1. Field of the Invention
The field of the invention relates to microelectromechanical systems (MEMS).
2. Description of the Related Technology
Microelectromechanical systems (MEMS) include micro mechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. As used herein, the term interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference. In certain embodiments, an interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal. In a particular embodiment, one plate may comprise a stationary layer deposited on a substrate and the other plate may comprise a metallic membrane separated from the stationary layer by an air gap. As described herein in more detail, the position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.
The system, method, and devices of the invention each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Embodiments” one will understand how the features of this invention provide advantages over other display devices.
In one aspect, a display is disclosed. The display comprises a display element configured to selectively reflect light of a first wavelength in the infrared range and light of a second wavelength in the visible range.
In another aspect, a color display is disclosed. The display comprises at least three reflective display elements. Each display element is configured to selectively reflect light of a different wavelength in the visible range. At least one of the three reflective display element is further configured to selectively reflect light of a wavelength in the infrared range.
In another aspect, a display is disclosed. The display comprises means for selectively reflecting light of a wavelength in the visible range and light of a wavelength in the infrared range. The display further comprises means for sending at least one signal to the reflecting means.
In another aspect, a method of operating a display is disclosed. The method comprises switching the display from a visible mode to an infrared mode. The method further comprises driving the display with a scheme associated with the infrared mode.
In another aspect, a method of making a display is disclosed. The method comprises making a display element configured to selectively reflect light of a first wavelength in the infrared range and light of a second wavelength in the visible range.
In another aspect, a display is disclosed. The display comprises a first display element configured to selectively reflect light of a first range of wavelengths and a second range of wavelengths, wherein each of the first and second ranges are within one of the ultraviolet, visible, or infrared spectrums.
The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout. As will be apparent from the following description, the embodiments may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the embodiments may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
Certain embodiments provide a display reflective in both the visible and infra red (IR) spectrum. The display may comprise one or more interferometric modulators. In one embodiment, the display is useable in two modes: visible mode and infra red mode. The display may further comprise a mechanism to switch between these two modes. FIGS. 1-7 illustrate an interferometric display and
One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in
The depicted portion of the pixel array in
The optical stacks 16a and 16b (collectively referred to as optical stack 16), as referenced herein, typically comprise several fused layers, which can include an electrode layer, such as indium tin oxide (ITO), a partially reflective layer, such as chromium, and a transparent dielectric. The optical stack 16 is thus electrically conductive, partially transparent, and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20. The partially reflective layer can be formed from a variety of materials that are partially reflective such as various metals, semiconductors, and dielectrics. The partially reflective layer can be formed of one or more layers of materials, and each of the layers can be formed of a single material or a combination of materials.
In some embodiments, the layers of the optical stack 16 are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable reflective layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the movable reflective layers 14a, 14b are separated from the optical stacks 16a, 16b by a defined gap 19. A highly conductive and reflective material such as aluminum may be used for the reflective layers 14, and these strips may form column electrodes in a display device.
With no applied voltage, the gap 19 remains between the movable reflective layer 14a and optical stack 16a, with the movable reflective layer 14a in a mechanically relaxed state, as illustrated by the pixel 12a in
In one embodiment, the processor 21 is also configured to communicate with an array driver 22. In one embodiment, the array driver 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a display array or panel 30. The cross section of the array illustrated in
In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. A pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes. The row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
In the
The display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46. The housing 41 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding and vacuum forming. In addition, the housing 41 may be made from any of a variety of materials, including, but not limited to, plastic, metal, glass, rubber, and ceramic, or a combination thereof. In one embodiment, the housing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
The display 30 of exemplary display device 40 may be any of a variety of displays, including a bi-stable display, as described herein. In other embodiments, the display 30 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art. However, for purposes of describing the present embodiment, the display 30 includes an interferometric modulator display, as described herein.
