Infrared dryer with air purge shutter

Information

  • Patent Grant
  • 6195909
  • Patent Number
    6,195,909
  • Date Filed
    Wednesday, March 15, 2000
    24 years ago
  • Date Issued
    Tuesday, March 6, 2001
    23 years ago
Abstract
A combination infrared/air convection dryer or oven for travelling webs. A shutter assembly is provided between the infrared radiation source and the moving web in order to selectively expose the web to infrared radiation, and to create a sealed air chamber when in the closed position. Enhanced drying of the web and/or a coating on the web at high speed is achieved without a concomitant increase in dryer length. When the drying atmosphere has a high concentration of solvent, exposure of that atmosphere to the heating elements, which can cause explosions, is eliminated by actuation of the shutters. In a preferred embodiment of the invention, air bars are used to floatingly support the moving web to avoid contact of the web with dryer elements.
Description




BACKGROUND OF THE INVENTION




The present invention relates to web drying apparatus. In drying a moving web of material, such as paper, film or other sheet or planar material, it is often desirable that the web be dried quickly, and that the length of the dryer be limited in view of space and cost constraints. Various attempts have been made in the prior art for decreasing the length and/or increasing the efficiency and line speed of web dryers. To that end, infrared radiation has been used either alone or in combination with air to dry the web. For example, U.S. Pat. No. 4,936,025 discloses a method for drying a moving web by passing the web free of contact through various drying gaps. Thus, the web is passed through an infrared treatment gap in which infrared radiation is applied to the web from an infrared unit, and then is passed into an airdrying gap within which the web is dried by gas blowings from an airborne web dryer unit which simultaneously supports the web free of contact. Further, U.S. Pat. No. 4,756,091 discloses a hybrid gas-heated air and infrared radiation drying oven in which strips of infrared heaters are arranged with heated air inflow nozzles alongside thereof. U.S. Pat. No. 5,261,166 discloses a combination infrared and air flotation dryer wherein a plurality of air bars are mounted above and below the web for contactless convection drying of the web, and a plurality of infrared gas fired burners are mounted between air bars.




In many conventional infrared dryers, however, much of the heat supplied by the infrared energy source is lost to surroundings by transmission, reflection and radiation. In addition, the infrared elements must be continually turned on and off to avoid burning of the web. This reduces efficiency and can reduce infrared element life. Also, if dryer atmosphere with high solvent concentrations comes into contact with the hot infrared heating elements, explosion could result.




It is therefore an object of the present invention to provide a more efficient combination infrared/air flotation dryer for drying moving webs.




It is a further object of the present invention to provide optimal control of an infrared/air flotation dryer.




It is a still further object of the present invention to provide infrared and air drying while floatingly supporting the moving web.




It is another object of the present invention to eliminate the need to continually turn the infrared elements on and off during the drying operation without sacrificing safety.




It is a further object of the present invention to prevent a potentially explosive dryer atmosphere from contacting the high temperature heating surface in the dryer.




SUMMARY OF THE INVENTION




The problems of the prior art have been overcome by the present invention, which provides a combination infrared/air convection dryer or oven for travelling webs. A shutter assembly is provided between the infrared radiation source and the moving web in order to selectively expose the web to infrared radiation, and to create a sealed air chamber when in the closed position. Enhanced drying of the web and/or a coating on the web at high speed is achieved without a concomitant increase in dryer length. When the drying atmosphere has a high concentration of solvent, exposure of that atmosphere to the heating elements, which can cause explosions, is eliminated by actuation of the shutters and opening of the air purge volume control damper. In a preferred embodiment of the invention, air bars are used to floatingly support the moving web to avoid contact of the web with dryer elements.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a front view of the web dryer in accordance with tne present invention;





FIG. 2

is an end view of the infrared heating element and shutter assembly for use in the dryer of the present invention;





FIG. 3

is a side view of the infrared heating element and slutter assembly for use in the dryer of the present invention;





FIG. 4

is a perspective view of the infrared heating element with the shutter assembly in the closed position;





FIG. 5

is a perspective view of the infrared heating element with the shutter assembly in the open position;





FIG. 6

is a cut-away perspective view of the volume control damper in the closed position;





FIG. 7

is a cut-away perspective view of the volume control damper in the open position; and





FIG. 8

is an end view of the infrared heating element showing the direction of air flow in accordance with one embodiment of the present invention.











