This invention relates to a sealed infrared radiation source, comprising an emitter comprising a thin structure, e.g. a membrane or thin band, being stimulated by an electrical current conducted through said membrane, said membrane thus comprising an electrical conductor.
Usually sealed infrared sources have electrical conductors for supplying energy to the emitter which passes between the layers constituted by glass housings and silicon membrane layers. This method, however, have several disadvantages such as complicated production and temperature characteristics.
There is described in the art an infrared source in the 2 micron IR range comprising a membrane being encased hermetically by the substrate and a silicon nitride window. The emitter membrane is doped with boron to increase the efficiency of the IR emission from the source. The solution comprises electrical coupling of the power supply to the source through layers of metallized aluminium, which complicated the production and sealing of the casing. This and similar solutions have the disadvantage of being complicated to produce, as they comprise several different materials.
The use of silicon being heavily doped with Boron or Phosphor to increase the efficiency of IR radiation of a source is also known.
It is an object of this invention to provide a infrared source being possible to mass produce using silicon technology. The source should be sealed using ordinary bonding techniques to withstand both temperature variations and other strains.
The present invention relates to a source and a method for making this source being based on the idea of supplying current through the housing parts, the housing parts also being made from silicon and being bonded to the emitter part by fusion bonding or similar.
Thus a hermetically sealed source is provided in a very simple process, preferably a so-called fusion bonding process. The present invention thus provides a solution being suitable for mass production were all electrical conductor paths are lead through the whole stack. Thus the source may be hermetically sealed in vacuum or in an inert gas during production and it is possible to pack e.g. 1500 source at the time. Today the packing costs are as high as the costs for the source, as each chip is hand picked, glued to a can, wire bonded to the can, and a top with an IR window is welded to the can. Thus the present invention gives large cost reductions.
According to one aspect of the invention the emitting membrane preferably comprises a silicon layer being doped with a very high concentration of Boron or Phosphor. This doped area is in thermal contact with an electrical conductor layer on the emitter, but electrically insulated from the electrical conductor layer on the emitter. The electrical conductor layer on the emitter has sufficient resistance to serve as a heater for the highly doped silicon. While silicon usually is semitransparent in the infrared spectrum the high doping makes the silicon opaque and therefore it emits radiation in the near infrared spectrum. The absorption properties of the highly doped silicon are well known in sensors and sources.
Thus in this aspect the invention comprises an emitter being made from silicon and being highly doped with Boron or Phosfor, and which is in thermal contact with a resistor heating up the emitter when a current is applied to it. The emitter may be packed in a silicon housing and be surrounded by a sealed cavity. In the wording of this specification emitter/radiating part and membrane are mainly regarded describing the function and the form, respectively, of the active part of the source.
The invention will now be described with reference to the accompanying drawings, illustrating the invention by way of examples. It should be noted that the scales in the drawings are distorted to simplify their understanding.
a and 1b illustrate the membranes of two embodiments of the invention as seen from above.
The invention is susceptible of numerous embodiments. The description that follows is illustrative but not exhaustive of the scope of the invention. In
The membrane also comprises holes 14,15 for pressure equilibration between the two sides of the membrane. In
In
The source according to the invention is produced as illustrated in the accompanying drawings,
In
As shown in
In
The electrically conductive polysilicon layer is then, see
The oxide layer 6 is also removed from the rim 21 of the first silicon layer and from the holes 5 not provided with the conductive polysilicon layer, and a cavity is etched through the substrate from below up to the lower oxide layer 2 under the Boron or Phosphor doped area 1 forming the emitter area, and the holes 5. Thus through-holes 14 are obtained connecting the cavity and the upper side of the emitter. Thus the emitter is left as a membrane enclosed in an oxide layer and being provided with an electrically conductive heater layer, e.g. of doped polysilicon.
As shown in
Metal layers 18,19 may then be provided on the upper and lower housing parts 16,17. One of said metallic layers should be provided with a window 20 above the emitter area 1 so as to allow the emitted infrared radiation pass through. The undoped silicon material in the housing 16 is transparent to infrared radiation.
An electrical current between them indicated by the line 23 in
Thus no separate electrical conductors are needed for providing a current to the membrane, only electrical contacts provided outside the housing. This requires only standard technology. Although the illustrated embodiment includes electrical contact 18,19 on the upper or lower surfaces of the housing other electrically equivalent solutions may of course be applied, e.g. on the sides of the housing or surfaces protruding from the sides. In one aspect of this invention it provides a radiation source and a method for producing this which may be efficiently sealed using bonding techniques or similar.
According to an alternative embodiment of the invention optical elements, such as a lens or diffractive optical elements are provided on or in the structure of one of the housing parts, thus shaping or focussing the infrared light emitted from the membrane. The diffractive optical element is especially advantageous if the light source is small or collimated, or a distance is provided between the source and the optical elements. A filter may also be added to modulate the wavelength distribution.
As mentioned above the device is primarily meant to be mass produced with silicon, being constructed by micromachining a radiation element in a silicon wafer. In another wafer a cavity is etched, so that the cavity is positioned above the radiation element. A third wafer, in which a cavity also may be etched, is laminated under the radiation element. The lamination may be performed using a so-called fusion bonding process, which provides a completely sealed coupling between the two.
As illustrated in
It should be noted that the scales of the drawings above are exaggerated, especially in the ration between height and length. Typical dimensions of the radiation source is as follows:
The radiation source according to the invention is possible to produce using standard process steps of semiconductor technology. Silicon wafers are for example processed using
As the emitter membrane may be subject to large temperature fluctuations it may be advantageous to provide temperature sensors such as a temperature sensitive resistor or diode on the emitter. The sensor being provided with electrical conductors for coupling to the temperature measuring means monitoring the temperature of the emitter, said temperature measuring circuitry being provided in the housing or externally for monitoring the temperature of the emitter. Alternative other temperature measuring means may be employed to monitor the temperature of the emitting membrane, e.g. positioned in the housing. Other variations and alternatives may of course also be made by a person skilled in the art within the scope of this invention, such as providing the electrical contacts on the sides of the source housing or variations in the materials used to manufacture the unit.
As is clear from
In
Those skilled in the art will appreciate from what is disclosed and illustrated here that there are other examples, variations and equivalents within the scope of the invention and the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
20043883 | Sep 2004 | NO | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NO05/00335 | 9/13/2005 | WO | 00 | 3/14/2007 |