The components of one embodiment of exemplary display device 40 are schematically illustrated in
The network interface 27 includes the antenna 43 and the transceiver 47 so that the exemplary display device 40 can communicate with one or more devices over a network. In one embodiment, the network interface 27 may also have some processing capabilities to relieve requirements of the processor 21. The antenna 43 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.11 standard, including IEEE 802.11(a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS, or other known signals that are used to communicate within a wireless cell phone network. The transceiver 47 pre-processes the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21. The transceiver 47 also processes signals received from the processor 21 so that they may be transmitted from the exemplary display device 40 via the antenna 43.
In an alternative embodiment, the transceiver 47 can be replaced by a receiver. In yet another alternative embodiment, network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21. For example, the image source can be a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.
Processor 21 generally controls the overall operation of the exemplary display device 40. The processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. The processor 21 then sends the processed data to the driver controller 29 or to frame buffer 28 for storage. Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.
In one embodiment, the processor 21 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 40. Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. Conditioning hardware 52 may be discrete components within the exemplary display device 40, or may be incorporated within the processor 21 or other components.
The driver controller 29 takes the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and reformats the raw image data appropriately for high speed transmission to the array driver 22. Specifically, the driver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22. Although a driver controller 29, such as a LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
Typically, the array driver 22 receives the formatted information from the driver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels.
In one embodiment, the driver controller 29, array driver 22, and display array 30 are appropriate for any of the types of displays described herein. For example, in one embodiment, driver controller 29 is a conventional display controller or a bi-stable display controller (e.g., an interferometric modulator controller). In another embodiment, array driver 22 is a conventional driver or a bi-stable display driver (e.g., an interferometric modulator display). In one embodiment, a driver controller 29 is integrated with the array driver 22. Such an embodiment is common in highly integrated systems such as cellular phones, watches, and other small area displays. In yet another embodiment, display array 30 is a typical display array or a bi-stable display array (e.g., a display including an array of interferometric modulators).
The input device 48 allows a user to control the operation of the exemplary display device 40. In one embodiment, input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, or a pressure- or heat-sensitive membrane. In one embodiment, the microphone 46 is an input device for the exemplary display device 40. When the microphone 46 is used to input data to the device, voice commands may be provided by a user for controlling operations of the exemplary display device 40.
Power supply 50 can include a variety of energy storage devices as are well known in the art. For example, in one embodiment, power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery. In another embodiment, power supply 50 is a renewable energy source, a capacitor, or a solar cell including a plastic solar cell, and solar-cell paint. In another embodiment, power supply 50 is configured to receive power from a wall outlet.
In some embodiments, control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system. In some embodiments, control programmability resides in the array driver 22. Those of skill in the art will recognize that the above-described optimizations may be implemented in any number of hardware and/or software components and in various configurations.
The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example,
In embodiments such as those shown in
Some applications require a dual display that is viewable in both the visible and IR spectrum. Depending on the particular applications, the dual display could be either viewable in both the visible and IR spectrum simultaneously, or operate in two distinct modes being viewable only in one of the IR spectrum and the visible spectrum in each mode. Other applications may require a display viewable only in the IR spectrum. In military operations, it is critical not to emit visible light at night which can be picked up by enemy. A display which is visible at day and visible only to an IR imaging device at night can help avoid light emission in the visible spectrum at night. A display visible in both the visible and IR spectrum simultaneously may help a firefighter using IR imaging equipment in thick smoke to operate equipment fitted with such a display.
There are several solutions to the dual display, but each of them has its own drawbacks. One approach is to light a liquid crystal display (LCD) with an IR backlight, in addition to a visible spectrum backlight. But a LCD display has a poor IR contrast ratio as it passes significant IR in the dark state. In an emissive display, such as an Organic Light Emitting Diode (OLED) display, an approach could be to include an additional IR LED at each pixel, in addition to visible spectrum LEDs, Although it is possible to operate as an IR and visible spectrum display, this design is expensive and energy-consuming, because an additional IR LED is required at each pixel. In addition, as an emissive display, it is more likely to be detected in situations where low visible or IR emissions are desirable, such as military applications.
