(s) yet to occur) predicted by the Cognitive WHIP meets or exceeds a threshold value. If so, then the method continues to step 325. Otherwise, the method returns to step 320. In an embodiment, step 320 is performed for a set of elevated risks, to determine if any of the elevated risks exist. As one of many possible examples, an elevated risk for fire can implicate an elevated risk for explosion, depending on the materials located proximate to the fire. Hence, more than one elevated risk can be determined to exist.


At step 325, identify all employees and equipment involved in the elevated risk(s). The identification performed at step 325 can be based on job title implicated by the elevated risk(s), use of the same or similar equipment as those involved in the elevated risk(s), past injury related to the elevated risk(s), past injury related to the same or similar equipment as those involved in the elevated risk(s), and so forth.


At step 330, pre-compute one or more sets of data relating to the elevated risk(s). The data can be formulated into one or more accident reports. The data/accident report(s) can include, but is not limited to, employee data and workplace machinery data. The employee data can include, but is not limited to, the number of employees involved in the elevated risk(s), the identities and/or other specific information (e.g., known health conditions, known risk factors) about the employees involved in the elevated risk(s). The workplace machinery data can include, but is not limited to, the workplace equipment involved in the elevated risk(s), the location of the workplace equipment involved in the elevated risk(s), control information (e.g., power down information, including switch/control locations, their operation, and so forth) for the workplace equipment involved in the elevated risk(s), and so forth. The accident report(s) can be stored in a memory device. This accident report can be one of many different accident reports generated for different elevated risks, and stored in the memory device for selective retrieval and use depending on their match to a current elevated risk under consideration/processing.


At step 335, determine if an alarm has been detected for an elevated risk(s). The alarm indicates an accident has occurred relating to the predicted risk. If so, then the method proceeds to step 340. Otherwise, the returns to step 335.


At step 340, rank the most recently generated accident reports according to their similarity to the elevated risk(s) implicated by the alarm.


At step 345, dispatch the data relating to the elevated risk(s) to first responders to allow the first responders to incorporate the data into prepositioning of first responder assets. In an embodiment, the alert is provided to the first responders while the first responders are in transit. In an embodiment, the alert can be provided by, for example, but not limited to, text message, email, and so forth.


In an embodiment, step 345 can include one or more of steps 345A-345D.


At step 345A, provide the most likely report to the first responders (responding to the workplace accident). The report can be provided by, for example, but not limited to, text message, email, and so forth.


At step 345B, provide and/or otherwise prompt the first responders with guidelines and/or reminders for treating a most likely to be encountered accident type and/or injury type, based on a standard first aid or other manual which is part of a training and/or a scope of practice of the first responders.


At step 345C, automatically notify the first responders of locations of any first response equipment within an emergency vehicle (e.g., currently being used or accessible for use by the first responders) and/or proximate to the work location.


At step 345D, automatically notify applicable ones (e.g., those qualified in their use) of the first responders that first response equipment at or near the work location is likely to be required (e.g., as determined by the type of the accident, historical data for the type of the accident, etc.) and dispatch the applicable ones of the first responders to take the first response equipment to the work location.


At step 350, use the accident report(s) to provide a ground truth as the basis for supervised learning to improve the predictions in steps 315 and 320.


A description will now be given regarding various advantages of the present principles over conventional solutions, in accordance with an embodiment of the present principles.


(1) The measurement and modeling of risk is used to prepare accident reports before they happen.


(2) These reports are used by first responders to prepare response while in transit.


(3) The mapping of any given risk map and relationship to worker identity, equipment, and predicted injury can be compared to alarm location and type in order to rank different scenarios' likelihood and choose an appropriate report.


It is understood in advance that although this disclosure includes a detailed description on cloud computing, implementation of the teachings recited herein are not limited to a cloud computing environment. Rather, embodiments of the present invention are capable of being implemented in conjunction with any other type of computing environment now known or later developed.


