Not applicable.
Not applicable.
The present invention is related to small caliber tracer projectiles or bullets, each of which may be expelled from a firearm such as a rifle or pistol. More particularly, the present invention relates to a tracer composition for small caliber projectiles bullets that, when ignited, emit a controlled amount of near infrared light to allow a flight path of the projectile to be tracked without causing a “bloom” in Generation III night vision systems.
Tracer projectiles are often utilized in combat and warfare training to provide a visual trace of the path of a projectile. For instance, tracers may be used to gauge whether fired projectiles are impacting upon a desired target or whether adjustments in aim are desirable. One drawback of some conventional tracers utilized in combat is that they emit a significant amount of visible light, which may enable an enemy to discern a location of the source of the tracer projectile. Accordingly, use of these conventional tracers may allow an enemy to visually locate the source of the projectile bullet and to direct a counter-attack toward that location. However, when tracers are utilized in training, it is generally desirable to be able to visually discern the flight path of a tracer projectile without the need for using infrared vision equipment such as Generation III night vision goggles. This feature is generally desirable to enable viewers to discern the flight path of a tracer projectile regardless of whether or not the viewers are utilizing infrared vision equipment.
Tracer projectiles typically include a tracer composition that, when ignited, provides a spectral emission that allows the projectile path of the tracer to be tracked/viewed. Numerous conventional tracer compositions are capable of emitting varying levels of visible light but detrimentally emit significant levels of infrared light. Conversely, other conventional tracer compositions fail to emit sufficient levels of infrared light, thus, making it difficult to track the projectile path of the tracer projectile when using infrared detection. It is generally desirable to formulate these tracer compositions so that, when ignited, they emit a sufficient amount of infrared light to allow the projectile path of the tracer to be tracked/viewed through the use of infrared vision equipment over a significant distance. However, it is also quite desirable to formulate these tracer compositions so that, when ignited, the intensity of the infrared emissions provided does not cause infrared vision equipment to malfunction. For instance, if the intensity of the infrared emissions is too great, Generation III night vision goggles may malfunction (e.g., momentary shutdown referred to as a “bloom”) causing the viewer to be temporarily blinded.
Accordingly, it is an object of the present invention to provide a tracer composition to be utilized in tracer projectiles that, when ignited, emits an effective amount of near infrared light. Relatedly, it is another object to provide a tracer composition that emits infrared energy at intensities sufficient to be traceable over projectile paths of significant distances. Further, it is still another object to provide a tracer composition that does not emit intensities of infrared energy that could cause Generation III night vision goggles to malfunction (e.g., bloom). These objectives, as well as others, may be met by the invention described below.
One aspect of the present invention is directed to an infrared tracer composition to be utilized in tracer projectiles. This tracer composition generally includes magnesium, polytetraflouroethylene, acrylic rubber, and a burn rate stabilizer. Various statements may be made in regard to relative amounts of each of the components of the tracer composition. For instance, in one embodiment, the amount of acrylic rubber in the composition may be greater than the amount of burn rate stabilizer in the composition. In another embodiment, the amount of acrylic rubber in the composition may be less than the amount of polytetraflouroethylene in the composition. In such an embodiment, the amount of acrylic rubber in the composition may be less than the amount of magnesium in the composition. However, while not necessarily always the case, it is generally preferred that the amount of polytetraflouroethylene in the composition be less than an amount of magnesium in the composition.
Another aspect of the invention is directed to a tracer that includes a projectile body and an ignitable tracer composition. The ignitable tracer composition includes acrylic rubber, and at least a portion of the tracer composition is disposed generally within a portion of the projectile body. This tracer composition may include other components. For instance, the tracer composition may include magnesium or other appropriate tracer fuel such as, but not limited to aluminum and boron. As another example, the tracer composition may include an appropriate oxidizer such as, but not limited to, polytetraflouroethylene, vinylidene, and strontium nitrate. Further, the tracer composition may include one or more appropriate burn rate stabilizers such as carbon black, graphite, and zirconium carbide.
In some embodiments, the tracer projectile also includes an igniter for igniting the tracer composition. This igniter may be any appropriate igniting mechanism and/or material. Moreover, the igniter may be disposed in any of a number of appropriate locations relative to the tracer composition and the projectile body. For instance, in one preferred embodiment, at least a portion of the tracer composition is disposed between the igniter and a portion of the projectile body.
Various refinements exist of the features noted in relation to one or more of the above-described aspects of the present invention. Further features may also be incorporated into one or more of those aspects as well. These refinements and additional features may exist individually or in any combination. For instance, the various features discussed below in relation to the illustrated embodiments may be employed in any of the those aspects, individually or in any combination.