Certain embodiments as will be described below provide an interferometric display that is reflective in both the visible and IR spectrum. The display may form an image in the visible spectrum when it is in daylight or under artificial light. The display may form an image in the IR spectrum when, for example, being illuminated with an IR light source. Different embodiments can provide a display operable simultaneously in visible and IR spectrum, or usable in only one of two modes, being viewable to only one of the spectrums in each mode. These embodiments provide several benefits, among the others, over the existing approaches. First, the interferometric display consumes lower power. Second, a reflective display only reflects light incident upon it. This further enhances its covert capabilities, since an IR emissive display could be a significant source of IR radiation which may be visible to enemy equipped with night vision equipment.
Each of these embodiments comprises an interferometric modulator such as one illustrated in
The IR image is visible to a human observer using an IR imaging device. The required IR response of the display may vary depending on the IR imaging device to be used. Typically, IR imaging systems fall into two broad areas: near IR in the range of approximately 800-1200 nm, and longer wavelength IR in the range of approximately 3-5 μm and 8-12 μm range. Near IR is often employed where IR extension to a visible light imaging system is needed, while longer wavelength IR is often used in IR only imaging systems.
The interferometric modulator may have its optical gap in the dark state set to an appropriate length such that the modulator reflects little incidence light to the user within the visible and IR spectrum in the dark state. In one example, the peak of the reflective response in the dark state moves into the ultra violet (UV) spectrum.
The interferometric modulator may have its optical gap in the bright state set such that the modulator has a first order bright state reflective response in the IR range, which leads to higher order responses in the visible range. Therefore, the display will reflect light within both the visible and IR spectrum in the bright state. In one embodiment, a single higher order response in the visible range is used to produce a single visible color. In another embodiment, several higher order responses are created at colors that are together perceived as a specific hue. As used herein, “hue” refers to the color perceived by a human observer of the reflected light. In one example simultaneous red, green and blue spectral responses can be created which are together perceived as a white hue.
In one embodiment, the interferometric modulator has its bright state optical gap set to an appropriate length such that the interferometric modulator has a first order reflective response in the approximately 800 to 1200 nm IR range, thus leading to a second order response in the visible range. The color of the second order response will vary within the visible range as the first order reflective response varies in the approximately 800 to 1200 nm IR, depending on the bright state optical gap.
In another embodiment, several higher order visible spectrum responses are combined to create a response that is perceived as a single hue.
A longer wavelength first order IR response may be created by increasing the optical gap in the bright state even further. When the interferometric modulator has its first order reflective response in the bright state to be in the far IR spectrum (approximately 3 to 12 μm), higher order responses may exist throughout the near IR and visible spectrum.
In one embodiment, a specific IR response is required. This is mapped to a higher order response at one of the three primary colors. For example, a typical IR imaging device has an IR response at about 900 nm. A first order IR response at about 900 nm leads to a visible blue response at 450 nm. In this example, one of the subpixels has a 900 nm IR response and a visible blue response at 450 nm. When the display is used to display an IR visible image, only the subpixel having the visible blue response is driven by image signals. Other sub-pixels which do not have the required IR response are left unused. The display becomes a monochrome display in the IR spectrum, to match the monochrome nature of an IR imaging device. The display may operate in two distinct modes, a visible mode to display an image in the visible spectrum, and IR mode to display an image in the IR spectrum.
In another embodiment, an IR imaging device with a monochromatic output may accept a broader range of IR wavelengths. In that case, there may be more than one subpixel having an IR response falling within that range and therefore used. With two or more sub-pixels driven by image signals, the display may be operated as a higher resolution monochrome display in the IR spectrum. Alternatively the additional subpixels can be utilized to provide additional levels of grayscale for the IR image.
In another embodiment an IR imaging device may accept a broader range of IR wavelengths with an output dependent on the wavelength of the IR detected, such as by assigning a false color to each wavelength in a detected image. In this case, where more than one subpixel within each pixel has an IR response within the IR wavelength detection range of the imaging device, two or more subpixels may be driven to make use of the imaging device's capabilities. For example, the sub pixels within each pixel may be driven to reflect light of their respective IR wavelengths and create a false color image as the output of the IR imaging device.
In one embodiment, the display as described above with regard to
In another embodiment, the subpixels may be driven with the same driving signals. As a result, no switch between two modes is needed. The display is viewable in both the visible and IR spectrum simultaneously.