Cloud computing is a model of service delivery for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g. networks, network bandwidth, servers, processing, memory, storage, applications, virtual machines, and services) that can be rapidly provisioned and released with minimal management effort or interaction with a provider of the service. This cloud model may include at least five characteristics, at least three service models, and at least four deployment models.


Characteristics are as follows:


On-demand self-service: a cloud consumer can unilaterally provision computing capabilities, such as server time and network storage, as needed automatically without requiring human interaction with the service's provider.


Broad network access: capabilities are available over a network and accessed through standard mechanisms that promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, laptops, and PDAs).


Resource pooling: the provider's computing resources are pooled to serve multiple consumers using a multi-tenant model, with different physical and virtual resources dynamically assigned and reassigned according to demand. There is a sense of location independence in that the consumer generally has no control or knowledge over the exact location of the provided resources but may be able to specify location at a higher level of abstraction (e.g., country, state, or datacenter).


Rapid elasticity: capabilities can be rapidly and elastically provisioned, in some cases automatically, to quickly scale out and rapidly released to quickly scale in. To the consumer, the capabilities available for provisioning often appear to be unlimited and can be purchased in any quantity at any time.


Measured service: cloud systems automatically control and optimize resource use by leveraging a metering capability at some level of abstraction appropriate to the type of service (e.g., storage, processing, bandwidth, and active user accounts). Resource usage can be monitored, controlled, and reported providing transparency for both the provider and consumer of the utilized service.


Service Models are as follows:


Software as a Service (SaaS): the capability provided to the consumer is to use the provider's applications running on a cloud infrastructure. The applications are accessible from various client devices through a thin client interface such as a web browser (e.g., web-based email). The consumer does not manage or control the underlying cloud infrastructure including network, servers, operating systems, storage, or even individual application capabilities, with the possible exception of limited user-specific application configuration settings.


Platform as a Service (PaaS): the capability provided to the consumer is to deploy onto the cloud infrastructure consumer-created or acquired applications created using programming languages and tools supported by the provider. The consumer does not manage or control the underlying cloud infrastructure including networks, servers, operating systems, or storage, but has control over the deployed applications and possibly application hosting environment configurations.


Infrastructure as a Service (IaaS): the capability provided to the consumer is to provision processing, storage, networks, and other fundamental computing resources where the consumer is able to deploy and run arbitrary software, which can include operating systems and applications. The consumer does not manage or control the underlying cloud infrastructure but has control over operating systems, storage, deployed applications, and possibly limited control of select networking components (e.g., host firewalls).


Deployment Models are as follows:


Private cloud: the cloud infrastructure is operated solely for an organization. It may be managed by the organization or a third party and may exist on-premises or off-premises.


Community cloud: the cloud infrastructure is shared by several organizations and supports a specific community that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations). It may be managed by the organizations or a third party and may exist on-premises or off-premises.


Public cloud: the cloud infrastructure is made available to the general public or a large industry group and is owned by an organization selling cloud services.


Hybrid cloud: the cloud infrastructure is a composition of two or more clouds (private, community, or public) that remain unique entities but are bound together by standardized or proprietary technology that enables data and application portability (e.g., cloud bursting for load balancing between clouds).


A cloud computing environment is service oriented with a focus on statelessness, low coupling, modularity, and semantic interoperability. At the heart of cloud computing is an infrastructure comprising a network of interconnected nodes.


Referring now to FIG. 5, a schematic of an example of a cloud computing node 510 is shown. Cloud computing node 510 is only one example of a suitable cloud computing node and is not intended to suggest any limitation as to the scope of use or functionality of embodiments of the invention described herein. Regardless, cloud computing node 510 is capable of being implemented and/or performing any of the functionality set forth hereinabove.


In cloud computing node 510 there is a computer system/server 512, which is operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well-known computing systems, environments, and/or configurations that may be suitable for use with computer system/server 512 include, but are not limited to, personal computer systems, server computer systems, thin clients, thick clients, handheld or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputer systems, mainframe computer systems, and distributed cloud computing environments that include any of the above systems or devices, and the like.