DETAILED DESCRIPTION OF THE INVENTION




Turning first to

FIG. 1

, there is shown generally at


10


a dryer or oven in accordance with the present invention. The dryer


10


is defined by a housing


11


, preferably insulated, having a web inlet opening


12


to accommodate entry of a web W into the housing and a web outlet opening


13


spaced from the inlet


12


to accommodate exit of the web W from the housing, as shown. The housing


11


can be constructed of any suitable material, such as aluminum or steel.




A plurality of air bars


15


are positioned above and below the web W in air receiving communication with suitable ductwork


19


,


19


′ to supply heated air (such as via a fan, not shown) to provide air impingement to the web W. Preferably the air bars


15


are air flotation bars such as HI-FLOAT® air bars commercially available from MEGTEC Systems, which both floatingly support and dry the moving web. The positioning of the air bars


15


is not particularly limited, although the arrangement shown is preferred. Specifically, it is preferred that each air bar above the web W (as the dryer is oriented in

FIG. 1

) oppose an infrared heating element


17


below the web W, and that opposing air knives


18


be positioned at the web entry side, web exit side or both ends of the dryer


10


. This arrangement also places an infrared heating element


17


between each air bar


15


in the assemblies above and below the web W. The air bars


15


emit impingement air to both floatingly support and dry the web, preferably utilizing the Coanda effect for optimal drying. Those skilled in the art will appreciate that the infrared radiation sources can be used above the web, below the web, or both, depending upon the drying capacity desired. Quartz infrared heating elements are particularly preferred.




Turning now to

FIG. 2

, each infrared heating element


17


is mounted in air receiving communication with air supply duct


16


that in turn is in communication with a main air supply chamber


19


. Volume control damper


20


is positioned at the inlet


22


of the supply duct


16


to modulate the flow of air from the air supply chamber


19


into the supply duct


16


. When the damper


20


is open (FIG.


7


), air then flows past infrared heating element


17


through an air distribution duct


30


, and is finally exhausted through air jets


32


as shown by the broken lines in FIG.


2


. When the damper


20


is closed (FIG.


6


), air flow past the element


17


is stopped.




A shutter assembly


40


comprising a plurality of juxtaposed shutter blades


41


is mounted on top of the air distribution duct


30


, and is positioned between each infrared heating element


17


and the web W, as shown in

FIGS. 2 and 3

. The shutter blades


41


allow for control of the radiation permitted to reach the web W without the necessity of turning off the infrared radiation source(s). Each shutter assembly


40


includes a plurality of aligned blades


41


, each blade


41


slightly overlapping its adjacent blade when in the closed position, as best seen in

FIGS. 3 and 4

. The number of blades


41


in each shutter assembly can vary, and depends on the particular dimensions of the infrared heating element being used. Although the dimensions of each blade are not critical, is has been found that blades 1 inch wide are suitable, and that such blades can be placed 0.94 inches center-to-center to create the necessary overlap. Preferably the blades


41


are designed with a reflecting surface to reflect the infrared light back towards the infrared elements and direct it way from the web W. The blades


41


are attached to the shutter assembly using a pin arrangement as shown. Thus, each end of each blade


41


is pivotally affixed into a slot


43


on the end of pin


44


. The end of one pin


44


opposite slot


43


is affixed to shutter control linkage


45


, which allows all of the blades to be pivoted simultaneously upon actuation of external air cylinder


46


(FIGS.


3


-


5


).




The shutter assembly


40


also serves an air purge function. In anticipation of a high dryer LEL atmosphere, or in response to a measured solvent concentration with a conventional LEL monitor, the shutter


40


is signaled to move to a closed position, and the volume control damper


20


is signaled to move to an open position. Opening damper


20


(such as manually or preferably with air cylinder


52


) allows pressurized air to flow into the supply duct


16


underneath heating element


17


, and the air is then evenly exhausted out of control nozzle jets


32


arranged evenly around the entire perimeter of each infrared heating element. Since the shutter assembly


40


is closed, a pressurized chamber is created directly above the hot infrared element. Clearances between blades