The display device needs only to operate in the IR mode when illuminated with IR light. In one embodiment, the display may comprise an IR detector configured to detect incoming IR illumination. The IR detector may be any device suitable for this purpose, such as photo transistors and photo diode. The IR detector may be mounted, for example, adjacent to the display. A second detector responsive to visible illumination may also be included in combination to set operational modes according to the available type or types of illumination. The display works in the visible spectrum mode if only the visible illumination is detected, and in the IR mode if only the IR illumination is detected. The display determines a type of illumination is detected if a pre-determined density or amount of that type of illumination is detected. The mode in which the display works when there are both types of illuminations or neither type of illuminations depends on the particular application.
An IR-only display configured to reflect light only in the IR spectrum may be created by combining an IR filter with any of the visible/IR displays as described above. The IR filter may be designed to be substantially transparent to IR light and opaque to visible light. The IR filter may be placed, for example, between the display array and a viewer. In one embodiment, an IR filter including multiple layers is deposited onto the glass substrate 20 (see
The method starts at a block 1202, where infrared illumination is received by the display. Next at a block 1204, the display device displays an infrared image by selectively reflecting light of a wavelength in the received infrared illumination. The display displays an infrared image by interferometrically modulating the incoming infrared illumination.
The method starts at a block 1302, where the display is driven with a scheme associated with the visible spectrum mode. Moving to a block 1304, the display is switched from the visible spectrum mode to the IR mode. The display is switched to the IR mode when, for example, the array driver 22 receives a signal from the IR detector indicating a pre-determined density or amount of IR illumination is received. In another example, the display is switched to the IR mode in response to a user request. Next at a block 1306, the display is driven with a scheme associated with the IR mode. For a display wherein each pixel comprises three sub-pixels, one or more sub-pixel may be left undriven in the IR mode depending on the application.
The embodiments described herein provide various benefits, among the others, over the existing approaches. First, many embodiments can operate in the visible and IR spectrum simultaneously. Second, these embodiments provide a reflective display which emits no IR radiation, other than to reflect the incident IR illumination. Third, the visible color version of the display offers enhanced resolution or grayscale operation in the IR mode. Last, certain embodiments include an array of interferometric modulators which have the low power, always on benefits.
In the foregoing description, each display comprises a display element configured to selectively reflect at least light of a first wavelength in the infrared range and light of a second wavelength in the visible range. An interferometric modulator has been used as an example of the display element. It should be noted that the foregoing embodiments may use other display elements which may reflect light within the visible and IR spectrum and therefore shall not be limited to a display comprising an interferometric modulator.
The foregoing embodiments describe a display that is viewable in multiple spectral ranges. A display viewable in both IR and visible spectrum is used as an example for illustration purpose only. Other embodiments of the display may be viewable in multiple spectral ranges including, but not limited to, IR and visible spectrum. For instance, a display may include a display element (e.g., an interferometric modulator) which can selectively reflect light of a first range of wavelengths and a second range of wavelengths, wherein each of the first and second ranges are within one of the ultraviolet, visible, or infrared spectrums.
In one embodiment, the display includes a display element that can selectively reflect light of a first wavelength in the visible spectrum and of a second wavelength in the ultraviolet spectrum. In one embodiment, the display includes a display element that can selectively reflect light of a first wavelength in the ultraviolet spectrum and a second wavelength in the ultraviolet spectrum. In one embodiment, the display includes a display element that can selectively reflect light of a first wavelength in the infrared spectrum, a second wavelength in the visible spectrum, and a third wavelength in the ultraviolet spectrum.