Computer system/server 512 may be described in the general context of computer system executable instructions, such as program modules, being executed by a computer system. Generally, program modules may include routines, programs, objects, components, logic, data structures, and so on that perform particular tasks or implement particular abstract data types. Computer system/server 512 may be practiced in distributed cloud computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed cloud computing environment, program modules may be located in both local and remote computer system storage media including memory storage devices.


As shown in FIG. 5, computer system/server 512 in cloud computing node 510 is shown in the form of a general-purpose computing device. The components of computer system/server 512 may include, but are not limited to, one or more processors or processing units 516, a system memory 528, and a bus 518 that couples various system components including system memory 528 to processor 516.


Bus 518 represents one or more of any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus.


Computer system/server 512 typically includes a variety of computer system readable media. Such media may be any available media that is accessible by computer system/server 512, and it includes both volatile and non-volatile media, removable and non-removable media.


System memory 528 can include computer system readable media in the form of volatile memory, such as random access memory (RAM) 530 and/or cache memory 532. Computer system/server 512 may further include other removable/non-removable, volatile/non-volatile computer system storage media. By way of example only, storage system 534 can be provided for reading from and writing to a non-removable, non-volatile magnetic media (not shown and typically called a “hard drive”). Although not shown, a magnetic disk drive for reading from and writing to a removable, non-volatile magnetic disk (e.g., a “floppy disk”), and an optical disk drive for reading from or writing to a removable, non-volatile optical disk such as a CD-ROM, DVD-ROM or other optical media can be provided. In such instances, each can be connected to bus 518 by one or more data media interfaces. As will be further depicted and described below, memory 528 may include at least one program product having a set (e.g., at least one) of program modules that are configured to carry out the functions of embodiments of the invention.


Program/utility 540, having a set (at least one) of program modules 542, may be stored in memory 528 by way of example, and not limitation, as well as an operating system, one or more application programs, other program modules, and program data. Each of the operating system, one or more application programs, other program modules, and program data or some combination thereof, may include an implementation of a networking environment. Program modules 542 generally carry out the functions and/or methodologies of embodiments of the invention as described herein.


Computer system/server 512 may also communicate with one or more external devices 514 such as a keyboard, a pointing device, a display 524, etc.; one or more devices that enable a user to interact with computer system/server 512; and/or any devices (e.g., network card, modem, etc.) that enable computer system/server 512 to communicate with one or more other computing devices. Such communication can occur via Input/Output (I/O) interfaces 522. Still yet, computer system/server 512 can communicate with one or more networks such as a local area network (LAN), a general wide area network (WAN), and/or a public network (e.g., the Internet) via network adapter 520. As depicted, network adapter 520 communicates with the other components of computer system/server 512 via bus 518. It should be understood that although not shown, other hardware and/or software components could be used in conjunction with computer system/server 512. Examples, include, but are not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives, and data archival storage systems, etc.


Referring now to FIG. 6, illustrative cloud computing environment 650 is depicted. As shown, cloud computing environment 650 comprises one or more cloud computing nodes 610 with which local computing devices used by cloud consumers, such as, for example, personal digital assistant (PDA) or cellular telephone 654A, desktop computer 654B, laptop computer 654C, and/or automobile computer system 654N may communicate. Nodes 610 may communicate with one another. They may be grouped (not shown) physically or virtually, in one or more networks, such as Private, Community, Public, or Hybrid clouds as described hereinabove, or a combination thereof. This allows cloud computing environment 650 to offer infrastructure, platforms and/or software as services for which a cloud consumer does not need to maintain resources on a local computing device. It is understood that the types of computing devices 654A-N shown in FIG. 6 are intended to be illustrative only and that computing nodes 610 and cloud computing environment 650 can communicate with any type of computerized device over any type of network and/or network addressable connection (e.g., using a web browser).