41


in shutter assembly


40


allow air to leak out from the pressurized chamber, but prevent the solvent-laden air from leaking into the chamber and contacting the hot element


17


. Actual measurement of the concentration of solvent in the dryer atmosphere can be carried out by conventional means well known to those skilled in the art. Actuation of the volume control damper


20


and shutter assembly


40


are coordinated with an electrical interlock control, and can be responsive to the measured solvent concentration. The arrows in

FIG. 8

depict this situation; air flows past damper


20


and up through the infrared element mounting bracket


53


which is perforated at its side edges, out air jets


32


into compartment


55


formed between the underside of the shutters


41


and the IR heating element. Since only a small portion of this air leaks through the shutters


41


, a pressurized chamber is formed, helping to prevent solvent-laden air from entering the chamber and contacting the hot IR element.




For example, solvent concentration in the dryer enclosure can be sensed with a suitable monitor. When the solvent concentration exceeds a predetermined level, the shutters


41


are signaled to close and the volume damper


20


is signaled to open simultaneously. This prevents the high solvent concentration air from directly contacting the heating elements and cause an explosive condition. Alternatively, instead of directly monitoring solvent concentration, the actuation of the shutters and damper can be based on a predetermined cycle in the drying process, such as the initiation of a printing press blanket wash cycle.




In another embodiment of the present invention, it can be advantageous to maintain a continuous air purge to dilute the LEL concentration on the face of the heating elements


17


during the drying mode when the shutter assembly


40


is open. In this case, the volume control damper


20


is continuously open to allow the air jets


32


to distribute fresh air on the surface of the heating elements


17


, even when the shutter assembly


40


is open.



Claims
  • 1. A method of drying a web, comprising:providing a dryer enclosure having a web inlet slot and a web outlet slot spaced from said web inlet slot, said dryer enclosure having a dryer atmosphere; causing a running web to travel through said dryer enclosure; impinging gas onto said running web in said enclosure; irradiating infrared light onto said running web in said enclosure with an infrared light source; and preventing said dryer atmosphere from contacting said infrared light source when the solvent concentration in said dryer atmosphere reaches a predetermined level.
  • 2. The method of claim 1, wherein said dryer atmosphere is prevented from contacting said infrared light source with a plurality of shutter blades positioned between said infrared light source and said web.
  • 3. The method of claim 2, wherein said plurality of shutter blades cooperate with a volume control damper in said dryer enclosure to create a pressurized chamber between said plurality of shutter blades and said infrared light source.
  • 4. The method of claim 1, wherein said web is floatingly supported in said dryer enclosure.
  • 5. A method of drying a web, comprising:providing a dryer enclosure having a web inlet slot and a web outlet slot spaced from said web inlet slot, said dryer enclosure having a dryer atmosphere; causing a running web to travel through said dryer enclosure; impinging gas onto said running web in said enclosure; irradiating infrared light onto said running web in said enclosure with an infrared light source; and preventing said dryer atmosphere from contacting said infrared light source at a predetermined time during the drying process.
  • 6. The method of claim 5, wherein said dryer atmosphere is prevented from contacting said infrared light source with a plurality of shutter blades positioned between said infrared light source and said web.
  • 7. The method of claim 6, wherein said plurality of shutter blades cooperate with a volume control damper in said dryer enclosure to create a pressurized chamber between said plurality of shutter blades and said infrared light source.
  • 8. A method of drying volatile solvent from a web, comprising:providing a dryer enclosure having a web inlet slot and a web outlet slot spaced from said web inlet slot, said dryer enclosure having a dryer atmosphere; causing a running web to travel through said dryer enclosure; impinging gas onto said running web in said enclosure; irradiating infrared light onto said running web in said enclosure with an infrared light source; and diluting the concentration of said volatile solvent in said dryer by continuously providing a flow of gas about said infrared light source.
Parent Case Info

This is a division, of application Ser. No. 09/295,074, filed, Apr. 20, 1999, now U.S. Pat. No. 6,049,995.

US Referenced Citations (5)
Number Name Date Kind
3590495 Tyson et al. Jul 1971
4575952 Bodenan et al. Mar 1986
5261166 Seeley et al. Nov 1993
5813134 Min et al. Sep 1998
5981022 Min et al. Nov 1999