In certain embodiments, the display may include an interferometric modulator configured to selectively reflect light of a first wavelength in the visible spectrum in the on or bright state and light of a second wavelength in the ultraviolet spectrum in the off or dark state. The ultraviolet spectrum ranges, for example, approximately from 200 nm to 400 nm. The interferometric modulator is configured to reflect light of approximately 200 nm in the off or dark state. Depending on the ultraviolet detecting device used, the bright/dark states in the ultraviolet spectrum may be reversed. If the ultraviolet detecting device is configured to detect a bright state in response to an ultraviolet light centered around 300 nm, a pixel in a bright state looks bright to a user looking at the display in the ultraviolet spectrum. If the ultraviolet detecting device is configured to detect a bright state in response to an ultraviolet light centered around 200 nm, a pixel in a bright state looks dark to a user looking at the display in the ultraviolet spectrum, and vice versa, and therefore the display works in reverse for the ultraviolet spectrum. If necessary, this may be compensated by using a different driving scheme in the ultraviolet spectrum from one in the visible spectrum.
The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. It should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated.
Number | Name | Date | Kind |
---|---|---|---|
3728030 | Hawes | Apr 1973 | A |
3955190 | Teraishi | May 1976 | A |
4403248 | Te Velde | Sep 1983 | A |
4441791 | Hornbeck | Apr 1984 | A |
4560435 | Brown et al. | Dec 1985 | A |
4655554 | Armitage | Apr 1987 | A |
4786128 | Birnbach | Nov 1988 | A |
4859060 | Katagiri et al. | Aug 1989 | A |
4954789 | Sampsell | Sep 1990 | A |
4956619 | Hornbeck | Sep 1990 | A |
4982184 | Kirkwood | Jan 1991 | A |
5022745 | Zahowski et al. | Jun 1991 | A |
5028939 | Hornbeck et al. | Jul 1991 | A |
5062689 | Koehler | Nov 1991 | A |
5091983 | Lukosz | Feb 1992 | A |
5096279 | Hornbeck et al. | Mar 1992 | A |
5170283 | O'Brien et al. | Dec 1992 | A |
5315370 | Bulow | May 1994 | A |
5381232 | Van Wijk | Jan 1995 | A |
5452138 | Mignardi et al. | Sep 1995 | A |
5471341 | Warde et al. | Nov 1995 | A |
5526172 | Kanack | Jun 1996 | A |
5559358 | Burns et al. | Sep 1996 | A |
5561523 | Blomberg et al. | Oct 1996 | A |
5636052 | Arney et al. | Jun 1997 | A |
5646729 | Koskinen et al. | Jul 1997 | A |
5646768 | Kaeiyama | Jul 1997 | A |
5661592 | Bornstein et al. | Aug 1997 | A |
5665997 | Weaver et al. | Sep 1997 | A |
5710656 | Goosen | Jan 1998 | A |
5719068 | Suzawa et al. | Feb 1998 | A |
5734177 | Sakamoto | Mar 1998 | A |
5786927 | Greywall et al. | Jul 1998 | A |
5808781 | Arney et al. | Sep 1998 | A |
5818095 | Sampsell | Oct 1998 | A |
5825528 | Goosen | Oct 1998 | A |
5838484 | Goossen et al. | Nov 1998 | A |
5867302 | Fleming | Feb 1999 | A |
5914804 | Goossen | Jun 1999 | A |