Referring now to FIG. 7, a set of functional abstraction layers provided by cloud computing environment 650 (FIG. 6) is shown. It should be understood in advance that the components, layers, and functions shown in FIG. 7 are intended to be illustrative only and embodiments of the invention are not limited thereto. As depicted, the following layers and corresponding functions are provided:


Hardware and software layer 760 includes hardware and software components. Examples of hardware components include mainframes, in one example IBM® zSeries® systems; RISC (Reduced Instruction Set Computer) architecture based servers, in one example IBM pSeries® systems; IBM xSeries® systems; IBM BladeCenter® systems; storage devices; networks and networking components. Examples of software components include network application server software, in one example IBM WebSphere® application server software; and database software, in one example IBM DB2® database software. (IBM, zSeries, pSeries, xSeries, BladeCenter, WebSphere, and DB2 are trademarks of International Business Machines Corporation registered in many jurisdictions worldwide).


Virtualization layer 762 provides an abstraction layer from which the following examples of virtual entities may be provided: virtual servers; virtual storage; virtual networks, including virtual private networks; virtual applications and operating systems; and virtual clients.


In one example, management layer 764 may provide the functions described below. Resource provisioning provides dynamic procurement of computing resources and other resources that are utilized to perform tasks within the cloud computing environment. Metering and Pricing provide cost tracking as resources are utilized within the cloud computing environment, and billing or invoicing for consumption of these resources. In one example, these resources may comprise application software licenses. Security provides identity verification for cloud consumers and tasks, as well as protection for data and other resources. User portal provides access to the cloud computing environment for consumers and system administrators. Service level management provides cloud computing resource allocation and management such that required service levels are met. Service Level Agreement (SLA) planning and fulfillment provide pre-arrangement for, and procurement of, cloud computing resources for which a future requirement is anticipated in accordance with an SLA.


Workloads layer 766 provides examples of functionality for which the cloud computing environment may be utilized. Examples of workloads and functions which may be provided from this layer include: mapping and navigation; software development and lifecycle management; virtual classroom education delivery; data analytics processing; transaction processing; and informing first responders based on incident detection and automatic reporting of individual location and equipment state.


The present invention may be a system, a method, and/or a computer program product. The computer program product may include a computer readable storage medium (or media) having computer readable program instructions thereon for causing a processor to carry out aspects of the present invention.


The computer readable storage medium can be a tangible device that can retain and store instructions for use by an instruction execution device. The computer readable storage medium may be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.


Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device.


Computer readable program instructions for carrying out operations of the present invention may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like, and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present invention.


Aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.


These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer readable program instructions may also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart and/or block diagram block or blocks.


The computer readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks.


The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.


Reference in the specification to “one embodiment” or “an embodiment” of the present principles, as well as other variations thereof, means that a particular feature, structure, characteristic, and so forth described in connection with the embodiment is included in at least one embodiment of the present principles. Thus, the appearances of the phrase “in one embodiment” or “in an embodiment”, as well any other variations, appearing in various places throughout the specification are not necessarily all referring to the same embodiment.


It is to be appreciated that the use of any of the following “/”, “and/or”, and “at least one of”, for example, in the cases of “A/B”, “A and/or B” and “at least one of A and B”, is intended to encompass the selection of the first listed option (A) only, or the selection of the second listed option (B) only, or the selection of both options (A and B). As a further example, in the cases of “A, B, and/or C” and “at least one of A, B, and C”, such phrasing is intended to encompass the selection of the first listed option (A) only, or the selection of the second listed option (B) only, or the selection of the third listed option (C) only, or the selection of the first and the second listed options (A and B) only, or the selection of the first and third listed options (A and C) only, or the selection of the second and third listed options (B and C) only, or the selection of all three options (A and B and C). This may be extended, as readily apparent by one of ordinary skill in this and related arts, for as many items listed.


Having described preferred embodiments of a system and method (which are intended to be illustrative and not limiting), it is noted that modifications and variations can be made by persons skilled in the art in light of the above teachings. It is therefore to be understood that changes may be made in the particular embodiments disclosed which are within the scope of the invention as outlined by the appended claims. Having thus described aspects of the invention, with the details and particularity required by the patent laws, what is claimed and desired protected by Letters Patent is set forth in the appended claims.