The present invention will now be described in relation to the accompanying drawings, which at least assist in illustrating the various pertinent features thereof.
The projectile 16 of the rifle cartridge 10 is illustrated in detail in
Still referring to
The projectile 16′ of the pistol cartridge 10′ is illustrated in detail in
Still referring to
The tracer composition 24 shown in
While amounts of the components of the tracer composition 24 may be varied from one embodiment to the next, certain of the preferred embodiments include about 48 to 64 parts by weight of magnesium, about 29 to 50 parts by weight of polytetraflouroethylene, about 2 to 7 parts by weight of acrylic rubber, and about 0.5 to 3 parts by weight of a burn rate stabilizer, such as carbon black or graphite. A preferred formulation of a tracer composition is about 58 parts by weight of magnesium, about 38 parts by weight of polytetrafluoroethylene, 4 parts of weight of acrylic rubber and about one and one-half parts by weight of carbon black or graphite.
The ignition composition 26 may have any of a number of appropriate make-ups. For instance, one preferred embodiment of the ignition composition 26 includes about 42.5 parts by weight of boron, about 55 parts by weight of potassium perchlorate, and about 5 parts by weight of vinylidene fluoride/hexfluoropropylene copolymer (Viton® from E.I. du Pont de Nemours). This ignition composition 26 is generally ignited due to ignition of the propellant in the casing 14. This ignition composition 26, then, generally functions to facilitate ignition of the tracer composition 24. It should be noted that the tracer composition 24 is the focus of the present invention, and accordingly, any manner of igniting the same to provide the desired spectral output is within the scope of the invention. A typical projectile will include tracer composition and igniter composition in a ratio of about 4 to 1.
The size of the pellet of the tracer composition 24 and the make-up of the tracer composition can affect the spectral output of the corresponding projectile. Output intensity is dependent upon the diameter of the column of the pellet. For instance, if it is desired to have a given tracer bullet of the invention emit almost no visible light but a sufficient amount of infrared light, a diameter 28 of the cylindrical pellet (measured perpendicular to reference axis 30) may be reduced to about 3/32 inch. This means that a diameter of the receptacles 22, 22′ would also be about 3/32 inch.
Incidentally, a “sufficient amount” refers to an amount of light that enables a viewer to observe/detect the same unaided. For instance, a sufficient amount of visible light would be discernable by the naked eye. Further, a sufficient amount of infrared light would be discernable through the use of infrared vision equipment such as Generation III night vision goggles. Still further, “almost no visible light” refers to both no visible light, and an insignificant amount of visible light such that it may not be easily discerned by the naked eye.
If it is desired to have a given tracer projectile of the invention emit low, yet noticeable, amounts of visible light and a sufficient amount of infrared light, in size, the diameter of the cylindrical pellet may be increased to about ⅛ inch.
As still another example, if it is desired to have a given tracer projectile of the invention emit sufficient amounts of both visible and infrared light, the diameter 28 of the cylindrical pellet may be about 3/32 inch, but the tracer composition 24 preferably includes vinylidene fluoride/hexfluoropropylene copolymer instead of acrylic rubber. The preferred composition of the formulation is about 66 to 74 parts by weight of magnesium, about 8 to 13 parts by weight polytetrafluoroethylene and about 13 to about 18 parts by weight of vinylidene fluoride/hexafluoropropylene copolymer. A preferred embodiment of the formulation is about 70 parts by weight of magnesium, about 10.5 parts by weight of polytetrafluorethyloene and about 15.5 parts by weight of vinylidene fluoride/hexfluropropylene copolymer.
In all of these examples, a height 32 of the cylindrical pellet is preferably about 0.175 inch. It should be noted that other dimensions of the tracer composition 24 may be chosen depending on the desired results.
Still referring to
Those skilled in the art will appreciate that certain modifications can be made to the system and methods herein disclosed with respect to the illustrated embodiments, without departing from the spirit of the instant invention. And while the invention has been described above with respect to the preferred embodiments, it will be understood that the invention is adapted to numerous rearrangements, modifications, and alterations, and all such arrangements, modifications, and alterations are intended to be within the scope of the appended claims.
This is a divisional application which claims the benefit of U.S. patent application Ser. No. 11/023,078 which was filed on Dec. 27, 2004 and is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4094711 | Ramnarace | Jun 1978 | A |
5639984 | Nielson | Jun 1997 | A |
5760329 | Baum et al. | Jun 1998 | A |
20020121321 | Takayama et al. | Sep 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 11023078 | Dec 2004 | US |
Child | 12581946 | US |