5920418 | Shiono et al. | Jul 1999 | A |
5961848 | Jacquet et al. | Oct 1999 | A |
5986796 | Miles | Nov 1999 | A |
6028689 | Michalicek et al. | Feb 2000 | A |
6040937 | Miles | Mar 2000 | A |
6046659 | Loo et al. | Apr 2000 | A |
6055090 | Miles | Apr 2000 | A |
6100861 | Cohen et al. | Aug 2000 | A |
6195196 | Kimura et al. | Feb 2001 | B1 |
6242932 | Hembree | Jun 2001 | B1 |
6262697 | Stephenson | Jul 2001 | B1 |
6327071 | Kimura | Dec 2001 | B1 |
6356378 | Huibers | Mar 2002 | B1 |
6377321 | Khan et al. | Apr 2002 | B1 |
6384952 | Clark et al. | May 2002 | B1 |
6433917 | Mei et al. | Aug 2002 | B1 |
6438282 | Takeda et al. | Aug 2002 | B1 |
6452712 | Atobe et al. | Sep 2002 | B2 |
6466354 | Gudeman | Oct 2002 | B1 |
6556338 | Han et al. | Apr 2003 | B2 |
6574033 | Chui et al. | Jun 2003 | B1 |
6597490 | Tayebati | Jul 2003 | B2 |
6608268 | Goldsmith | Aug 2003 | B1 |
6632698 | Ives | Oct 2003 | B2 |
6650455 | Miles | Nov 2003 | B2 |
6657832 | Williams et al. | Dec 2003 | B2 |
6661561 | Fitzpatrick et al. | Dec 2003 | B2 |
6674562 | Miles et al. | Jan 2004 | B1 |
6680792 | Miles | Jan 2004 | B2 |
6698295 | Sherrer | Mar 2004 | B1 |
6710908 | Miles et al. | Mar 2004 | B2 |
6794119 | Miles | Sep 2004 | B2 |
6813059 | Hunter et al. | Nov 2004 | B2 |
6841081 | Chang et al. | Jan 2005 | B2 |
6844959 | Huibers et al. | Jan 2005 | B2 |
6867896 | Miles | Mar 2005 | B2 |
6870654 | Lin et al. | Mar 2005 | B2 |
6882458 | Lin et al. | Apr 2005 | B2 |
6882461 | Tsai et al. | Apr 2005 | B1 |
6912022 | Lin et al. | Jun 2005 | B2 |
6940630 | Xie | Sep 2005 | B2 |
6947200 | Huibers | Sep 2005 | B2 |
6952303 | Lin et al. | Oct 2005 | B2 |
6958847 | Lin | Oct 2005 | B2 |
6980350 | Hung et al. | Dec 2005 | B2 |
6982820 | Tsai | Jan 2006 | B2 |
7006272 | Tsai | Feb 2006 | B2 |
7027204 | Trisnadi et al. | Apr 2006 | B2 |
7034981 | Makigaki | Apr 2006 | B2 |
7046422 | Kimura et al. | May 2006 | B2 |
7119945 | Kothari et al. | Oct 2006 | B2 |
7123216 | Miles | Oct 2006 | B1 |
7126738 | Miles | Oct 2006 | B2 |
7130104 | Cummings | Oct 2006 | B2 |
7184195 | Yang | Feb 2007 | B2 |
7184202 | Miles et al. | Feb 2007 | B2 |
7198973 | Lin et al. | Apr 2007 | B2 |
7221495 | Miles et al. | May 2007 | B2 |
7236284 | Miles | Jun 2007 | B2 |
7245285 | Yeh et al. | Jul 2007 | B2 |
7289259 | Chui et al. | Oct 2007 | B2 |
7302157 | Chui | Nov 2007 | B2 |
7321457 | Heald | Jan 2008 | B2 |
7372613 | Chui et al. | May 2008 | B2 |
7372619 | Miles | May 2008 | B2 |
7385744 | Kogut et al. | Jun 2008 | B2 |
7385762 | Cummings | Jun 2008 | B2 |
7400488 | Lynch et al. | Jul 2008 | B2 |
7629197 | Luo et al. | Dec 2009 | B2 |
20010003487 | Miles | Jun 2001 | A1 |
20010028503 | Flanders et al. | Oct 2001 | A1 |
20010043171 | Van Gorkom et al. | Nov 2001 | A1 |
20020015215 | Miles | Feb 2002 | A1 |
20020024711 | Miles | Feb 2002 | A1 |
20020054424 | Miles | May 2002 | A1 |
20020070931 | Ishikawa | Jun 2002 | A1 |