Claims
  • 1. A method, comprising: generating a set of workplace predictors of risk relating to accidents, injury, and industrial hygiene, based on employee states that includes a physical state, a cognitive state, and an emotional state;collecting data for an elevated risk of a workplace accident at a work location responsive to the set of workplace predictors, the data including employee data for employees involved in the elevated risk and workplace machinery data for workplace machinery involved in the elevated risk; andautomatically dispatching the data to first responders using one or more hardware-based information dispatching devices.
  • 2. The method of claim 1, wherein the set of workplace predictors are generated by categorizing employee states using unsupervised learning from video data and personal wearable instrumentation analysis, and categorizing sequences of employee states using supervised learning to determine the corresponding ones of the sequences of employee states that predict an accident event.
  • 3. The method of claim 1, wherein the data includes personal wearable instrumentation data obtained from personable wearable instrumentation worn by the employees while working.
  • 4. The method of claim 1, further comprising obtaining the workplace machinery data from video data captured at the work location.
  • 5. The method of claim 1, further comprising pre-computing a set of accident reports based on respective determinations of respective elevated risks of different workplace accidents.
  • 6. The method of claim 5, wherein said dispatching step comprises dispatching a particular one of the accident reports in the set.
  • 7. The method of claim 6, wherein the particular one of the accident reports is selected from the set based on a degree of similarity to the workplace accident.
  • 8. The method of claim 5, further comprising ranking the accident reports in the set using an ordering that is based on similarity to the workplace accident.
  • 9. The method of claim 5, wherein a most similar one of the accident reports to the workplace accident is dispatched to the first responders while the first responders are in transit to the work location.
  • 10. The method of claim 1, wherein said dispatching step is performed while the first responders are in transit to the work location.
  • 11. The method of claim 1, further comprising holding the data in a standby mode until an actual occurrence of the workplace accident, wherein said dispatching step is performed responsive to the actual occurrence.
  • 12. The method of claim 1, further comprising prompting the first responder with at least one of guidelines and reminders for treating at least one of a most likely to be encountered accident type and a most likely to be encountered injury type, based on a standard first aid or other manual which is part of at least one of a training and a scope of practice of the first responders.
  • 13. The method of claim 1, further comprising automatically notifying the first responders of locations of any first response equipment at least one of within an emergency vehicle of the first responders and proximate to the work location.
  • 14. The method of claim 1, further comprising automatically notifying applicable ones of the first responders that first response equipment at or near the work location is likely to be required and dispatching the applicable ones of the first responders to take the first response equipment to the work location.
  • 15. (canceled)
  • 16. A non-transitory article of manufacture tangibly embodying a computer readable program which when executed causes a computer to perform the steps of claim 1.
  • 17. A system, comprising: one or more computer servers having a processor configured to: generate a set of workplace predictors of risk relating to accidents, injury, and industrial hygiene, based on employee states that includes a physical state, a cognitive state, and an emotional state,collect data for an elevated risk of a workplace accident at a work location responsive to the set of workplace predictors, andautomatically dispatch the data to first responders using one or more hardware-based information dispatching devices,wherein the data includes employee data for employees involved in the elevated risk and workplace machinery data for workplace machinery involved in the elevated risk.
  • 18. The system of claim 17, wherein said processor pre-computes a set of accident reports based on respective determinations of respective elevated risks of different workplace accidents.
  • 19. The system of claim 18, wherein said processor ranks the accident reports in the set using an ordering that is based on similarity to the workplace accident, and a most similar one of the accident reports to the workplace accident is dispatched to the first responders while the first responders are in transit to the work location.
  • 20. The system of claim 17, wherein said processor causes at least one of guidelines and reminders for treating at least one of a most likely to be encountered accident type and a most likely to be encountered injury type to be forwarded to the first responders, based on a standard first aid or other manual which is part of at least one of a training and a scope of practice of the first responders.
  • 21. The method of claim 1, further comprising controlling one or more of the workplace machinery responsive to the data for the elevated risk, wherein controlling comprises powering down the one or more of the workplace machinery.