20020075555 | Miles | Jun 2002 | A1 |
20020126364 | Miles | Sep 2002 | A1 |
20020146200 | Kurdle et al. | Oct 2002 | A1 |
20020149828 | Miles | Oct 2002 | A1 |
20030016428 | Kato et al. | Jan 2003 | A1 |
20030035196 | Walker | Feb 2003 | A1 |
20030043157 | Miles | Mar 2003 | A1 |
20030053078 | Missey et al. | Mar 2003 | A1 |
20030072070 | Miles | Apr 2003 | A1 |
20030202265 | Reboa et al. | Oct 2003 | A1 |
20030202266 | Ring et al. | Oct 2003 | A1 |
20040008396 | Stappaerts | Jan 2004 | A1 |
20040008438 | Sato | Jan 2004 | A1 |
20040027671 | Wu et al. | Feb 2004 | A1 |
20040027701 | Ishikawa | Feb 2004 | A1 |
20040043552 | Strumpell et al. | Mar 2004 | A1 |
20040051929 | Sampsell et al. | Mar 2004 | A1 |
20040058532 | Miles et al. | Mar 2004 | A1 |
20040075967 | Lynch et al. | Apr 2004 | A1 |
20040076802 | Tompkin et al. | Apr 2004 | A1 |
20040080035 | Delapierre | Apr 2004 | A1 |
20040100594 | Huibers et al. | May 2004 | A1 |
20040100677 | Huibers et al. | May 2004 | A1 |
20040125281 | Lin et al. | Jul 2004 | A1 |
20040125282 | Lin et al. | Jul 2004 | A1 |
20040145811 | Lin et al. | Jul 2004 | A1 |
20040147198 | Lin et al. | Jul 2004 | A1 |
20040175577 | Lin et al. | Sep 2004 | A1 |
20040184134 | Makigaki | Sep 2004 | A1 |
20040207897 | Lin | Oct 2004 | A1 |
20040209195 | Lin | Oct 2004 | A1 |
20040217919 | Pichi et al. | Nov 2004 | A1 |
20040218251 | Piehl et al. | Nov 2004 | A1 |
20040240032 | Miles | Dec 2004 | A1 |
20050001797 | Miller et al. | Jan 2005 | A1 |
20050002082 | Miles | Jan 2005 | A1 |
20050003667 | Lin et al. | Jan 2005 | A1 |
20050024557 | Lin | Feb 2005 | A1 |
20050035699 | Tsai | Feb 2005 | A1 |
20050036095 | Yeh et al. | Feb 2005 | A1 |
20050046919 | Taguchi et al. | Mar 2005 | A1 |
20050046922 | Lin et al. | Mar 2005 | A1 |
20050046948 | Lin | Mar 2005 | A1 |
20050068627 | Nakamura et al. | Mar 2005 | A1 |
20050078348 | Lin | Apr 2005 | A1 |
20050168849 | Lin | Aug 2005 | A1 |
20050179378 | Oooka et al. | Aug 2005 | A1 |
20050195462 | Lin | Sep 2005 | A1 |
20050212738 | Gally | Sep 2005 | A1 |
20050249966 | Tung et al. | Nov 2005 | A1 |
20060007517 | Tsai | Jan 2006 | A1 |
20060017379 | Su et al. | Jan 2006 | A1 |
20060017689 | Faase et al. | Jan 2006 | A1 |
20060024880 | Chui et al. | Feb 2006 | A1 |
20060065940 | Kothari | Mar 2006 | A1 |
20060066599 | Chui | Mar 2006 | A1 |
20060066640 | Kothari et al. | Mar 2006 | A1 |
20060066641 | Gally et al. | Mar 2006 | A1 |
20060066935 | Cummings et al. | Mar 2006 | A1 |
20060066936 | Chui et al. | Mar 2006 | A1 |
20060066938 | Chui | Mar 2006 | A1 |
20060067643 | Chui | Mar 2006 | A1 |
20060067649 | Tung et al. | Mar 2006 | A1 |
20060067651 | Chui | Mar 2006 | A1 |
20060077152 | Chui et al. | Apr 2006 | A1 |
20060077155 | Chui et al. | Apr 2006 | A1 |
20060077156 | Chui et al. | Apr 2006 | A1 |
20060077507 | Chui et al. | Apr 2006 | A1 |
20060077508 | Chui et al. | Apr 2006 | A1 |
20060077515 | Cummings | Apr 2006 | A1 |
20060077516 | Kothari | Apr 2006 | A1 |
20060079048 | Sampsell | Apr 2006 | A1 |
20060220160 | Miles | Oct 2006 | A1 |
20060262380 | Miles | Nov 2006 | A1 |
20060268388 | Miles | Nov 2006 | A1 |
20060274074 | Miles | Dec 2006 | A1 |
20060274398 | Chou | Dec 2006 | A1 |
20070020948 | Piehl et al. | Jan 2007 | A1 |
20070040777 | Cummings | Feb 2007 | A1 |
20070077525 | Davis et al. | Apr 2007 | A1 |
20070086078 | Hagood et al. | Apr 2007 | A1 |
20070121118 | Gally et al. | May 2007 | A1 |
20070138608 | Ikehashi | Jun 2007 | A1 |
20070177247 | Miles | Aug 2007 | A1 |
20070194630 | Mingard et al. | Aug 2007 | A1 |
20070216987 | Hagood et al. | Sep 2007 | A1 |
20070279729 | Kothari et al. | Dec 2007 | A1 |
20070285761 | Zhong et al. | Dec 2007 | A1 |
20080003710 | Kogut et al. | Jan 2008 | A1 |
20080013144 | Chui et al. | Jan 2008 | A1 |
20080013145 | Chui et al. | Jan 2008 | A1 |
20080013154 | Chui | Jan 2008 | A1 |
20080037093 | Miles | Feb 2008 | A1 |
20080055705 | Kothari | Mar 2008 | A1 |
20080055706 | Chui et al. | Mar 2008 | A1 |
20080055707 | Kogut et al. | Mar 2008 | A1 |
20080080043 | Chui et al. | Apr 2008 | A1 |
20080088904 | Miles | Apr 2008 | A1 |
20080088910 | Miles | Apr 2008 | A1 |
20080088911 | Miles | Apr 2008 | A1 |
20080088912 | Miles | Apr 2008 | A1 |
20080094690 | Luo et al. | Apr 2008 | A1 |
20080106782 | Miles | May 2008 | A1 |
20080110855 | Cummings | May 2008 | A1 |
20080112035 | Cummings | May 2008 | A1 |
20080112036 | Cummings | May 2008 | A1 |
20080186581 | Bita et al. | Aug 2008 | A1 |
20080239455 | Kogut et al. | Oct 2008 | A1 |
20080247028 | Chui et al. | Oct 2008 | A1 |
20080278787 | Sasagawa | Nov 2008 | A1 |
20080278788 | Sasagawa | Nov 2008 | A1 |
20080316566 | Lan | Dec 2008 | A1 |
20090068781 | Tung et al. | Mar 2009 | A1 |
20090080060 | Sampsell et al. | Mar 2009 | A1 |
20090135465 | Chui | May 2009 | A1 |
20090201566 | Kothari | Aug 2009 | A1 |
20090213450 | Sampsell | Aug 2009 | A1 |
20090213451 | Tung et al. | Aug 2009 | A1 |
20090256218 | Mignard et al. | Oct 2009 | A1 |
20090273823 | Tung et al. | Nov 2009 | A1 |
20090273824 | Sasagawa | Nov 2009 | A1 |
20090279162 | Chui | Nov 2009 | A1 |
20100039370 | Miles | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
0 668 490 | Aug 1995 | EP |
1 122 577 | Aug 2001 | EP |
1 227 346 | Jul 2002 | EP |
1 275 997 | Jan 2003 | EP |
1 473 581 | Nov 2004 | EP |
5-49238 | Feb 1993 | JP |
5-281479 | Oct 1993 | JP |
11211999 | Aug 1999 | JP |
2002-062490 | Feb 2000 | JP |
2001-221913 | Aug 2001 | JP |
2002-221678 | Aug 2002 | JP |
2003-340795 | Feb 2003 | JP |
2004-012642 | Jan 2004 | JP |
2004-212638 | Jul 2004 | JP |
2004-212680 | Jul 2004 | JP |
2005 279831 | Oct 2005 | JP |
WO 9814804 | Apr 1998 | WO |
WO 9952006 | Oct 1999 | WO |
WO 02086582 | Oct 2002 | WO |
WO 2007036422 | Apr 2007 | WO |
WO 2007053438 | May 2007 | WO |
WO 2007072998 | Jun 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20080316568 A1 | Dec 2008 | US |